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ABSTRACT
We propose to incorporate hundreds of pre-trained concept de-

tectors to provide contextual information for improving the per-

formance of multimodal video search. The approach takes initial

search results from established video search methods (which typ-

ically are conservative in usage of concept detectors) and mines

these results to discover and leverage co-occurrence patterns with

detection results for hundreds of other concepts, thereby refining

and reranking the initial video search result. We test the method

on TRECVID 2005 and 2006 automatic video search tasks and

find improvements in mean average precision (MAP) of 15%-30%.

We also find that the method is adept at discovering contex-

tual relationships that are unique to news stories occurring in the

search set, which would be difficult or impossible to discover even

if external training data were available.

Categories and Subject Descriptors
H.3.1 [Information Search and Retrieval]: Content Anal-
ysis and Indexing

General Terms
Algorithms, Performance, Experimentation

Keywords
concept detection, video search, context fusion, reranking

1. INTRODUCTION
Semantic indexing and retrieval over multimedia databases

has been the focus of considerable interest and research over
the past years. This interest has been fueled largely by the
standardized test sets and benchmarks available through the
NIST TRECVID video retrieval evaluation [1]. The primary
thrust of TRECVID-based research has been in two main ar-
eas. The first is concept detection, where the goal is to auto-
matically annotate video shots with visual concepts (usually
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objects, locations, or people), given a pre-defined lexicon of
concepts and a sufficient number of annotated examples for
building supervised detection models. The second is search,
where the goal is to find shots related to a query of text key-
words and example images or video clips, which is unknown
during system development and can be for any arbitrary
semantic scene, object, or person.

It has been noted that these two tasks are actually two
extreme scenarios of a single task with a unified goal of find-
ing shots matching some semantic information need [15].
Concept detection is the extremely supervised case, where
thousands of examples are available for training models. On
the other hand, search, is the extremely unsupervised case,
where only a few examples are given. The implications are
that concept detection is labor intensive but is likely to pro-
vide accurate detection, while search requires little human
input, but consequently has less predictable behavior.

One promising new direction is to utilize results from
concept detection to aide in search, thereby leveraging fo-
cused human labor on a finite concept lexicon to help an-
swer and refine infinitely many search queries [5, 3, 9]. For
example, given a lexicon of a few generic concepts, such as
“boat,” “water,” “outdoors,” “sports,” “government leader”
or “woman,” then, an incoming search query, like “Find
shots of boats,” could be handled by simply returning the
shots for the pre-trained boat detector. Likewise, a search
query like “Find shots of Condoleezza Rice,” could be han-
dled by searching against the speech recognition transcript
to find occurrences of Condoleezza Rice’s name, but also by
giving positive weight to shots which are postive for “govern-
ment leader” and “woman” and negative for “sports.” From
this standpoint, we might conjecture that our previous use of
only the “boat” concept to answer the “Find boats” query is
somewhat naive. Shouldn’t there also be “water” in scenes
with boats? Shouldn’t they be “outdoors,” too?

This notion of context fusion, or the use of peripherally
related concepts to refine detection of semantic topics, has
been explored in prior work for use in concept detection [5,
12, 16, 18]. The nature of concept detection makes it rea-
sonable to discover related concepts through mining ground
truth annotations for co-occurrences among concepts and
training models on those interactions. The conclusion in
previous works has been that this approach provides real,
though small, improvements in detection accuracy. In our
prior work [11], statistical measures based on mutual infor-
mation and detector performance are also used to predict
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Figure 1: Architecture of proposed framework for context fusion in concept detection and search. Given a set of pre-trained concept
detectors, related concepts are discovered through measuring the mutual information between their resulting concept scores and pseudo-
labels given by an initial detection/search model result, such as a baseline detector or text search. Pseudo-labels and discovered related
concepts are leveraged to re-order and refine the initial detection result. Examples for generic parts in (a) and (b) shown for concept
detection (CD) and search (S).

the subset of concepts that may benefit from context fusion.
Using peripherally related concepts for search, on the other

hand, has not yet seen such wide-spread investigation. Early
approaches have included engineering intuitive filtering ap-
proaches, such as removing shots with an “anchor person”
present or positively weighting the “face” concept in searches
for named persons, giving small improvements [6, 8]. More
recent work has included the angle of directly matching
query keywords with concepts in the lexicon (like in our
“Find shots of boats” / “boat” concept example) [5, 3].
However, deeper relationships to peripheral concepts are dif-
ficult to uncover, particularly in search, where the details of
the searched concept are unknown to the system, due to the
lack of examples provided by the human user [6, 3, 18].

In this work, we propose a framework for automatically
discovering and leveraging peripherally related concepts. The
approach is largely unsupervised and can therefore be ap-
plied equally well to context fusion on both concept detec-
tion and video search tasks. The approach performs surpris-
ingly well compared to fully-supervised context fusion ap-
proaches for concept detection, with relative improvements
of 7% in terms of mean average precision (MAP). The ap-
proach is also shown to give improvements of 15%-30% in
MAP on video search tasks. Much of the improvements are
drawn from queries for named persons or sports, while the
impact on the concept-related class (which encompasses the
majority of queries) is around 12%-15%.

1.1 Proposed Approach
The proposed framework in Figure 1 relies on reranking to

automatically discover related semantic concepts and incor-
porate their detection scores to refine the results for concept
detection or search. Reranking is unique in that it takes a
ranked list of results from some initial search result or con-
cept model as an approximation of the ideal semantics of
the target. This initial list can then be mined to discover
and leverage related concepts. Reranking is beneficial when
compared to the alternative, which would require ground
truth to learn context fusion models. This necessary ground
truth is generally unknown in search applications.

In Figure 1, we see the flow of the reranking-based context
fusion framework. When conducting concept detection or
search, we need to start with a target semantic concept or
topic (shown in Figure 1a), which can be a specific concept
in a concept lexicon or an incoming search query. From
this target, it is typically feasible to build an initial model,
shown in Figure 1b. In concept detection, an initial model

would be a supervised concept detector, discussed further in
Section 2. In search, the initial model can be the results of
a search method, such as text search, concept-based search,
or example-based image matching, all of which are discussed
in greater detail in Section 3. Regardless of how the initial
model is obtained, we can take the results that it produces
and assume that high-scoring shots are positive, while lower-
scoring shots are negative, thereby creating pseudo-labels for
the data in the search set, like in Figure 1c. These pseudo-
labels can then be applied to discover and leverage related
concepts to refine the initial results.

This approach to conducting context fusion bears much
resemblance to earlier works; however, a key difference lies
in the fact that this reranking method requires no a priori
knowledge of the target semantic concept and its ground
truth relationships with other concepts. We will find that
despite this lack of supervision, the reranking approach per-
forms comparably to supervised approaches.

1.2 Related Work

1.2.1 Context Fusion
As we have seen, it is intuitive that knowledge of the de-

tection results for a large lexicon of concepts can be use-
ful for refining the detection of individual concepts. This
context-based concept fusion approach has been explored
and exploited in several prior works. The Discriminative
Model Fusion (DMF) method [16] generates a model vec-
tor based on the detection score of the individual detectors
and an SVM is then trained to refine the detection of the
original concepts. In [11], the DMF model is modified and
extended to incorporate active labeling from a user. These
early approaches suffer from limitations in the concept lex-
icons, which are typically only on the order of a few dozen
concepts. The results typically show improvement on only
some of the concepts, while degrading others, requiring tech-
niques for predicting when the context fusion will succeed.

The recent releases of much larger concept lexicons [2,
17], which contain hundreds of concepts, has renewed inter-
est in context-based concept fusion. This is explored fur-
ther in [18], where hundreds of high-level features, which
can be difficult to detect, are modeled using cues resulting
from more-easily-detected mid-level features, such as “sky”
or “person” or “outdoors.” Another work in context fusion
with large lexicons [12] uses an approach called a Boosted
Conditional Random Field (BCRF). This framework cap-
tures the contextual relationships by a Conditional Random



Field, where each node is a concept and the edges are the
relationships. Detection scores of 374 concepts generated by
a baseline detection system are taken as input observations.
Through graph learning, the detection results for each of the
target concepts are refined.

These approaches are fully supervised and require explicit
knowledge of the target semantic concept and ground-truth
labels in order to discover relationships with other concepts.
While this constraint is fine for concept detection, where
many labels are available, it is unclear how these approaches
could cover the unsupervised conditions in search.

Work in using concept detectors for context in search has
been much more limited. Basic applications have included
methods of filtering out or boosting certain concept types
depending on the type of query, such as weighting the “face”
concept for searches for people, or a “sports” concept for
sports queries, or filtering out the “anchor” concept across
all searches [5, 8]. These approaches provide small gains in
improvement and are very difficult to scale up to effectively
utilize large lexicons of hundreds of concepts.

The primary successes in leveraging concept lexicons for
search have been in using direct matches between query
keywords and concept descriptions to find a few concepts
directly related to the query. This approach suffers from
limitations in the breadth of concepts that can be applied
to a query. Some empirical research suggests that it may be
highly beneficial to incorporate many peripherally related
concepts instead of just a few concepts that are tightly re-
lated [13]. Some approaches have incorporated lexical rela-
tionships between query terms and concepts through knowl-
edgebases; however, these relationships are often shaky, some-
times degrading search performance by uncovering relation-
ships that are ill-suited for video retrieval [6, 3, 18]. For
example, a knowledge network might tell you that “boat”
is related to “airplane” since both are types of vehicles;
however, in natural images, these concepts are rarely visu-
ally co-occurrent, since they occur in very different settings.
This approach is explored in [6] and [3] for concept lexicons
of only a few dozen concepts, showing small improvement
over direct matches, alone. This is likely due to the sparse
and orthogonal concept space. In [18], the approach is ap-
plied using a lexicon of several hundred concepts, and the
indirect ontology-based mapping is shown to seriously de-
grade search performance, when compared to direct match-
ing, likely due to the increased risk of false selection of con-
cepts. Our experience confirms this effect on large-lexicon
context fusion for search, therefore, to use large lexicons,
it is necessary to engineer methods that uncover the visual
co-occurrence of related concepts with the target instead of
less meaningful lexical relationships.

1.2.2 Reranking
Reranking is rooted in pseudo-relevance feedback (PRFB)

for text search [4]. In PRFB, an initial text search is con-
ducted over text documents and the top-ranked documents
are assumed to be true, or pseudo-positives. Additional
terms discovered in the pseudo-positive documents are then
added to the query and the search is re-run, presumably
providing greater clarity of the semantic target and refining
the search results. An extension of PRFB from the text do-
main to video search is to simply apply the method to text
searches over text modalities from video sources (such as the
speech recognition transcripts) [7]. Further extensions have

used text search to obtain psuedo-negative examples from
video collections and used those results for example-based
search with user-provided positive images [20].

In [10], the authors extract both pseudo-positives and pseudo-
negative image examples from text search results, requiring
no user-provided examples. It is found that for many types
of queries, this reranking approach outperforms approaches
requiring the input of example images from the user. The in-
tuition is that many relationships between search topics and
peripheral concepts change according to the news stories in
the time frame of the search set and such relationships may
not be present in the provided example images or external
training data. Reranking can discover the salient relation-
ships that are present in the the data to be searched.

These applications of PRFB and reranking, however, are
all applied to low-level features, such as text token frequen-
cies or color and texture image features. In a parallel work
[19], the use of large sets of concept detectors to uncover
contextual cues for refining search results is explored, using
initial query results as a hypothesis and re-ordering those
results through a weighted summation of 75 pre-trained con-
cept detectors. The reranking mechanism used is called
“probabilistic local context analysis,” and functions by as-
suming the top-returned results are positive, while others
are negative, and treats the weights on pre-defined concept
detectors as latent variables to be learned. The approaches
and experiments used in this paper and [19] are structured
similarly. Our proposed approach includes two steps: the se-
lection of relevant concepts and the construction of discrim-
inative classifiers to rerank the initial search results. This is
significantly different from the generative model used in [19],
where latent aspects involving weighted sums of concepts are
found. One potential drawback is the lack of clear seman-
tics associated with each latent aspect, unlike the explicit
relations discovered in our approach. Furthermore, discrim-
inative classifiers have been found to be more effective than
generative models in context fusion and reranking.

1.3 Outline
The remainder of the paper is as follows. In Sections 2 and

3, we discuss the concept detection and search systems used
in our context fusion experiments. In Section 4, we discuss
the context fusion approach. Section 5 gives the details for
experiments and analysis and conclusions are in Section 6.

2. CONCEPT DETECTION
In concept detection, the objective is to build automatic

detectors for arbitrary visual concepts, given a large set (on
the order of hundreds or thousands) of ground-truth labels
for the concept. To achieve this, we applied a generic visual-
only framework which can be applied to any concept without
any specific tuning. For simplicity, we choose to represent
shots as single still keyframe images; however, in principle,
more involved temporal models could be applied for event-
based concepts. The concept model is built using SVMs
over three visual features: color moments on a 5-by-5 grid,
Gabor textures over the whole image, and an edge direction
histogram. The resulting scores of each of the three SVM
models over the test keyframe images are then averaged to
give a fused concept detection score. We have found the
accuracy of such baseline detectors satisfactory over a large
set of concepts [5], especially for scenes and objects. The
concept detection framework is discussed more in [21, 5].



We apply the concept detection framework for 374 of the
449 concepts from the LSCOM [2] annotations, excluding
only the concepts with too few positive examples (fewer than
10) to adequately train the models. The resulting concept
models are used as baseline concept detectors, which can
be leveraged for context fusion in enhancing concept detec-
tion or search or applied directly in concept-based search
(discussed further in Section 3).

3. MULTIMODAL SEARCH
In multimodal search, the objective is to retrieve a list of

shots matching a semantic information need. The primary
difference between multimodal search and concept detection
is the amount of supervision. In search, only a text query
and a few example images are given. In this work, we imple-
ment a baseline multimodal search system using no example
images at all, a scenario which is highly desirable for the user
and likely to be adopted. The system retrieves relevant video
shots with queries based on text sentences or keywords and
is built upon two primary search methods: text search and
concept-based search. The two search methods are applied
independently and their resulting scores are fused.

In text search, we issue simple keyword-based searches
over documents composed of speech recognition transcripts
associated with the videos. The videos are automatically
segmented into semantic story units. Shots found to be tem-
porally within the boundaries of a story are scored based on
the textual similarity between the query and the story text.

In concept-based search, the text keywords are mapped
to text keywords associated with the set of 374 pre-trained
concept detectors. For each text keyword, the set of relevant
concepts is found by searching lists of pre-defined keywords
for each concept. A query for “boat” would match up with
the “ship” concept, etc. Given the large set of concepts,
it is likely that a single text keyword may match multiple
concept detectors, some of which may be unrelated or weak.
We therefore select only a single concept for each text key-
word, choosing the concept which is most frequent and has
the highest-performing concept detector. This approach to
incorporating concept detection results is very conservative,
using at most one concept detector per provided keyword.

Finally, class-dependent fusion is used to combine the
text and concept-based search methods. The resulting scores
are combined using a weighted average, where the weight of
each method is dependent upon the class (or type) of the
query. For example, queries in the “named persons” class
rely entirely on the text search method, while queries in the
“sports” class use both methods evenly. The multimodal
search system is discussed in greater detail in [5].

4. CONTEXT FUSION AND RERANKING:
OVERALL APPROACH

The primary focus of this work is to draw upon a large re-
serve of concept detectors, such as the pool of 374 detectors
discussed in Section 2 to uncover contextual cues to refine
the individual concept detectors themselves and to provide
broader context for multimodal search. While in concept
detection it may be feasible to find contextual relationships
between concepts using a fully supervised approach over the
large sets of training data that are available, this approach
will not be applicable in search, where no training data is
available. We therefore need to leverage the light search

models and mine these for context.
We propose to accomplish this by using initial scores re-

sulting from baseline concept detectors (for concept detec-
tion) or simple search methods (for multimodal search queries).
Specifically, we assume that the scores from the initial method
are reasonably usable, and then take the top-returned results
to be pseudo-positives and sample pseudo-negatives from
the lower-ranked results, thereby deriving a pseudo-labeling
for the target semantic concept, T , which is simply binary:
pseudo-positive or pseudo-negative. For these images, we
also have detector scores, C, for each of the concepts in the
lexicon. C quantizes the normalized scores of the concept
detectors into 20 bins, which is empirically found to be a
reasonable number. The objective, then, is to learn the best
way to improve the performance of the initial search method
by looking at the relationships between the target pseudo-
labels, T , and the concept detector scores, C. The first step
that we take is to find a subset of concepts in the lexicon
which have strong relationships with the target pseudo la-
bels by measuring the mutual information between the two:

I(T ; C) =
X

T

X
C

P (T, C) log
P (T, C)

P (T )P (C)
, (1)

where P (T, C), P (T ), and P (C) are all estimated by count-
ing frequencies in the sampled set of shots. Once we have
this knowledge of T , C, and the shared mutual informa-
tion, I(T ; C), between the two for every concept, we can
then move on to leverage C to improve the accuracy of T .
This can be done using any given approach, such as treating
the concept scores, C, as term-frequencies, like in text, and
fitting the information into a traditional PRFB framework.
Or, we might attempt to feed the feature space into other
reranking frameworks [10]. We opt to employ an SVM-based
approach, since SVMs have been shown time and again to be
effective in learning light-weight models for image retrieval
[15] and context fusion [16].

We form a feature vector for each subshot consisting of
the scores for the concepts found to be related to the tar-
get. This feature vector is used as an input space for an
SVM model, using the target as the class labels. We ob-
serve that a space consisting of all 374 concepts is too large
for learning models, so the space is cut to only contain the
concepts with the highest mutual information with the tar-
get. Experiments on a validation set show that roughly 75
concepts gives reasonable performance, so we fix this pa-
rameter across all experiments. The exact set of 75 con-
cepts is chosen independently for each query, however. Since
TRECVID video search is evaluated over the top-1000 shots,
we select the top 1200 subshots (which typically encompass
the top-1000 shots) as the pseudo-positive set. The pseudo-
negatives are chosen randomly from the non-pseudo-positve
subshots to give 3600 pseudo-negative examples, (roughly
3x as many negatives so as not to incur problems due to
unbalanced training data). The sizes of the pseudo-positive
and psuedo-negative sets are chosen through some prelim-
inary experiments on a validation set. Future work may
investigate a more rigorous mechanism for choosing these
examples. The set of examples is randomly divided into
three folds and the SVM is learned on two of the folds and
tested on the third. This process is repeated three times,
with each fold being held out for testing once. Each of the
initial 1200 pseudo-positive subshots is scored in this pro-
cess. The resulting score is then averaged with the initial



Category Base BCRF SVM Rerank
Program (3) .591 .591 0.0% .610 3.3% .609 3.1%
Setting (13) .438 .475 8.3% .472 7.8% .482 10%
People (8) .404 .443 9.7% .418 3.7% .418 3.5%
Objects (8) .280 .287 2.4% .301 7.2% .302 7.9%
Activities (2) .238 .269 12% .274 14% .260 8.8%
Events (2) .471 .471 0.0% .495 5.1% .548 16%
Graphics (2) .378 .378 0.0% .363 -4% .369 -2%
All (39) .399 .422 5.8% .421 5.5% .427 7.0%

Table 1: Comparison of context-fusion techniques across a vali-
dation set selected from the TRECVID 2005 development data.
Mean average precisions for each technique are shown across each
class of concept.

score and returned as the final reranking result.
The process is lightweight and highly general. We will see

that it is actually comparable to supervised methods in the
concept detection task and provides significant improvement
in the TRECVID automatic video search task.

5. EXPERIMENTS

5.1 Data Set
We conduct our experiments using the data from the NIST

TRECVID 2005 and 2006 video retrieval benchmarks [1],
which includes over 300 hours of broadcast news video from
English, Chinese, and Arabic sources. The data is accompa-
nied with speech recognition and machine translation tran-
scripts in English. In each year, 24 query topics are provided
with ground truth relevance labels collected through a pool-
ing process which are distributed after the benchmark.

Our experiments also rely on the LSCOM [2] and LSCOM-
Lite [14] concept lexicons. The LSCOM concept lexicon is
a set of 449 visual concepts which were annotated over an
80-hour subset of the TRECVID data. The LSCOM-Lite
lexicon is an early version of LSCOM, which is essentially a
subset of 39 concepts thought to be the most essential.

5.2 Reranking for Concept Fusion
As an initial test for the reranking method, we apply it,

along with several supervised context fusion methods for the
detection of the 39 LSCOM-Lite [14] concepts over a vali-
dation set sampled from the TRECVID 2005 development
data. We study the performance of using context of 374 con-
cept detectors to improve the detection accuracy of each of
he 39 LSCOM-lite concepts. The supervised context fusion
methods applied are the Boosted Conditional Random Field
(BCRF) and the SVM method. The BCRF is exactly as de-
scribed in Section 1.2.1 and reported in [11], while the SVM
method is essentially an adaptation of the Discriminative
Model Fusion (DMF) approach reported in [16], modified to
deal with our large-scale concept lexicon. The SVM method
treats the concept detection scores as an input feature space
to an SVM, but also reduces the total number of features
by selecting only high-information concepts, using mutual
information as discussed in Section 4. The primary differ-
ence between the SVM method and the Reranking method
is that the reranking method performs feature selection and
learning using only pseudo-labels, while the SVM method
requires ground-truth labels. All three methods improve
upon the baseline method discussed in Section 2.

Table 1 shows the performance of the various context fu-
sion methods broken down across various concept categories.

The performance is expressed in terms of non-interpolated
average precision, a popular and standard metric in informa-
tion retrieval and concept detection which estimates the area
under the precision-recall curve. We see that all three meth-
ods provide similar improvements over the baseline method.
This is notable since the reranking method requires none of
the supervision necessary for the BCRF and SVM methods.
The primary reason for this in this case, is that training
data is very limited and the majority of it is necessary for
training the baseline models, leaving little room for discov-
ering appropriate concept fusion approaches. The reranking
method gives many noisy examples, while the supervised
methods must rely on very sparse true examples. The ef-
fects of the noisiness or sparseness seem to offset each other.

Figure 2 shows the performance of the reranking approach
and the baseline for each of the 39 concepts. We see a con-
sistent, though small, improvement for nearly all concepts,
indicating that the approach is stable and robust.

5.3 Reranking for Search
Having seen in the previous section that the reranking

method is stable and comparable to supervised approaches,
we can move on with confidence to the more interesting task
of applying it to multimodal search, which requires a new
method like reranking, since large amounts of training data
are never available for search.

Figure 3 shows the results of applying the reranking method
to text, concept-based, and fused searches for each query in
the TRECVID 2005 and 2006 automatic search task. Again,
in nearly every case, we see small but significant and steady
increases in nearly every query topic, on average improving
upon the baseline by between 15% and 30%. For the domi-
nant group of search topics (Concept), the proposed method
achieves an encouraging improvement of 12%-15%.

Varying levels of improvement can be influenced by a num-
ber of factors, such as the quality of the initial search results
(results that are too noisy will not give enough informa-
tion to meaningfully rerank, while extremely strong results
will be difficult to improve upon) and the availability of un-
tapped concept detectors to reinforce the search result. The
effects of these factors are discussed in the following section.

5.3.1 Class-Dependency
The multimodal fused search result (and reranking) shown

at the bottom of Figure 3 is generated using a different
weighted summation of the text and concept-based search
scores depending upon the class of the query. In this appli-
cation, we use five pre-defined query classes: Named Per-
son, Sports, Concept, Person+Concept, and Other.
Examples from each class are given below. Each incoming
query is automatically classified into one of these classes us-
ing some light language processing, like part-of-speech tag-
ging, named entity extraction, or matching against keyword
lists, as described in [5]. The performance of each search
method over each class is shown in Table 2.

Named Person queries (such as “Find shots of Dick Ch-
eney”) frequently have the most room for improvement by
the reranking method, especially when the initial text search
results are strong (as is the case in the TRECVID 2005 set).
These queries rely solely on text search arrive at an initial
ranking. Luckily, though, text search tends to give a very
strong initial result, with many positives appearing near the
top of the list. These results are also loaded with false pos-
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Figure 3: Average precisions of baseline and reranked search methods for each query in TRECVID 2005 and 2006. Text search shown
in the top graph. Concept-based search in the middle. Fused multimodal search in the bottom.

itives, since all shots within a matching story are blindly
returned. The application of pseudo-labeling can help sort
this out, since shots relevant to the the query will likely
come from the same news event featuring the sought-after
person reported across various news sources. This will result
in the occurrence of repeating scenes with shared contextual
concept clues, while the false positives in the top-returned
results will probably be indistinguishable from the pseudo-
negatives that were sampled, resulting in the false positives
being (correctly) pushed down the list.

Sports queries (like “Find shots of basketball courts”)
also have significant room for improvement from rerank-
ing. These queries rely fairly equally on concept-based and
text search methods and the two are highly complimentary.
When reranking is applied to sports queries, we expect a
behavior much like the named person queries: the initial re-
sult is already very strong, so the context clues discovered
via reranking are highly reliable. However, we also observe
that the results from the initial search (particularly in the
fused case) can be very strong, leaving little room (or need)
for improvement via reranking.

Concept queries are quite different in character from ei-
ther named person or sports queries. These queries are
found to have keywords matching concepts in our lexicon
(such as “Find shots of boats”) and therefore rely mostly on
concept-based search with some weight also on text search.
We might expect that the degree of improvement for each
concept-type query provided by reranking over the concept-
based search, alone, might be similar to the improvement

observed in the concept detection task as explored in Section
5.2; however, concept-type queries actually tend to be quite
different from just the combination of one or two known
concepts. They may also contain keywords which are not
matched to any concepts, so it can be difficult to build a
strong initial search result using concept-based search alone.
In fact, we see that concept-based search for these queries is
not improved significantly by reranking. However, if concept-
based search is fused with text search, a stronger initial re-
sult is obtained for the query and reranking provides im-
provements over the fused multimodal result of about 15%.

Person+Concept queries (which includes queries match-
ing the criteria for both the named person and concept classes,
like “Find shots of George Bush leaving a vehicle”) and
Other queries (which includes any query not meeting the
criteria for any of the other four classes) are harder to draw
conclusions for, due to the limited number of queries fitting
in to these classes. Given our examples, it seems that these
two classes still lack viable methods for getting an initial
search result, yielding a poor baseline and making it diffi-
cult to discover related concepts. These queries have low
performance and reranking does not offer improvement.

5.3.2 Feature Selection and Related Concepts
Beyond simply observing the degrees in improvement ex-

perienced through reranking in context-based concept fu-
sion, it is also interesting to examine the exact sources and
manifestations of the contextual relationships between con-
cepts and query topics. As mentioned in Equation 1, the



Text Search Concept-based Search Fused Multimodal
Class Set # base rerank % imp. base rerank % imp. base rerank % imp.

Named Person TV05 6 0.231 0.293 26.7% 0.000 0.000 0.0% 0.232 0.294 26.7%
TV06 4 0.065 0.070 8.0% 0.000 0.000 0.0% 0.065 0.070 8.0%

Sports TV05 3 0.116 0.174 50.0% 0.182 0.297 62.8% 0.276 0.325 17.8%
TV06 1 0.109 0.268 145.5% 0.251 0.326 29.8% 0.358 0.445 24.3%

Concept TV05 11 0.029 0.032 12.6% 0.066 0.066 0.0% 0.064 0.074 15.7%
TV06 16 0.029 0.033 14.3% 0.019 0.019 1.1% 0.037 0.042 12.6%

Person + Concept TV05 2 0.007 0.002 -68.5% 0.003 0.002 -19.3% 0.012 0.018 48.0%
TV06 0 0.000 0.000 0.0% 0.000 0.000 0.0% 0.000 0.000 0.0%

Other TV05 2 0.013 0.026 99.0% 0.003 0.004 25.6% 0.014 0.035 146.2%
TV06 3 0.002 0.002 0.0% 0.015 0.015 0.0% 0.002 0.002 0.0%

All TV05 24 0.087 0.112 28.7% 0.054 0.068 27.1% 0.124 0.153 22.9%
TV06 24 0.033 0.042 27.4% 0.024 0.028 14.3% 0.049 0.056 15.0%

Table 2: Breakdown of improvements in mean average precision (MAP) over various query classes on the TRECVID 2005 (TV05) and
TRECVID 2006 (TV06) search tasks. Shows the number of queries in each class (#), with the MAP of the baseline method (base),
reranking result (reranking), and relative improvement (% imp.) over each of the available unimodal tools (text search and concept-based
search) and the fused multimodal result.

Original Query Positive Concepts Negative Concepts
(151) Find shots of Omar Karami, the
former prime minister of Lebannon.

Government Leader, Adult, Meeting,
Furninture, Sitting

Overlaid Text, Commercial
Advertisement, Female Person

(152) Find shots of Hu Jintao, president
of the People’s Republic of China.

Asian People, Government Leader, Suits,
Group, Powerplants

Commercial Advertisement, Flags, Single
Female Person, Logos Full Screen

(158) Find shots of a helicopter in flight. Exploding Ordnance, Weapons, Explosion
Fire, Airplane, Smoke, Sky

Person, Civilian Person, Face, Talking,
Male Person, Sitting

(164) Find shots of boats or ships. Waterscape, Daytime Outdoor, Sky,
Explosion Fire, Exploding Ordnance

Person, Civilian Person, Face, Adult,
Suits, Ties

(179) Find shots of Saddam Hussein. Court, Politics, Lawyer, Sitting,
Government Leader, Suits, Judge

Desert, Demonstration or Protest, Crowd,
Mountain, Outdoor, Animal

(182) Find shots of soldiers or police with
weapons and military vehicles.

Military, Machine Guns, Desert, Rocky
Ground, Residential Buildings

Single Person, Corporate Leader, Actor,
Female Person, Entertainment

Table 3: Concepts found to be strongly positively or negatively correlated to some example queries through reranking.

degree of correlation between a target semantic concept and
any given concept detector in the lexicon is determined by
measuring the mutual information between the two, giving
concepts that are both negatively and positively correlated
with the target concept. We can further distinguish between
positively and negatively correlated concepts by utilizing the
pointwise mutual information:

IP (t; c) = log
P (t, c)

P (t)P (c)
, (2)

where if IP (t =pseudo-postive; c =postive) is greater than
IP (t =pseudo-postive; c =negative), then the concept is con-
sidered to be positively correlated with the semantic target.
Otherwise, it is considered to be negatively correlated. This
approach has been used in prior works to determine the
utility of concepts in answering search queries [13]; however
that analysis was applied on ground truth relevance labels
and concept annotations. In this work, we are measuring
pseudo-labels and automatic concept detection scores.

Some interesting examples of concepts found to be related
to query topics are shown in Table 3. Scanning through this
table, we can observe concept relationships coming from a
number of different mechanisms.

The first, and perhaps most obvious, type of relation-
ship is essentially the discovery of generally present re-
lationships, such as “Government Leader” for “Hu Jintao”
and “Omar Karami” or “Waterscape” for “boats or ships.”
These are the relationships that we would expect to find, as
many search topics have direct relationships with concepts
and many topics might only occur in settings with a specific

concept present. Virtually all of the negatively correlated
concepts also fall into this class (or a variant of the class for
generally not present concepts). In fact, we see that the neg-
ative relationships are dominated by detectable production
artifacts, such as graphics or commercials which are rarely
positively associated with typical search topics.

The second type of relationship is a news story rela-
tionship. In this relationship, scenes containing the target
topic occur as part of some news story, where additional
related concepts can be discovered that are unique to this
news story, but not generally true across all time frames.
The named person queries typically display these relation-
ships. The “Hu Jintao” topic is found to be related to the
“Powerplants” concept, not because Hu Jintao is typically
found in a powerplant setting, but because the search set
contained news stories about a visit to powerplants. Simi-
larly, the “Saddam Hussein” topic is found to be related to
the “Court,” “Judge,” and “Lawyer” concepts, though this
relationship is only true during the time frame of the search
set, during which Saddam Hussein was on trial. Also, the
“Find shots of boats or ships” topic is found to be related
to the “Explosion Fire” concept. There are no examples of
boats with fires in the training data; however, the search
set contains a news story about an occurrence of a boat
fire. This second class of contextual relationship is uniquely
discoverable by only the reranking method, since external
training sets are likely to be constrained in time and from
different time periods, making it impossible to predict new
relationships arising in emerging news stories.

A third type of relationship is a mistaken relationship.



In this relationship, the system can discover context cues
from an erroneous concept detector, which end up being
beneficial despite the mistaken relationship. For example, it
is found that the “Helicopter” topic is related to the “Air-
plane” concept; however, this relationship is actually false:
these two concept typically do not occur in the same scene.
The “Airplane” concept detector is not perfect and it turns
out that the errors it makes tend to include helicopters since
both have similar low-level appearances, so this mistaken re-
lationship between concepts ends up being correct and ben-
eficial with respect to the effects of imperfect detectors.

6. CONCLUSIONS AND FUTURE WORK
We have presented a new framework for incorporating

contextual cues from large sets of pre-computed concept
detectors for refining and reranking concept detection and
search results. The proposed model differs from conven-
tional contextual fusion models in that it requires no train-
ing data for discovering contextual relationships and instead
mines an initial hypothesis ranking to find related concepts
and reorder the original ranking. This unsupervised im-
plementation allows the framework to be applied to search
results, where training data for contextual relationships is
typically not present, and where past approaches have been
far more conservative, using only a few concept detectors per
query. The reranking approach enables robust utilization of
dozens of concept detectors for a single query to discover rich
contextual relationships. To the best of our knowledge, this
is the first work using a large pool of 374 concept detectors
for unsupervised search reranking.

We find that the reranking method is comparable to su-
pervised methods for concept detection tasks, improving
7% over baseline concept detection in MAP. The success
of the approach is also observed in search tasks, where the
method improves 15%-30% in MAP on the TRECVID 2005
and 2006 search tasks. The method is particularly success-
ful for “Named Person,” “Sports,” and “Concept” queries,
where the initial search result is reasonably strong. The
method is shown to discover many of the direct concept
relationships that would likely be discoverable using a su-
pervised approach with training data, while also discovering
relationships that are entirely present only in the search set,
due to the temporal growth and decay of news cycles, and
would therefore not be discoverable in a temporally sep-
arated training set. The method does not improve over
queries where the initial search results perform poorly. Fu-
ture research should focus on these difficult queries.
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