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Abstract— We presented a set of physics motivated features
for classifying photographic and computer graphic images in
our previous work [1]. We also deployed an online demo system
for distinguishing photographic and computer graphic images
in October 2005 [2], which features our geometry classifier,
together with the wavelet classifier, and the cartoon classifier.
On the first anniversary of its launch, we have received 1582
submitted images, through which we perform an analysis on the
user behavior, the image set characteristics, and the classifier
performance. We observe that online users do not provide clear
judgments for about 80% of the submitted images, confirming
the challenge in distinguishing photo-realistic computer graphics
images from natural photographs. We also found the accuracy
of our classifiers over the online submission set is consistent
with that computed over an offline data set. Finally, in order
to improve the online computational speed of our classifier, we
perform feature selection and reduction, cutting the response
time from 152 seconds to 24 seconds per image, while keeping
the accuracy almost unchanged.

I. INTRODUCTION

As model-based computer graphic rendering technology
is making great strides, distinguishing photographic image
from photorealistic computer graphics is getting increasingly
challenging. To convince yourselves of this trend, readers can
now take part in the quizzes ! hosted by the 3D graphic com-
pany Autodesk Alias (www.autodesk.com/alias). The
quizzes are designed for challenging users’ visual judgement
on photorealistic images as to be photographs or computer
graphics. Furthermore, there are also experimental evidences
in [3] that, to human, computer graphic images of certain
scenes are visually indistinguishable from photographic im-
ages.

With high photorealism, computer graphic images naturally
qualifies themselves as potential suspects for forgery images.
Forgery images can be used for fraud, make-belief, and
dishonest setup, while the goal of image forensics is to detect
these forgery images. Under the setting of image forensics,
we have proposed a set of physics-motivated features for
distinguishing photographic images and photorealistic com-
puter graphic images [1]. The physics-motivated features are
obtained by studying the respective physical image generative

'The quizzes can be accessed from http://www.autodesk.
com/eng/etc/fake_or_foto/index.html and http://www.
autodesk.com/eng/etc/fake_or_foto/vl/index.html
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process for photographic images and photorealistic computer
graphics. The features consist of three subsets, i.e., the dif-
ferential geometry features, the local patch statistics features,
and the local fractal dimension features, with a total of 192
dimensions. Furthermore, since October 2005 we deploy an
online demo system (accessible from www.ee.columbia.
edu/trustfoto) for distinguishing photographic images
and the general computer graphic images (i.e., including
non-photorealistic computer graphic images) [2]. The online
demo system features three types of classifiers: the geometry
classifier, the wavelet classifier (based on the method in [4]),
and the cartoon features (based on the method in [5]. The
geometry classifier is based on the physics-motivated features,
together with a few strategies, such as image size reduction
and classifier fusion, for the purpose of efficient computation
while maintaining an effective classification rate.

At the first anniversary of the launch of our online demo
system, it is timely for us to review and analyze the data
collected by the system. At this point of time, the system
has received 1528 image submissions, which allows for a
statistically meaningful analysis. We will analyze on the
shortcoming of the system design, the system user behaviors,
the characteristics of the images, and the performance of the
online classifiers. A few important observations are that the
users are not naturally keen on providing meta-information
of the images, some of the submitted image are interestingly
ambiguous, most of the submitted images are photographic
and from the Internet, and the conclusions on the online
classifier performance comparison matches those reported in
our prior work [1], [2]. The lack of subjective judgments from
online users also partly confirms the challenge of the task of
distinguishing photo-realistic computer graphics from natural
photographs.

Of the three online classifiers, our geometry classifier is
the most computational expensive one. In order to improve
its computation efficiency, we provide a further analysis on
the physics-motivated feature performance, where we evaluate
the performance of its five sub-groups of features and their
combinations. The rationale is that we may drop the least
contributing feature sub-group for computation cost saving.
These five sub-groups of features respectively correspond to
five different physical motivations and they are the surface



gradient features, the second fundamental form features, the
beltrami flow features, the local patch statistics features, the
local fractal dimension features. Based on our analysis, by
removing the least-contributing feature sub-group (local fractal
dimension distribution), we are able to speed up the classifier
from 152 second/image to 24 second/image, while keeping
the accuracy at 83.3% (compared to the original accuracy of
83.5%).

In Sec. II, we will review the physics-motivated features
described in [1]. Then, in Sec. III, we will describe the online
classification system for photographs and computer graphics.
In Sec. IV, we will analyze the images submitted to the
online system, and the performance of the online classifiers. In
Sec. V, we will consider the feature selection and reduction
issue for the geometry classifier, and finally conclude with
sec. VL.

II. PHYSICS-MOTIVATED FEATURES

In [1], we analyzed the physical differences between the im-
age generation pipeline of photographic images and photoreal-
istic computer computer. We thereby identified three types of
differences in terms of the object surface reflectance property,
the object surface geometry, and the image acquisition process.
The reflectance property of real-world objects is often complex
as evident in the subtle sub-surface scattering of human skin
and the fluorescence phenomena where the incident light of
one frequency range is absorbed by surface for the emission of
light with a lower frequency range [6]. However, the computer
graphics rendering often makes simplifying assumptions to
decouple the interdependency between the different color
channels of an image for efficient computation. In addition, the
surface geometry of real-world objects is often complex, being
a result of the underlying biological and physical processes.
For example, the texture and wrinkles of human skin is related
to a biological process, the rough surface on the wall is a
result of the perennial air erosion, and the rusty surface of
metal embodies a natural oxidization process. However, com-
puter graphics rendering often model objects with polygonal
surfaces with a limited resolution and hence is incapable of
capturing all the subtleties of the real-world surface geometry.
Finally, the photographic images are captured by a camera
which often has a convex-shaped camera response function.
This type of response may not be incorporated in computer
graphics rendering.

Such analysis leads us to proposing a set of features derived
from the differential geometry quantities (i.e., beltrami flow
vectors, second fundamental form, and surface gradient), the
local fractal dimension of an image, and the statistics of the
local 3x3-pixel color and grayscale patches. The relationship
between the features and the above-mentioned three types of
physical differences between the image generation pipeline of
photographic images and photorealistic computer computer are
given below. More details about the features can be found
in [1].

1) Reflectance property difference: The beltrami flow [7],

a differential geometry quantity, is used to capture the
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Fig. 1. The framework for feature extraction in an image scale space.

above-mentioned surface reflectance property difference.
The beltrami flow vector is obtained by projecting the
mean curvature vector of the graph of an RGB image
onto the RGB color space. Intuitively, the beltrami flow
vector has an effect of capturing the local interdepen-
dency between the RGB color channels in an image.

2) Surface geometry difference: The surface geometry
difference between the photographic image and com-
puter graphics is captured by the second fundamental
form of the graph of an image [8] (also a differential
geometry quantity), the local fractal dimension, and
the local patch statistics. We represent the second fun-
damental form by its two principle curvatures, which
capture the maximal and the minimal normal curvatures
of the local surface. The curvatures are capable of
distinguishing sharp edges, blurred edges, sharp corner
and other local 2D surface profile. Apart from the second
fundamental form, the typical complexity of a real-world
local surface can be aptly measured by the local fractal
dimension of its photographic images [9]. In addition,
the appearance of an object in a photographic image and
a computer graphic image can be considered as having
different styles. The appearance style has been shown
to be effectively captured by the local patches of an
image [10].

3) Acquisition difference: the acquisition difference of
the photographic images and computer graphics can
be captured by the surface gradient of the graph of
an image. The surface gradient was shown capable of
capturing the convexity property of a camera response
function [1]. This observation can be further extended
for estimating camera response function from a single
image [11].

The differential geometry features, the local patch features,
and the local fractal features are computed from an image at
the different scales in an image scale space [12] (see Fig. 1).
This represents another dimension of differences between the
features. The local patch statistics features, and the local fractal
dimension features are extracted from the fine scale of an
image, while the differential geometry features are computed
from its intermediate scale (hence oblivious to the fine-scale
details in an image) as shown in Fig. 1.

III. THE ONLINE DEMO SYSTEM

We deployed an implementation of the physics-motivated
features as an online demo system (accessible from www. ee.
columbia.edu/trustfoto) since October 2005 [2]. The



(a) Web demo input page (b) Web demo result page

Fig. 2. The screen capture of the web demo user interface.
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Fig. 3. The image types to be selected by users. The keyword for the image
type is given in the bracket.

goals of the online demo system are to give the web users
a more concrete idea of photographic images and computer
graphics classification problem, and invite the web users to
help testing the three classifiers that we deployed, i.e., the
geometry classifier (based on the physics-motivated features),
the wavelet classifier (based on the method in [4]), and the
cartoon classifier (based on the method in [5]). The open
access testing scenario also allow us to evaluate the capability
of the classifier in generalizing to unseen data.

Fig. 2 shows the input interface and the result page of the
online system. On the input page, web users are required to
input the URL of an online image or upload an image from the
local computer, provide their judgement or knowledge on the
image type together with the judgement confidence level, and
also select the type of classifier output they wish to see. For the
image type, the web users can select unknown, photographic,
photorealistic computer graphics, non-photorealistic graphics,
painting, hybrid, or others (see Fig. 3). Note that such user in-
put is collected for comparing with the automatic classification
results. It is not used in the automatic classification process.

IV. ANALYSIS ON THE SET OF IMAGE SUBMISSION AND
PERFORMANCE OF CLASSIFIERS

We conducted a review of our online system at the first
anniversary of its launch. In one year, the system received
a total of 1528 image submissions. The breakdown of the
user-specified image type is shown in Fig. 4 (a). The image
type label can be referred to Fig. 3. Note that almost 80%
of the images are labeled with the ‘unknown’ image type. As
the ‘unknown’ label is the default selection, this observation
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Fig. 4. (a) User-specified image label distribution, (b) Image label distribution
after relabeling by first author of the paper. The image type label can be
referred to Fig. 3
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indicates that for almost 80% of the times, users are either
not keen on providing an image label or are truly have no
idea of the image type. This is a shortcoming of our system
that these two cases could not be resolved and for which we
need to rectify. Fig. 5 shows the distribution of the image
source, which indicates that almost 76% of the images are
from the web, while the rest came from user’s local machine.
From Fig. 5, it is also observed that for images submitted
from the local machine, users are more willing to assign an
image label other than the ‘unknown’ label, as compared to
the online images. This observation is reasonable as images
from the local machine are most likely to be ones that the
users know its origins, e.g., the images are captured by the
users themselves.

As 90% of the web images are labeled with an ‘unknown’
image type and the web images make up 76.8% of the all the
submitted images, we can advance our analysis by relabeling
the images ourselves. The rationale for the relabeling is that for
the web images which are the majority, the users’ assessment
of their image type is just as good as ours because we have
an equal access to the meta-information concerning the images
by visiting the original webpages that contain the images (we
recorded the URL of the submitted images). After relabeling
of the images, the distribution of the author-specified labels is
shown in Fig. 4 (b). One commonality between the distribution
of the user-specified labels and that of the author-specified
labels is that the ratio of images with a ‘photo’ label to
those with other labels (excluding ‘duplicate’ and ‘unknown’)
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Fig. 6. Classification outcomes for the geometry, wavelet, cartoon, and fusion
classifier based on the user-specified image labels.

is about 2.5:1. This indicates that users are more prone to
submit a photographic image, which probably due to the fact
that photographic images are more prevalent in the Internet,
compared to other types of images. The relabeling gives us
about 17% of the duplicate images (images with duplicate
content). It is interesting to see such a high volume of duplicate
images submitted to the classification system. One conjecture
is that users may want to repeat testing of the same image to
confirm the consistency of the classifier behavior.

With the user-specified image labels and the author-specified
image labels, we can evaluate the accuracy of the three
classifiers featured on our online system. Fig. 6 shows the
classifiers’ performance based on the user-specified labels and
Fig. 7 shows the performance based on the author-specified
labels. Note that among the three classifiers, the geometry
classifier has the more balanced and satisfactory performance,
as it performs equally well on the ‘photo’, ‘PRCG’, and
‘NPRCG’ images. The cartoon classifier performs well on the
‘photo’ and ‘NPRCG’ images, but does poorly on the ‘PRCG’
images. This result is understandable as the cartoon classifier
is originally designed for distinguishing photographic images
and non-photorealistic computer graphic images. On the other
hand, the wavelet classifier does well on the ‘PRCG’ and
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Fig. 7. Classification outcomes for the geometry, wavelet, cartoon, and fusion
classifier based on the author-specified image labels.

‘NPRCG’ images, but it performs poorly on the photographic
images. We observed that many of the submitted images are
highly compressed and the poor performance of the wavelet
classifier could be due to its sensitivity to image compression.

The fusion classifier is obtained by combining the decisions
from the three classifiers [1], and it performs very well on
author-specified image labels. In this case, the fusion classifier
seems to have combined the strength of all the three classi-
fiers. However, it performs slightly poorer than the geometry
classifier on the user-specified image labels.

The web users are creative in their image submission. For
instance, some of the submitted images are of visually confus-
ing image types, as shown in Fig. 8. They are photographs with
a computer-graphic-like neon lighting background, and those
with real paintings in the image. In this case, the photographic
images can be potentially detected as computer graphics or
painting, instead of being detected as photographic images.
In addition, web users also submitted some hybrid images,
mainly created by photomontage techniques, as shown in
Fig. 9.
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Fig. 8. Some image with visually confusing image types. They are all judged
by the author as photographic images, but they can potentially confuse the
classifiers to detect them as computer graphics or painting. Shown below each
image is the detection results for the geometry classifier (G), the wavelet
classifier (W), the cartoon classifier (C), and the fusion classifier (F), besides
the image source.
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Fig. 9. Some hybrid images created by photomontage techniques. Shown
below each image is the detection results for the geometry classifier (G), the
wavelet classifier (W), the cartoon classifier (C), and the fusion classifier (F),
besides the image source.

V. CLASSIFICATION PERFORMANCE FOR VARIOUS
FEATURE SUB-GROUP COMBINATIONS

The mean and the standard deviation of the online compu-
tational speed for the geometry, the wavelets, and the cartoon
classifiers are shown in Table I. The geometry classifier is
the most computational intensive. In this section, we will
analyze the contribution of sub-group features to the geometry
classifier accuracy. The sub-group features with the least
impact on the accuracy may be dropped for computational
cost saving.

The set of physics-motivated features can be decomposed
into five sub-groups of features according to different physical
motivations. In this section, we evaluate the classification
performance of each feature sub-group and their combinations.

TABLE I
STATISTICS OF THE ONLINE CLASSIFIER SPEED (SECOND PER IMAGE)

Statistics | Geometry | Wavelets | Cartoon
mean 5.00 1.77 0.60
std. dev. 0.85 0.35 0.26

The main purpose is to find out the usefulness of the feature
sub-group or their combinations, in terms of their classification
performance.

The experiment is for classifying photographic images and
photorealistic computer graphic (PRCG) images from the
Columbia Photographic Images and Photorealistic Computer
Graphic Dataset [13]. The dataset has two sets of photo-
graphic images and one set of PRCG images. The two sets
of photographic images are the Personal set with 800 images
acquired by the authors, and the Google set with 800 images
downloaded from the Google Image Search. The PRCG set
contains 800 PRCG images, downloaded from the 3D artist
websites. The classification experiment is conducted using
Support Vector Machine (SVM) with Radial Basis Function
(RBF) kernel. We use the LIBSVM implementation [14] for
SVM and perform a grid search for the SVM kernel parameter
~ and the regularization parameter C. The parameter selec-
tion is conducted with a five-fold cross-validation procedure
using validation subsets partition from the training set. The
classification accuracy, which is the averaged accuracy for the
binary classes, is evaluated on the test set. The splitting of
the entire dataset into the training set and the test set is again
conducted according to a five-fold cross-validation procedure.
The final classification accuracy is the average of the five-fold
test accuracy. The set of geometry features can be decomposed
into five sub-groups of features according to different physical
motivations. These five sub-groups of features are the surface
gradient features (g), the second fundamental form features (s),
the beltrami flow features (b), the local patch statistic features
(p), and the local fractal dimension features (f). We would
like to evaluate the classification performance of each feature
sub-group and their combinations.

Fig. 10 (a) shows the classification accuracy of the feature
sub-group combinations excluding the local fractal dimension
feature sub-group, where the results are ordered according
their classification accuracy from high to low, whereas Fig. 10
(b) shows those with the local fractal dimension feature sub-
group included. Note that the local fractal dimension feature
sub-group has the lowest classification accuracy at 59.9%, as
shown in Fig. 10 (b). Furthermore, its role is most insignificant
in the complete combination of all feature sub-groups, as
can be seen from the small classification accuracy difference
between 83.5% for the (g,b,s,p,f) combination and 83.3% of
the (g,b,s,p) combination, as compared to other feature sub-
groups. The weaknesses of the local fractal dimension features
are probably due to the fact we do not segment the image
into smooth regions and textured regions before computing the
statistics of the local fractal dimension. Such pre-segmentation
may help improving the features as the fractal dimension of the
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Fig. 10. Classification performance of feature combinations (a) without and
(b) with local fractal dimension features. Legend: g = surface gradient features,
b = beltrami flow features, s = second fundamental form features, p = local
patch statistics features.

smooth regions are mainly not interesting. The experimental
verification of this suggestion will be considered in the future
work. From Fig. 10, it seems that good performance (82%)
can be achieved even if we use two features only (s and p). g
and b does not add much on top of these two.

We analyze the computational cost of the sub-group feature
extraction in Matlab 7.0 2. The per-image feature extraction
time is as follows: 5.2s (surface gradient features), 8.7s (sec-
ond fundamental form features), 6.5s (beltrami flow features),
3.0s (local patch statistics features), and 128.1s (local fractal
dimension features). Note that, the local fractal dimension fea-
ture sub-group happens to be most computationally expensive.
Therefore, when considering both the classification accuracy
and the computational cost, the local fractal dimension fea-
tures can be dropped without much impact on classification
accuracy while doing so improves the computational efficiency
from 152 seconds to 24 seconds per image (in Matlab 7.0).

VI. CONCLUSIONS
In this paper, we provided a further analysis on the the
online system for distinguishing photographic images and

>The computational speed of the online classifiers presented in Sec. V is
one based on a C language implementation.

computer graphics. For the online system, we analyze the 1528
image submission, received in the past one year. We found that
most of the images are from the web and the ‘unknown’ label
is the most common label specified by the users. We relabeled
the images for a further analysis of the images. Based on both
the user-specified and the author-specified image labels, the
geometry classifier is found to have the best classification
accuracy when compared to the wavelet classifier and the
cartoon classifier. We also found that fusing the decision of
the three classifiers is a good idea as decision fusion combines
the strength of the individual classifiers. In order to improve
the computational cost for the online geometry classifier, we
evaluate the contribution of its five feature sub-groups to its
classification accuracy. We found that the local fractal feature
has an insignificant contribution to the entire set of features,
apart from being most computationally expensive. By keeping
the most significant feature subsets, we are able to speed up the
classifier by about 6 times with very little accuracy reduction.
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