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ABSTRACT

To study the morphologic structure of axons can help neuro-
scientists understand the neuronal function and development.
The modern microscopes provide the fundamental tool for vi-
sual inspection of axonal structure. Due to the high volume
of generated microscopic axon image data, it is critical to de-
velop an automated technique for robustly and rapidly detect-
ing 3D axonal structure. In this paper, we present a pure 3D
approach to extract the curvilinear structure of axonal axes
from microscopic image stacks. The method mimics the axon
tracing procedure in 3D space as walking along a path with
minimized cost value, which corresponds to the shortest path
problem (SPP) in graph theory. The global solution for SPP,
such as Dijkstra’s algorithm, is infeasible for the real axon
tracing problem because of the computation cost. We simplify
this problem using a dynamic local tracing technique with
linear computation complexity. The merits of the proposed
method lie in that it can handle the short turn and non-vertical
problems and also can separate closely distributed axons from
each other.

1. INTRODUCTION

Revealing the underlying geometric structure of axons, such
as the branching and topology, can help the neuroscientist ob-
tain a better understanding of the functional and developmen-
tal biology and neurodegeneration conditions [1]. The mod-
ern advancements in high-resolution and fast microscopic tech-
nique provide scientists the visual perception of axons in three-
dimensional space through a series of image slices, which is
so called microscopic image stack. Due to the high content
confocal microscopy images, the manual processing brings
extremely heavy work load and is infeasible for wide-scale
axons morphological analysis. Therefore, it is crucial and
emergent to develop a rapid and robust technique to segment
the axonal structures from large volume of microscopic image
stacks. There have been some approaches proposed to extract
the geometric structure of tubular biological objects, such as
blood vessels and human airway tree in clinic research [2] [3]

[4]. Moreover, some recent literatures reported the progress
on extracting the axons 3D structure, such as the repulsive
force based snake model [5][6][7]. However, most of the pro-
posed methods for 3D morphological structure extraction uti-
lize 2D image based object segmentation and the association
between successive image slices.

There are two categories of procedures for these kinds of
2D based techniques. One is first to segment the object of
interest in each image slice and then find the object associ-
ations. The other is to extract the objects in the first image
slice and then conduct tracking procedure on the consequent
slices. The main constraint lies in that it assumes the 3D
curvilinear structures are approximately perpendicular to the
imaging plane. Particularly, these 2D based methods could
completely fail when segmenting the axons with short turn
and parallel parts to the scanning plane. Furthermore, due to
the connection complexity and low-contrast signal of axons,
the axon segmentation and object correspondence encounter
difficulties for many slices in the microscopic image stacks.

In this paper, we present a 3D space based approach for
extracting the geometric structure from confocal microscopy
images of axons. The basic idea is to mimic a walking proce-
dure in the 3D space through a tubular routeway with min-
imal cost. The finding of the path with minimal cost can
be formulated by the classical shortest path problem (SPP)
in graph theory. However, the state-of-art solutions for SPP,
such as Dijkstra’s algorithm, have the computation complex-
ity no less than O(E + V log V ), where E is the number of
edges and V is the number of vertex in the graph [8]. It can-
not satisfy the real problem of axon segmentation because of
the huge volume of data and complex connection of axons.
Motivated by the well-known Gestalt psychology laws of clo-
sure in cognitive science, proximity and continuity for 2D
salient objects [9], we formulate our cost function to reflect
the saliency of 3D axonal axes based on the local character-
istics of axons in three aspects: smoothness, proximity and
continuity. Finally we try to solve the optimization problem
by local dynamic searching with linear time computational
cost instead of the expensive global optimization. The exper-
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Fig. 1. The preprocessing and tracing initialization of axon
slice: (a) original axon image patch; (b) after thresholding
and Gaussian smoothing; (d) initialized axon centroid; and
(d) corresponding image terrain surface of (b). The centroids
are corresponding to the peaks in the surface.

imental results of curvilinear structure extraction of axonal
axes from real microscopy image stack empirically validate
our proposed method.

2. METHODOLOGY

2.1. Preprocessing and tracing initialization

Due to the existing background noise, the first step of prepro-
cessing is to use thresholding technique to remove the noise
(an axon patch of raw image shown in Fig.1.a). This denois-
ing processing can provide a cleaner axon presentation and
also reduce the computation cost in the following dynamic
tracing.
For the tracing initialization, the most important geomet-

ric information is the centroid location of each axon in the
first slice. In joint space-range domain, the discrete image
can be treated as terrain surface, whose height is the intensity
of the pixel. After the thresholding and Gaussian smoothing
processing (Fig.1.b), the axons is shown in the form of ter-
rain surface (Fig.1.d), where each axon is corresponding to
one ”Hill”. Obviously, the peak position in the terrain surface
is the exact centroid position of each axon. The mean shift
technique can be applied to locate those centroids [10]. The
results are displayed in Fig.1.c.

2.2. Definition of tracing cost

Here we define the cost function to describe the local neuronal
topology considering three factors: smoothness, proximity
and continuity. Smoothness property relates to the shape re-
quirement of the extracted central line. Proximity means the
gap between each pair of transition pixels should be small.
Continuity means the energy or intensity along the central
line should be smoothly distributed. Balancing the three cost
factors, the central line can be extracted along the optimized
path. These three local axonal properties are defined as fol-
lows.

Smoothness: Assume the image stack is described by
I(x, y, z), we can calculate the three-dimensional Hessian ma-
trix as:

H(I) =

⎡
⎣ Ixx Ixy Ixz

Iyx Iyy Iyz

Ixz Iyz Izz

⎤
⎦ (1)

where Ixx, Iyy, Izz, Ixy, Iyz, Ixz are the second-order partial
differentials of I(x, y, z). The estimation of discrete case par-
tial differentials can be obtained by conducting convolution
with the partial derivatives of Gaussian kernel. For instance,
the second partial differential along x axis Ixx can be approx-
imated as:

Ixx =
∂2G(x, y, z; Σ)

∂x2
∗ I(x, y, z) (2)

where G(x, y, z) is a 3D Gaussian function with covariance
matrix Σ and zero mean. The eigenvalue decomposition of
H(I) can derive the largest eigenvalue λmax and the corre-
sponding eigenvector emax, which denotes the direction with
the maximum gradient of intensity. Simply, we use emax in
three dimensional space as the signature of direction of the
axons in a certain position. Hence we define the smoothness
between two points vi = {xi, yi, zi} and vj = {xj , yj , zj}
as:

svi,vj
=

‖ ei
max ‖ · ‖ ej

max ‖
< ei

max · ej
max >

(3)

Proximity: The definition of proximity is intuitive, which
reflects the geometric distance between two adjacent pixels
along the axonal axis. Here we just use the Euclidian distance
to represents the proximity, which is calculated as:

pvi,vj =‖ vi − vj ‖ (4)

Continuity: Assuming that the intensity distributed along
the axonal axis should smoothly change in the 3D space, we
can evaluate the local continuity property directly based on
the intensity of pixels. However this criterion will be easily
affected by noise. We utilize the density of intensity instead
of intensity of pixels. Regard the axons as the 3D objects with
mass density in different locations. Each pixel v = (x, y, z)
in the axonal image stack is treated as a unit 3D cubic with
the mass I(v). We apply the multivariate kernel density to
estimate the density at position v0 with kernel K(v) and ho-
mogeneous kernel size h [10]:

f(v0) =
1

nh3

∑
I(v) · K(

v0 − v
h

) (5)

n is the number of pixels in the sphere region ‖ v−v0 ‖≤ h.
The optimal 3D kernel with minimummean integrated square
error is Epanechnikov kernel [11]:

KE(v) =
{

5
2a−1(1 − vT v)
0

if vT v < 1
otherwise

(6)
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where a = 4
3πh3 represents the volume the sphere. So the

continuity between pixels vi,vj is: cvi,vj =| f(vi)−f(vj) |.
Finally, given two adjacent non-zero pixels vi,vj , the to-

tal local tracing cost is defined as:

gvi,vj
= svi,vj

+ η · pvi,vj
+ μ · cvi,vj

(7)
where the coefficients η, μ are used to balance the weight of
the three different costs.

2.3. Dynamic local tracing

The objective of extracting the axonal axis is to find a path
P consisting of a sequence of successive pixels {vi}, i =
1, 2, . . . , N , in the image stack with the minimum cost:

Popt = min
P

N−1∑
i=1

(svi,vi+1 +η ·pvi+1,vi+1 +μ · cvi,vi+1) (8)

The solution of Eq. 8 can be treated as a classical shortest
path problem (SPP), given start vertex and unfixed end vertex.
However this solution is not feasible for the axon problem
due to the high volume of data. A typical axonal image stack
with the scale of 482 × 43 × 512 contains more than 105

nonzero pixels after thresholding processing. Alternatively,
we transfer the global path searching procedure to a dynamic
and local optimization problem as:

Popt = {vi} =
N−1∑
i=1

min
vi+1

(svi,vi+1 +η ·pvi,vi+1 +μ ·cvi,vi+1)

(9)
From Eq. 9, the optimal tracing path is determined by

local optimization searching. The local search procedure is
iteratively repeated from the start point to find the adjacent
optimal pixel until reach the boundary of the image stack. For
each local search operation, the pixel in the hemisphere region
with radius r along the axonal direction will be exhaustedly
evaluated to find the best matching.
Instead serially tracing the axons one by one in the axonal

image stack, we execute a parallel tracing strategy. Therefore,
the total cost for all the axons need to be minimized for each
local tracing step. Moreover, the parallel tracing provides the
merit for detecting tracing contradiction when more than one
axon merges to the same successive vertex. In that case, the
reverse tracing procedure will be applied to find the most re-
liable previous axonal vertex of the merging point.

3. CASE STUDY

Data: The confocal microscopic images stack used in our ex-
periment has the dimensionality with 482 × 43 × 512, which
contains 5 axons. Fig.2 shows several slices of the axons im-
age stacks. From the figure, we observed the following char-
acteristics of the real axon data. First the appearances of the

(a)

(e)

(d)

(c)

(b)

Fig. 2. The axonal image slices samples. From top to bot-
tom, the slices are indexed as 1, 71,121,321, and 471 in the
microscopic image stack.

Fig. 3. The detected 3D curvilinear structure of axonal axes
of real axon image stack.

axons are severely diverse for different slices. Second, the
axons are very close or even touch together in some slices.
Third, in some slice, the axon could be invisible or mixed to-
gether (Slice 121 and 321 shown in Fig.2).
Results: As described in Section 2.1, the initial position

of axonal center is automatically located by mean shift ap-
proach. Given these start points, the five axons are traced in
the same time. The reverse tracing strategy is applied when
encountering the axon merging problem because here we as-
sume that the image stack dose not contain branching and
merging axons. Finally we get a series of tracing points for
each axon. Figure 3 gives the 3D visualization results of the
traced curvilinear structure of axonal axes. The touching to-
gether axons are well separated by the proposed method.
Validation: The extracted curvilinear structure of axonal

axes was validated by comparing with the manual labeling re-
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Fig. 4. Validation by comparing with manual results on X-Z
projection: (a) is the manual result and (b) is the automatic
result.

sult. The neurological expert provides the manual results on
the X-Z plane, as shown in Fig.4a. Meanwhile, we project
our extracted 3D axonal axes onto X-Z plane and obtain the
result as Fig.4b. The visual comparison shows that our re-
sult is very close to the manual effort, although we have not
presented quantitative evaluation comparing with the manual
ground truth in the current work.

4. CONCLUSION AND FUTUREWORK

In this paper, we present a pure 3D space approach for ex-
tracting the curvilinear structure of multiple axonal axes from
microscopic image stacks. The microscopic image stack is
treated as the 3D distributed pixels. The segment of the ax-
onal axes is formulated as finding a path with optimal cost.
The cost function between two adjacent pixels in the axonal
data is defined based on three basic rules, i.e., smoothness,
continuity and proximity. Although this SPP has the global
solution in graph theory, we have to solve this problem us-
ing local tracing method due to the extremely expensive com-
putation cost. Our proposed local dynamic tracing approach
has two distinguished innovations. First, we conduct paral-
lel tracing for all the existing axons instead of serial tracing
one by one. Second, we apply reverse tracing to solve the
merging problem, which is resulted from touching together
axons often seen in the real data. Moreover, our approach
is completely based on the 3D geometric space. This merit
can fundamentally solve the extraction of the axonal structure
with non-vertical or even parallel scanned segments. Usu-
ally, most of the 2D methods could fail when tracing parallel
scanned or short turned tubular objects. Based on the detected
axonal axes, our future work is to apply model based method
to reconstruct the axonal shape. It provides more geometric
metrics, such as length, radius, and surface normal, which
gives more quantitative information for axon function analy-
sis. Moreover, tracing more complex axon structures (merg-

ing, branching, etc.) is another research topic of importance.
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