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ABSTRACT

We propose a fully automatic spliced image detection method
based on consistency checking of camera characteristics among
different areas in an image. A test image is first segmented
into distinct areas. One camera response function (CRF) is
estimated from each area using geometric invariants from lo-
cally planar irradiance points (LPIPs). To classify a boundary
segment between two areas as authentic or spliced, CRF cross
fitting scores and area intensity features are computed and fed
to SVM-based classifiers. Such segment-level scores are fur-
ther fused to form the image-level decision. Tests on both the
benchmark data set and an unseen high-quality spliced data
set reach promising performance levels with 70% precision
and 70% recall.

1. INTRODUCTION

With the ease of digital image manipulation, like copy-and-
paste (splicing), image forgery has become a critical concern
in many applications. Verification of content integrity has
become increasingly important. An intuitive and promising
approach to image forgery detection is to examine the con-
sistency of inherent physics-based attributes among differ-
ent parts of a single image. These attributes can be natural
scene related, for example, lighting, shadow, and geometry.
Or they can be imaging device properties such as camera re-
sponse function (CRF), demosaicking filter, and sensor noise
statistics. Any image that fails to show natural scene consis-
tency and natural imaging consistency may be considered as
forgery. Such approaches are passive and thus more general -
no active mechanisms are needed to generate and embed ad-
ditional signatures into images at the sources.

2. PREVIOUS WORK

Studies of physical characteristics of imaging devices, specif-
ically cameras, have received more attention in recent years.
[1] presents a typical camera imaging pipeline. Components
such as CCD sensor, demosaicking filter, and camera response
function (CRF), may possess unique characteristics to camera
models or even to camera units. Recovery of such inherent
characteristics is useful for image source identification. Some

prior works proposed methods for demosaicking filter estima-
tion [2, 3], sensor fixed pattern noise estimation [4], CRF es-
timation [5, 6], and natural image quality from multiple color
channels [7]. Such physical attributes, when estimated from
an image, can be used as the ”fingerprint” of the capturing
source.

Given the fingerprints, splicing detection can readily take
place by checking the inconsistency among different image
areas. The aforementioned works lead to detection schemes
based on demosaicking inconsistency [2, 3], sensor noise [8],
CRF abnormality [9], and CRF inconsistency [10].

Spliced image detection by CRF consistency checking has
been shown promising in our prior work [10]. However, the
application was limited because manual selection of suspi-
cious areas was required. In this paper, we remove this depen-
dency on manual input by incorporating automatic image seg-
mentation and extending the statistical classification frame-
work for splicing detection. In the following, we present the
problem formulation, CRF consistency checking scheme, and
fusion strategies to obtain image-level decisions from segment-
level scores. Performance evaluations over a benchmark data
set and a high-quality spliced data set will both be presented,
followed by discussions of remaining challenges.

3. PROPOSED APPROACH

Consistency checking is motivated by the fact that spliced im-
ages typically contain suspicious areas with distinct device
signatures from other areas in the spliced image. To detect
such spliced areas automatically, two solutions are needed -
automatic image segmentation and robust recovery of camera
signatures from each area.

In most scenarios, manual input is not available and thus
an automated process is demanded. This brings image seg-
mentation into picture, followed by crucial tasks of device
signature extraction and consistency checking. In this pa-
per, we choose a popular segmentation tool, Normalized Cuts
[11], though other methods such as Mean Shift [12] may also
be considered. For device signature and consistency measure,
we use the single channel CRF estimation proposed in [6] and
a cross fitting scheme extended from our prior work in [10].

Instead of consistency checking between every possible



pair of segmented areas, we focus on the authenticity test of
boundary segments, since splicing not only causes image area
inconsistency, but also creates anomalous points near splicing
boundaries. Incorporating such points is key to our approach.
Given the segmentation results of an image, we propose to
first detect suspicious boundary segments, and from there in-
fer if the whole image contains any spliced content. Such an
inferencing process may also consider the structural relations
among segment boundaries in the image.

An overview of our proposed framework is given in Fig.
1. The test image is first segmented into distinct areas using
Normalized Cuts [11], after which CRF estimation is con-
ducted in each of the areas. To check if a boundary segment
between two neighboring areas is authentic or spliced, we ap-
ply cross fitting between CRF from one area and data samples
from another and use these fitting scores to represent a bound-
ary segment along with other features extracted from the two
areas. Support Vector Machine (SVM) is learned over these
feature vectors to classify the boundary segment as authentic
or spliced. The segment-level classification results are then
fused to infer whether an image is spliced or authentic, and
locate the suspicious areas if it is classified as spliced.

Fig. 1. A system for automatic local spliced area detection

3.1. Image Segmentation
Normalized Cuts (NCuts) requires the number of desired ar-
eas to be predetermined, typically set from 2 to 20. In general,
over-segmentation is to be avoided so that the resulting areas
are reasonably large and the boundaries sufficiently long. One
potential drawback, however, is the inability to detect small
spliced areas. Fig. 2 shows the results of one image with
boundaries plotted in yellow, when setting the number of re-
gions to 8. As mentioned above, we only target at neighboring
areas and the boundary segment in between. In Fig. 2, one
such segment is displayed in blue and its two sides in red and
green. The two sides shall be denoted as area A and area B
in the rest of the paper. We also dilate the boundary to form a
boundary segment (denoted as area E). The union of areas A,
B, E is then denoted as area O.

Each boundary segment is categorized into one of the fol-
lowing types depending on the properties of its two sides.
(1) Authentic: Both sides (area A and B defined above) are
from the same camera; thus the segment under consideration
is authentic. (2) Spliced: Both areas are untampered but are
from different cameras. In this case, the segment is a hit on
the splicing boundary. (3) Ambiguous: The actual splicing
boundary is close to or partially overlapped with the auto-
matic segment, and thus cuts through one or both neighbor-
ing areas. In other words, the automatic boundary segment is
a partial hit and one or both of the neighboring areas contain
content from two cameras.

From the spliced image detection point of view, there is no
need to distinguish Spliced from Ambiguous cases since they
both indicate the presence of the splicing operation. However,
at the segment level, due to the ill-defined authenticity of am-
biguous segments, we will only use the Authentic and Spliced
classes to train a detector in our learning-based method.

Fig. 2. Sample segmentation results by NCuts. A thickened bound-
ary segment is shown to indicate the potential splicing boundary.

3.2. Camera Response Function Estimation
The next step is to extract camera-specific features from the
segmented regions and then verify their consistency. The cam-
era response function (CRF) nonlinearly transforms CCD sen-
sor signals, or irradiance, to the output recorded by digital
memory, or brightness. As different cameras transform the
irradiance signals differently, CRF is a natural camera signa-
ture. It is often denoted as R = f(r), where r is the irra-
diance and R the brightness. The simplest form of CRF is
a gamma function, R = f(r) = rα0 . More complex mod-
els usually achieve better approximation. In this paper, we
use the Generalized Gamma Curve Model (GGCM) proposed
in [6], extending the exponent to a polynomial function of r:
R = f(r) = r

Pn
i=0 αir

i

. Considering the tradeoff between
modeling power and computational complexity, we choose a
first order GGCM, n = 1.

In [6], locally planar irradiance points (LPIPs) are used
to extract information solely related to the CRF. Namely, if a
point has a locally planar irradiance geometry, r = ax+ by +
c, then the second order partial derivatives in the irradiance
domain would all be zero, and the following equation holds:
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This quantity, denoted as A(R), does not carry any infor-
mation about the geometry of r: {a, b, c}, rather, it contains
information only for estimating CRF (f ). With further ma-
nipulation we get another quantity Q(R),

Q(R) =
1

1− A(R)R
(2)

which is also independent of irradiance geometry. It is hence
termed Geometry Invariant (GI). With a first order GGCM,
Q(R) is related to the parameters of CRF by

Q(R) =
(α1r ln(r) + α1r + α0)2

α0 − α1r
(3)

The CRF is estimated by first extracting LPIPs, comput-
ing the GIs, and iteratively looking for the optimal GGCM pa-
rameters to fit the computed GI values. In [6], we have shown
that with improved derivative computation, Bayesian LPIP
selection, flattened error metrics, and cross channel similarity,
the CRF estimation method achieves an excellent accuracy -
the average RMSE as low as 0.0224. Note this method may
be reliably applied to a single color channel as well as images
of multiple color channels.



3.3. CRF Consistency Measure via Cross Fitting
To check if a boundary segment is authentic or spliced, we
compute cross fitting errors using the estimated CRFs and GIs
(i.e. (Q, R) values) of the selected LPIPs:

sij={(Qi(R)n−
(α1,jrn ln(rn)+α1,jrn+αO,j)

2

αO,j−α1,jrn
)2|n≤Ni};i,j∈{A,B}

sk={(Qk(R)n−
(α1,krn ln(rn)+α1,krn+αO,k)2

αO,k−α1,krn
)2|n≤Nk};k∈{O,E}

where Ni is the total number of LPIPs from area i.
If areas A and B are indeed from different cameras, we

expect to see large cross-fittting errors sij’s. Anomalous dis-
tributions of (Q, R) samples from areas E and O are also ex-
pected since they are not from a single camera. We compute
the first- and second-order moments of these cross-fitting er-
rors, resulting in the first set of twelve features of a segment:

Ffitting,1=[µ(sAA),µ(sBB),µ(sAB),µ(sBA),µ(sE),µ(sO)];

Ffitting,2=[σ(sAA),σ(sBB),σ(sAB),σ(sBA),σ(sE),σ(sO)]

Our experiments in [6] showed that images with a large
coverage of R values usually result in much more accurate
CRFs. Therefore we add the averages and the ranges of R’s
from each area as a second feature set:

FR=[µ(RA),µ(RB),µ(RE),µ(RO);∆RA,∆RB ,∆RE ,∆RO]

Hence each segment is represented by the combined 20-
dimensional feature vector described above.

3.4. SVM Classification
Before reaching image level decisions, we first classify the
segments as authentic or spliced using SVM bagging. Since
authentic segments outnumber spliced ones, as shown in Ta-
ble 1, we divide the whole authentic pool into P subsets,
each with a similar number of samples as spliced ones. We
then train P classifiers out of these evenly populated sample
bags. At the test stage, every test segment gets P classifica-
tion labels and P distance values to the decision boundaries,
[lp, dp], p = 0 . . . P − 1. These distances are fused with a
sigmoid warping function to obtain the final decision:

lfuse = sign(
1

P

P−1X
p=0

1

1 + exp(−dp/ω)
− 0.5) (4)

In our experiment, P is set to 5, and ω is determined
empirically through cross-validation. The decision thresh-
old can be changed to obtain different operation points in the
precision-recall curve as shown in Fig. 3(a).

3.5. Image Level Fusion
To get a global decision for the image, naively averaging over
all dp’s would not be appropriate, since an image with only
one spliced segment is certainly spliced, but its single positive
dp will vanish if it is to be averaged with other segment scores.

Currently we adopt a simple method - the splicing score
of the image equals the maximal segment-level splicing score
contained in the image. This score is then thresholded in
order to classify an image to be authentic or spliced. Vary-
ing the threshold will result in different operation points in
the precision-recall curve shown in Fig 3(b). More sophis-
ticated fusion strategies may consider the structural relation-
ships among boundary segments to detect a spliced object,
instead of isolated suspicious segments.

Table 1. Numbers of test segments and images.
Segments Images

Auth Splc Amb Auth Splc
828 219 249 84 89

4. EXPERIMENTS AND DISCUSSIONS

4.1. Data Sets
Our benchmark data set consists of 363 uncompressed images
[10]: 183 authentic and 180 spliced. Authentic images are
taken with four cameras: Canon G3, Nikon D70, Canon EOS
350D, and Kodak DCS330. Each spliced image has content
from exactly two cameras, with visually salient objects from
one image (eg. a yellow rubber duck) copied and pasted onto
another image using Adobe Photoshop without any post pro-
cessing. We also made best efforts to ensure content diversity.
This data set will be referred to as the Basic data set.

Base on initial empirical tests, we set the number of seg-
mentation areas to be 8. Output boundary segments from
NCuts are categorized into three sets: Authentic, Spliced, and
Ambiguous, using the definitions in Sec. 3.1. The breakdown
is reported in Table 1.

Ambiguous segments are excluded from our segment-level
experiment, trimming down the number of boundary segments
within each image to 7∼10. In image-level tests, however,
they are included to examine the effect of partial alignment.

Both segment level and image level performances are eval-
uated over the Basic data set. Standard validation procedures
are used to randomly partition the data set into training and
test sets. The partitioning is done at the image level so that
segments from the same image will not be included in both
training and test sets. In order to see how well our classifier
generalizes, we tested our detector on 21 authentic images and
38 high-quality spliced images using some advanced image
manipulation tools recently developed in Microsoft Research
Asia. These images are typically JPEG compressed, with ad-
vanced matting or color adjustment in addition to copy-and-
paste, therefore it is a much more realistic and challenging set
for splicing detection. We denote this test set as the Advanced
data set. Note we tested our method over the new advanced
spliced images without re-training the SVMs in order to eval-
uate the generalization capability of the method.

4.2. Results
As shown in Fig. 3, although the segment-level classifica-
tion accuracy is only slightly better than random guess (Fig.
3(a)), our simple fusion scheme for image-level classifica-
tion proves to be powerful - 70% precision, 70% recall (Fig.
3(b)). The curves when excluding and including ambiguous
segments are almost identical, meaning that such ill-defined
instances do not play a major role in image level decisions.

When the detector is tested over the unseen Advanced
data set, we observe performance decrease at the segment
level as anticipated: the PR curve is almost only as good as
random guess (Fig. 3(a)). Despite this degradation, at the
image level, a precision-recall of 70% and 70% can still be
obtained, comparable to that of the Basic data set (Fig. 3(b)).



This is encouraging in that it promises satisfactory detection
even when the trained detector is applied to new images that
are subject to significantly different splicing processes and ad-
ditional post-processing operations (e.g., compression).

Analysis of the detection results gives rise to some inter-
esting observations. Among the correctly detected spliced im-
ages from the Advanced data set, about one third achieve both
accurate spliced area segmentation and classification. One
third are detected by classifying some ambiguous (i.e., par-
tially aligned boundaries) as spliced. The remaining one third
are detected as spliced due to falsely classifying some au-
thentic segments as spliced. Two sets of example image are
shown in Fig. 4. Among these images, the following observa-
tions can also be made: spliced images with a large object, eg.
human face or body, are more likely to get both precise seg-
mentation and correct detection, even when post-processing is
present (Fig. 4(a)(d)). Images with similar objects and back-
grounds tend to suffer from inaccurate segmentation. How-
ever in some of these cases the resultant ambiguous segments
can still be useful, as shown in Fig. 4(b)(e). Lastly, images
with complex textures (eg. grass and tree in Fig. 4(c) and lake
reflections in Fig. 4(f)) are prone to false alarms.
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Fig. 3. PR curves for segment- and image-level classification. The
vertical lines show the results corresponding to random guess.

(a) Detection (b) Amb segment (c) False alarm

(d) Detection (e) Amb segment (f) False alarm

Fig. 4. Three types of detected image in the Advanced spliced im-
age data set. Red denotes successfully detected spliced segments,
green denotes ambiguous segments detected as spliced, and blue de-
notes authentic segments detected as spliced.

5. CONCLUSION

We proposed a novel spliced image detection approach based
on camera response function estimation, consistency check-
ing and image segmentation. The method is fully passive and
automatic - neither active signature embedding nor manual

input is needed. To the best of our knowledge, this is the first
work combining automatic image segmentation with camera
signature consistency checking. The proposed method is tested
over two data sets, created with basic or advanced splicing
techniques. Results show promising performance in detecting
spliced images in both data sets, with about 70% in precision
and 70% in recall.
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[4] J. Lukáš, J. Fridrich, and M. Goljan, “Determining digital
image origin using sensor imperfections,” Proceedings of the
SPIE, vol. 5685, 2005.

[5] S. Lin, J. Gu, S. Yamazaki, and H.-Y. Shum, “Radiometric
calibration from a single image,” in IEEE International Con-
ference on Computer Vision and Pattern Recognition, 2004.

[6] T.-T. Ng, S-.F. Chang, and M.-P. Tsui, “Using geometry invari-
ants for camera response function estimation,” in IEEE Inter-
national Conference on Computer Vision and Pattern Recogni-
tion, 2007.

[7] M. Kharrazi, H. T. Sencar, and N. D. Memon, “Blind source
camera identification.,” in International Conference on Image
Processing, 2004, pp. 709–712.
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