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ABSTRACT objects is modeled to help object detection. In [9] a Condi-

The contextual relationships among different semanticeon fion@l Random Field €RF) is used whose graph nodes are

epts provide important information for automatic concegitd PIX€ls in the image. The graph structure is discriminajivel
ection in images/videos. We propose a new context-based clarmed through the LogitBoost algorithm. These methods
ncept fusion (CBCF) method for semantic concept detectior12V€ One-layer structures, where the system input s loetle
Our work includes two folds. (1) We model the inter-con-"€Presentations of images (e.g. color features) and tiibut
ceptual relationships by a Conditional Random Field (CRFjS the probabilities of object assignment for every pixeheT
that improves detection results from independent detectos©c0Nd category aims at detecting concepts in the whole im-
by taking into account the inter-correlation among congept 296s/videos [5, 6, 7] in a two-layer structure. In the firgefa
CRF directly models the posterior probability of concept la INdependent concept detectors are applied to get posterior
bels and is more accurate for the discriminative concept deass labels on a givenimage, and then in the second layer de-
tection than previous statistical inferencing techniquiise  tection results of each individual concept is updated thiou

Boosted CRF framework is incorporated to further enhanc@ context-based model by taking into account detection con-

performance by combining the power of boosting with crefidence of other concepts. We _refer to this_ kin_d of appr_oach
(2) We develop an effective criterion to predict which con-as Context-Based Concept Fusi@BCF), which is the main

cepts may benefit from CBCF. As reported in previous works!SSU€ We explore in this paper.

CBCF has inconsistent performance gain on different con- Several CBCF methods have been proposed. The Multi-
cepts. With accurate prediction, computational and data ré€t method [S] represents inter-conceptual relations avfe
sources can be allocated to enhance concepts that are proffor 9raph where co-occurrences statistics of conceptssare
sing to gain performance. Evaluation on TRECVID2005 develd as compatibility potentials. Posterior probabilitiésanc-

lopment set demonstrates the effectiveness of our algorith ©€PtS are updated by loopy probability propagation. In [&; m
Index Terms-image classification, image object detectiondels based on Bayesian Networks are used to capture the stat-

istical interdependence among concepts. Such technitpies,
1. INTRODUCTION ough intuitive and effective in some cases, require a lange a
" . . : ount of data to estimate joint statistics and interdepecelen
Recogmt.lon of semantic |nf0rmat|on_fro_m V'Sua_l conltem; ha of concepts. This makes the technique impractical in many
been an important goal for research n |mag_e/V|deo 'nde).('anpIementations. To avoid the difficulty of estimating gene
In recent years, NIST TRECVID video retrieval evaluanon(,i,[ive distributions, the Discriminative Model FusioBNIF)

has i_ncluded_ a task in detecting high-level lfeatures, ssch Fnethod [7] uses support vector machie) as the context-
:oca|t|fons, objects, p;;))ple, an_d er\:_ents fromhwde%S. Sl?mh('j based model. A model vector comprising of detection scores
evel features, term ) ncept_sm this Paper, have been found ¢ independent detectors is fed to SWM to refine the detection
o be very useful in improving quality of retrieval results i ot of each concept. However, results reported so fé][1,
seaéchlng proadcastnews vllldedos [10]. inisolati K have indicated that not all concepts benefited from CBCF lea-
: emantic concgpts usually do not“occur |n’|’so atlon_ ) nOVYhing. The lack of consistent performance gain could be att-
ing the contextual information (e.g. “outdoor”) of an image i, yaq tg several reasons: 1) insufficient data for leaynén

's ex%ectetsthO _t:jelp detectloln of tothtekr) conc(j:epts (e'?aegart_)liable relations among concepts, and 2) unreliable detecto
ased on this ldea, several coplext-based concep €Clo 11 this paper we model the inter-conceptual relationships

methods have been proposed, which can be classified inB a CRF [3] (as shown in Fig.1). For each imageCRF

two categories. The first category tries to segment an imag[ : : A1 S0 M
. . ; e e N . kes as input the detection resulig=[P(y;=1|I),...,P(y
into object regions (e.g. “building” or “road”) by consider —1|1)|T (y}pis the label for concep(fl-){ fr(oyrln]\/[| izldepenEjeInt

ing object relationships. In [4] a hiddestene is detected, ancept detectors, and produces updated marginal prebabil

and the correlation between global scene context and IOCﬁesP(y§:1|I) of each concept’;. CRF directly models the
*The work was supported by Kodak graduate fellowship. conditional distributiorP(yz |hy) of class labey given input




observatiorhy, while the generative methods (e.g. Multinet for eachl the observations (system inputs) are the posteriors
[5]) model the joint distributiorP(y1, hy). When the training  hi=[h{, ..., 2|7, hi=P(yi = 1|T), generated by indepen-
set is limited, the discriminative CRF can better use the-sandent concept detectors. Our goal is to feed these inputamto
ple resources to model the distribution relevant to therglisc  inferencing model to getimproved posterior probilityyy |T)
inative concept detection task than the generative approac by taking into account inter-conceptual relationships.

To avoid the difficulty of designing compatibility poten- The posterio?(y|h;) can be modeled by a CRF [3] as:
tials in CRF, a discriminative objective function aimingcét
ass separation s directly optimized. The Boosted CRF frame _
work [9] is incorporated, and the Real AdaBoost algorithn[2 Z is a normalizing constant; (v;,hy) and;; (vi, yi, hy) are
is adopted to iteratively improve concept detection. SW isthe local and compatibility potentials respectively. Ose i
used as weak learner for boosting because of its excellent pesue of CRF modeling is the design of potential functions.
formance found in TRECVID concept detection so far [10].¢; (v} hi) is a local decision term which influences the posteri-
PGS =111 ?P(yi -1 ors of concepC’; independent of its neighbors. Compatibility

PGy =111

P(yI|hI) — %eril ¢>i(y%‘,hIHZ?LZfiL#mw (y%,y{,hl)

potentialsy;; (v, y1, hi) are generally used to specify heuris-
QPoi=11D tic constraints for relationships between pairs of nodesg, e

Fully Connected Graph

P(y; =1]1)
P(y; =11

spatially smoothing constraints in image segmentation [3]
However in our problem it is unclear what kind of relation-

‘ - ship among concept nodes we should adopt, and it is difficult
; | 2 ‘ PO =1I1) to define appropriate compatibility potentials. In this eap
Foi=t i P(yfglli P =111) we incorporate the Boosted CRF framework proposed in [9]

. POT=1ID A =11D which directly optimizes a discriminative objective fuioct

Fig. 1. The CRF that models relationships amohg concepts  hased on CRF and avoid the design of compatibility poten-
C1,...,Cu. Concepts are related to each other, so the graph is fullig|s. |n the next subsections we will introduce the Boosted

connected. The CRF takes as input (black nodes) detecsuiise ok framework [9], followed by our BCRF-CF algorithm.
P(yi=1]1),..., P(y}=1]1), from M independent concept detec-
2.1. Boosted CRF

tors, and produces updated marginal probabiliftég;=1|T) (gray _
nodes) of eaclf;. y1=[y1, ..., yi]" is the vector of concept labels. After the inference with CRF the beliéf on each node€;

In addition, a simple but effective criterion is proposed to'_?huse.d to ?ggr::mmztel_the_ p?Ster'@(ylzﬁulg f ﬁé;t;)
predict which concepts will benefit from CBCF, based on both €amo modeting 1S 1o Minimize the tota or

information theoretic and heuristic rules. This critertakes all concepts over ablfl traymng :jgtia:Q ) iy /2
into consideration both the strength of relationships leetma J= _HIGD Hizl by (41) T/ 2pp (—1) v/ (1)
concept and its neighborhood and the robustness of datsctioEqn(1) is an intuitive function: the minimizer of favors th-
of this neighborhood. In our experiment the prediction accuose posteriors close to training labels. Moreover we haje [9
racy is 81% when 26 (out of 39) concepts are selected. The M i(Fi G M -
accurate prediction scheme allows us to use CBCF in practice log J :ZIGDZi:IIOg [He i I)] :Zizllog Ji @)
applying it only when it is likely to be effective. wherelogJi=>" ;. plog[1+e 1 (Fi+G1); Ff is a discriminant
The proposed algorithm is called Boosted CRF-Concefnction (e.g. a logistic regression stump) taking inhyt=
Fusion BCRF-CF). As will be shown in Sec.2 traditional 1 pM]T @i js a discriminant function whose input is
DMF [7] corresponds to the initial stage of BCRF-CF. We peliefbi=[b}(+1), . .. bi~'(H),bit {(+1),. .. bM(+1)]T, where:
will also show that the extended iterative steps introdtned ; B _(Fi+ci)
our method further improve the performance. Experiments br(+1) =1/(1 +e ‘ ) . ®)
are carried out over TRECVID 2005 development set [10] (80N [9], by assuming additive models (7)=>",_,f{(#), and
hours, 137 video clips). Out of 39 concepts, 26 are automat=} (T):Zthlg}'(t), LogitBoost is used to iteratively optimize
ically chosen to use context-based fusion among which 2log.J, with b} being updated in each iteration. Logistic re-
indeed get noticeable performance gain. Compared with ingression stumps are used as weak learnergifdrandgi (¥).
dependent detectors, BCRF-CF improves the MAP by 6.8‘Vﬂ_2_ Boosted CRF—Concept Fusion

on arelative basis, and performance gains for several pigice , , . -

are significant, e.g., 12219% for “office”. Monvated by Ref.[9] we gv0|d desngryn_g compatibility pote
tials (which are very difficult to obtain in our problem as de-

2. BOOSTED CRF CONCEPT FUSION scribed earlier) by optimizing the discriminative objeetfu-

We start by defining notations. Lét,...,Cy be M conce- nction Eqn(2) with a BCRF-CF algorithm. Our BCRF-CF are

pts andD be the set of training dat&(I,y;)}. Eachl is different from the original Boosted CRF [9] in two aspects.

an image andyr = {v;,..., )} is the vector of concept First, SVM classifiers are used instead of logistic regres-

labels, whereyi = +1 or —1 denoting the presence or ab- sion stumps because of the following three reasons. (1) As

sence of concept; in I respectively. In the CBCF scenario, discussed in [9] linear regression would work well when the
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graph was densely connected, i.e., there were a large numbéput: training setD; posteriorshy from independent detectors.
; ; e Initialization:
pf nodes (plx_els in [9]). But the nymber of noo!es (F:oncepts For each concep;:
in our graph is small. Thus the linear approximation of the — Train SWM classifiert? based orhy; getp? (yi =1|T)
i imi i 7 i i - ) 0 (i ) )
discriminant function; mgde in [9] may be not valid any ~ Setyi(0) — 1 log -~ g)yliwll)l [T (0) =i (0);
more. More complex function should be assumedipre.g., —PO(yy=11D)

the nonlinear discriminant function from kernel-based SVM bi(+1,0=1/(1+ e~ T1(0); wi(0) = exp[—yi~i (0)]

(2) In our CBCF problem, the training data is usually highly| ~ * Frt = L each{oncemj

biased (the positive training samples for a concept are mugh — Form a new tramﬁg data s&t with size|D| by sampling the
less than the negative ones), and SVM is more adaptive to this original setD according to sample weightsg (¢ —1).
biased classification problem than logistic regressiombse ~ Train S\WM classifierstz () and H; (4 based orD, with hy

andbz( ) respectively.”Get the correspondlng class probabil-

of the use of support vectors. (3) Previous literature cizuei ity estimationp’, (y = 1/T) andp’,(yi = 1T, and also gef

that SVM generally performs well in semantic concept de pt(yizlu):(p?(yl-_lu) +Pg(yf:1\1)) /2

tection for TRECVID data set [1, 8], because it shows good ; ; P i) ; ;

generalization ability with limited training data. ~h (t)+g1_( ) log T im0 =t () 491 (1))/2
Second, the Real AdaBoost algorithm is adopted instead ¢f — Updatel'; () =T'j (¢—1) + 71 () by (-1,9=1/ QL+ 20,

LogitBoost in [9]. LogitBoost uses logistic regressionsps wi (1) —wj(t—1) e~ (®)

as weak learners, but instead we adopt the general Real Ad- Fig. 2. The BCRF-CF algorithm.

aBoost [2] so that we can use other weak learners, 'nCIUd'nﬁwanonI(C ),
SVM. Specifically, the solution of minimizingpg J; coin-
cides with the solution of minimizing the followin@, [2]:

which reflects how much information one
concept can get from another. The detection effpof the
independent detector f@¥; is used to estimate its robustness.

Q: = ZIED L (Ff + Gi) /2 (4)  Our criterion for applying CBCF learning to conceptis:
Q; is exactly the objective function of Real AdaBoost [2] with e, L(Ci CH)E;
the following additive modelT}(T) =37 7i(), ~4(t) = R SV ((eRTon R ®)

(fi(t)+gi(t)) /2. Thatis, during each iteration f{ (t) isthe  The co-occurrence statistics of conceptsandC; in the trai-
discriminant function generated based on inhut g(¢) i ning set is calculated to approximate probabiltyC;,C;),
the discriminant function generated based on the current b§55e(d on which (C;;C;) is computed. Note that concept co-
liefs bi(t). ! 1 Is the overall discriminant function, obtained gccyrrenceis avery rough approximation®§t’;,C;), espec-
by averaglngfl( ) andgi(t). ially with limited samples. Lack of accurate estimation of
The detailed BCRF-CF algorithm is given in Fig.2. Thejoint statistics(C;,C;) is often the main reason that prior
initial step of BCRF-CF is exactly the DMF approach pro-methods of concept fusion (e.g., [5]) fail, since the estiama
posed in [7]. As we will see in the experiments, this DMF error may accumulate during the iterative inferencing pasc
method gets performance improvementin some concepts whiewever such approximation may be sufficient for the pur-
degrading performance in many other concepts, and ourboogbse of simple concept prediction, where estimations ot joi
ing process can avoid this problem and achieve more consigrobabilities, though approximate, are not used in any iter

tent improvements. ative fusion process. Empirical experiments also verify th
3. WHICH CONCEPTS TO UPDATE effectiveness of Eqn(5).
Not all concepts benefit from CBCF. As shown in [1], only 8 4. EXPERIMENTS

out of 17 concepts gained performance. Although experismenExperiments are carried out on TRECVID 2005 development

in [8] showed improvements on 80 (out of 101) conceptsset [10], which contains 137 broadcast news videos and has

our baseline independent detectors are relatively strdhga  been labeled with 39 concepts from LSCOM-Lite ontology

theirs, e.g., our baseline detector gét, average precision [10]. It is separated into 2 training seIs D and 1 test set,

on “car”, while theirs get onl25%. Our strong independent as shown in Table 1. Independent concept detectors are SVM-

detectors make it difficult to show improvements from CBCF.based classifiers over simple image features such as gdd col
Intuitively, two reasons may cause performance deteriofeatures and texture, extracted from key frames of a video

ration using CBCF: (1) the concept has weak relations wittsubshot. Such classifiers have been shown to be effective for

other concepts; (2) the related concepts have poor indepefletecting generic concepts [1]. Outputs of SWMs are con-

dent detectors. This suggests an intuitive criterion: ephc verted into probabilities through a standard sigmoid figmct

C; should use CBCF learning whef is strongly related to 4.1. Performance Evaluation

other concepts, and the average performance of detectors [ifst, we empirically seA=0.95, 5=0.7 in the concept pre-

the related concepts is strong. In other words, when a céncegiction criterion Eqgn(5), and 26 concepts are automaticall

has a very strong independent detector and very poor neigbelected (shown in Fig.3) to use BCRF-CF learning. Fig.3

borhood, it will not use CBCF. Specifically, the relationshi gives the MAP (the averaged AP over all the selected con-

betweenC; andC'; can be measured by their mutual infor- cepts, and AP is the official TRECVID performance metric



Table 1. The data sets for experiments Sec.2.1). Results confirmed the superiority of the adopted

Name Size Usage Real AdaBoost method, with 55% performance difference in
training setZ | 41837 subshotg train independent detectors t
erms of MAP over the 39 concepts.
training setD | 13547 subshotg train Boosted CRF model . . . P
test set 6507 subshots evaluation 42 EValuann W|th lefel’ent Parametel’s

Here we evaluate the performance of detection with differen
which related to the multi-point average precision valuaof 3 in Eqn(5), since we findi is the most sensitive parame-
precision-recall curve) comparison of BCRF-CF, DMF, ander for concept prediction. By varying different concepts
original independent detectors, through 10 iterations v  are selected to use BCRF-CF. Let's define fiecision of
selected 26 concepts. The figure indicates that both CBCihe concept selection as the percentage of concepts that ac-
methods, i.e., BCRF-CF and DMF, improve the overall MAP.tually have performance gain among selected concepts. Ta-
DMF corresponds to the initial stage of our BCRF-CF and camle 2 shows the precision and MAP gain of BCRF-CF after
achieve 2.6% performance gain. Our BCRF-CF can furthe1( iterations over the selected concepts itk 1, 0.7, 0.4
enhance the initial DMF performance in successive boostingespectively. Such results are promising and can be used to
iterations with 4.2% MAP gain after 10 iterations. The per-achieve the highest performance-cost ratio tradeoff. If we
formance improvementin MAP obtained by our BCRF-CF isdon't do concept selection, only 59% of concepts get per-
6.8% compared with the baseline independent detectors.  formance improvement. When 26 concepts are selected, 21

0.51 ] independent detector = DMF_—»— BCRF-CF || concepts (86%) indeed get performance improvement with a
0042 T e e gap of 6.8% in MAP. With concept selection, computational
2 s resources can be allocated to enhance concepts that have bes
0.47 chance to gain performance improvement.
T s s e 1 s e w0 Table 2. Performance of detection with differefit
. iteration B | precision | MAP gain | # of selected concept$
Fig. 3. The MAP comparison, averaged over 26 selected concepts. 1 59% 2.2% 39 (@l the concepts)
. S 07 81% 6.8% 26
Fig.4 gives individual AP of our BCRF-CF, the DMF and 04| 91% 10.4% 11
the independent detectors (after 10 iterations) over the se
lected 26 concepts. DMF obtains performance improvements 5. CONCLUSIONS

over 15 concepts, while degrading detection results on thé/e propose to model the inter-conceptual relations by a CRF
other 11 concepts. The performance deterioration over seWwhich takes as input detection results from independeetdet
eral concepts are severe, e.g., 8.1% in “vegetation” ar@pa3. tors and computes updated marginal probabilities as inggrov
in “walking-running”. Our BCRF-CF algorithm can achieve detection results. A modified Boosted CRF framework over
performance improvement over 21 concepts and avoid sigeVM classifiers is incorporated to optimize the discrimiveat
nificant performance degradation over many concepts. Fdbjective function and avoid the difficulty of designing com
example, BCRF-CF improves the performance of DMF bypatibility potentials. A simple but effective concept seien
13% and 39% for "vegetation” and "walking-running” re- criterion is developed to predict which concepts will benefi
spectively. Generally speaking, BCRF-CF can further imfrom CBCF. Experimental results on TRECVID 2005 devel-
prove the performance of DMF, and detection results of BCRRpment set proves the effectiveness of our BCRF-CF method
CF is more stable than DMF. Compared with independent deand concept prediction method.

tectors, significant AP improvementis achieved by BCRF-CF 6. REFERENCES
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