
A FAST, COMPREHENSIVE SHOT BOUNDRAY DETERMINATION SYSTEM

Zhu Liu, David Gibbon, Eric Zavesky*, Behzad Shahraray, and Patrick Haffner

AT&T Labs Research
{zliu, dcg, behzad, haffner}@research.att.com

*Columbia University, Electrical Engineering
emz@ee.columbia.edu

ABSTRACT

The proposed shot boundary determination (SBD) algorithm
contains a set of finite state machine (FSM) based detectors for
pure cut, fast dissolve, fade in, fade out, dissolve, and wipe.
Support vector machines (SVM) are applied to the cut and dissolve
detectors to further boost performance. Our SBD system was highly
effective when evaluated in TRECVID 2006 (TREC Video
Retrieval Evaluation) and its performance was ranked highest
overall.

1. INTRODUCTION

Shot boundary determination has been widely studied for the last
decade. Some of the early work can be found in [1-4]. TRECVID
[5] further stimulates the interest and effort in automatic
segmentation, indexing, and content-based retrieval of digital video
in a broad research community. New systems and algorithms have
been constantly reported from all TRECVID participants over the
years, e.g., IBM, Tsinghua University, Columbia University,
CMU, KDDI, etc.. Researchers at AT&T started to tackle
multimedia content processing and indexing in the early 1990’s,
and Shahraray reported a scene change detection algorithm in 1995
[3]. With the limited computation power (90M CPU) and system
memory (8M) available at that time, as well as the constraints of
real time and low latency, the original algorithm was designed to
be effective and highly efficient. The adopted visual features were
intensity histogram and image matching with 1 dimensional
motion compensation by projection. A single finite sate machine
(FSM) was designed to detect all types of scene changes and report
camera motions, including panning and tilting. An improved
version of this algorithm is adopted in the MIRACLE system, a
video search engine, at AT&T [8].

Thanks to current computation power, there is a lot of room to
extend the existing algorithm. Three major improvements are: 1)
Two-dimension motion compensation, 2) utilizing color
information in addition to intensity values, 3) instead of using a
single FSM, multiple FSM-based detectors are adopted to track
different types of shot boundaries, e.g., cut, fade in/out, dissolve,
wipe, etc.. The new architecture is more flexible and modularized:
each detector is independently designed and adjusted, and
additional detectors can be easily plugged in to capture any new
types of shot boundaries.

In this paper, we report the AT&T SBD system evaluated in
TRECVID 2006. The paper is organized as follows. Section 2
gives an overview of the SBD system. Section 3 describes the
adopted visual features and Section 4 illustrates the six shot
boundary detectors. Result fusion is briefly addressed in Section 5.
Evaluation results are presented and discussed in Section 6, and
finally we draw our conclusions in Section 7.

2. OVERVIEW

There are three main components in our SBD system: visual feature
extraction, shot boundary detectors, and result fusion. Fig. 1 shows the
high level diagram of the SBD system. The top level of the algorithm
runs in a loop, and every loop processes one video frame. Each new
frame and the associated visual features are saved in circular buffers.
The loop continues until all frames in the MPEG file are processed.

Fig. 1. Overview of the SBD system

Given the wide varieties of shot transitions, it is difficult to handle

all of them using a single detector. Our system adopts a “divide and
conquer” strategy. We devised six independent detectors, targeting for
six dominant types of shot boundaries in the SBD task. They are cut,
fade in, fade out, fast dissolve (less than 5 frames), dissolve, and wipe.
Essentially, each detector is a finite state machine (FSM), which may
have different number of states. Finally, the results of all detectors are
fused and the overall SBD result is generated in the necessary format.

3. FEATURE EXTRACTION

For each frame, we extract a set of visual features, which can be
classified into two types: intra-frame and inter-frame visual features.
The intra-frame features are extracted from a single, specific frame,
and they include color histogram, edge, and related statistical features.
The inter-frame features rely on the current frame and one previous
frame, and they capture the motion compensated intensity matching
errors and histogram changes.

Fig. 2 illustrates how these visual features are computed. The
resolution of the TRECVID evaluation sequences is 352x240 pixels.
The visual features are extracted from a central portion of the picture,
which we called the region of interest (ROI). The ROI is marked by a
dashed rectangle in Fig. 2, overlaid on the original image. The choice
of the ROI size is based on two considerations: 1) The ROI covers the
majority of the image and effectively eliminates the letterbox for wide
screen content. 2) The ROI avoids the border effect in the following
feature extraction steps.

Fig. 2. Visual feature extraction

Within the ROI, we extract the histogram of red, green, blue,

and intensity channels and compute a set of common statistics,
including the mean, the variance, the skewness (the 3rd order
moment), and the flatness (the 4th order moment). We also extract a
visual feature called histogram dynamic range, which roughly
measures how wide the histogram spreads. To compute the
intensity dynamic range, we first search the histogram from both
ends, until the accumulated mass of both sides is more than 2%.
The dynamic range is the difference of these two values.

For each pixel in the ROI, we compute its discontinuities in the
horizontal (with respect to vertical) direction by Sobel operators
[6]. If the value is higher than a preset threshold, the pixel is
labeled as horizontal (resp. vertical) edge pixel. Finally, we use the
ratio of the total number of horizontal (resp. vertical) edge pixels to
the size of ROI as an edge based feature.

The temporal derivative (delta) of a feature (e.g., histogram
mean) is fitted by a second-order polynomial to make it smooth.
The delta values of histogram mean, variance, and dynamic range
are computed as additional visual features.

Motion features are extracted based on smaller blocks within
the ROI. Specifically, in Fig. 2, we split the ROI (288x192 pixels)
into 24 blocks (6 by 4), each with the size 48x48 pixels. Based on
our observations, motion information extracted from bigger block
sizes (e.g., 48x48) is more reliable than those from smaller sizes
(e.g., 8x8). The search range of motion vector for each block is set
to 32x32. It could be either an exhaustive search for better
accuracy or a hierarchical search for higher efficiency. The motion
features for each block, e.g., block k, include the motion vector
(MVk), the best matching error (MEk), and the matching ratio
(MRk). The matching ratio is the ratio of the best matching error
with the average matching error within the searching range, and it
measures how good the matching is. The value is low when the
best matching error is small and the block has significant texture.
Based on the motion features of all blocks, we select the dominant
motion vector and its percentage (the ratio of the number of blocks
with this motion vector to the total number of blocks) as frame
level features. We then rank all MEk (resp. MRk), and compute the
order statistics, including the mean, MEA; the median, MEM; the
average of the top 1/3, MEH; and the average of the bottom 1/3,
MEL (resp. MRA, MRM, MRH, MRL). These features are effective
in differentiating the localized visual changes (e.g., foreground
changes only) from the frame wised visual changes. For example,
high MRH with low MRA indicates a localized transition.

Totally, we extract 88 visual features for each frame. Interested
readers can find more details in [9].

4. SHOT BOUNDARY DETECTORS

Fig. 3 illustrates the general FSM structure for all shot boundary
detectors. State 0 is the initial state. When the transition start event
is detected, the detector enters the sub FSM, which detects the
target transition pattern, and locates the boundaries of the
candidate transition. If the sub FSM fails to detect any candidate
transition, it returns to state 0, otherwise, it enters state N. State N

further verifies the candidate transition with more strict criteria, and if
the verification succeeds, it transfers to state 1, which indicates that a
transition is successfully detected, otherwise, it returns to the initial
state. Although the six detectors share the same general FSM structure,
their intrinsic logic and complexity is quite different. In the rest of this
section, we briefly discuss all the individual detectors. For more
details, please refer to [9].

Fig. 3. General FSM for transition detectors

4.1. Cut detector

Cut detector uses a state variable, AverageME, to track the average
value of matching errors. Its initial value is set to 5.0, and it is updated
whenever the state is 0 with the following IIR filter,

15.0*85.0* AMEAverageMEAverageME += (1)
If the current mean matching error, MEA, is larger than 5 times of

AverageME, the sub FSM is activated. The main roles of the sub FSM
are to check whether the candidate boundary has the local maximum
matching error, and to introduce a 3-frame delay for verification. The
Verify() function compares all pairs of frames in the neighborhood
(within 3 frames) of the boundary, such that false cuts introduced by
camera flashes can be effectively removed.

We also developed a cut verification engine based on a support
vector machine (SVM) [7]. Assuming k is the end frame of a candidate
cut, we extract four groups of features. The first group is the original
visual features (88 dimensions) of frame k. The second group is the
mean and the standard deviation of all features within an 11-frame
window centered at k. The third and the last group of features are the
same statistics on a 21-frame window and a 31-frame window. All
these features are concatenated into a 616-dimension feature vector as
SVM input. More details of SVM training are shown in Section 4.7.

 4.2. Fade in detector

Fade in can be reliably detected using the intensity histogram variance.
Low variance (not necessarily low intensity) is a strong indicator for
the beginning of fade in. Fade in transitions often start from a group of
low variance frames and then the variance gradually increases until it
becomes stabilized.

The verification algorithm pinpoints the starting and the ending
frames of the candidate transition based on the variance value, and it
then measures the linearity of the standard deviation (STD) of the
intensity (the square root of intensity variance). We use r2 as a measure
of linearity in linear regression. Assume we have a set of pairs: {xi, yi},
1 ≤ i ≤ N. By min square error, we get the optimal a and b, which
minimize the error Ereg,

()!
=

""=
N

i

iireg baxyE
1

2 .

r2 is defined by,

!

r2 =1"
Ereg

Etot

, where

!

Etot = yi " y()
2

i=1

N

. (2)

If the linearity of the STD curve is higher than a preset threshold,
the Verify() function returns true, otherwise, it returns false.

4.3. Fade out detector

Similar to the fade in detector, the fade out detector is also
triggered by low variance frames. The verification algorithm
checks the linearity of the standard deviation of the intensity. Very
often, fade out and fade in transitions are adjacent, and the
overlapped fade out /in transitions are merged into a single FOI
transition in result fusion step.

4.4. Fast dissolve detector

Fast dissolve is triggered by a medium change of the matching
error, where MEA is bigger than 2*AverageME. Let X, Y, and Z
denote the starting frame, the ending frame, and a middle frame
within a fast dissolve transition. We require that the duration of the
fast dissolve transition be less than 5 frames, so it is reasonable to
assume that there is no motion involved in the transition. With this
assumption, Z can be written as a linear combination of X and Y, Z
= αX + (1 - α)Y, where 0 ≤ α ≤ 1. The value of α can be
determined by a minimum square error criterion. If the fitting error
is smaller than a preset threshold and 0.2 ≤ α ≤ 0.8 for all middle
frames of the transition, then the Verify() function returns true.

4.5. Dissolve detector

Dissolve is a procedure of linearly mixing two different scenes X
and Y. Assuming Zi is an intermediate frame, then we can use the
following formula to represent Zi,

YXZ
iii
)1(!! "+= ,

where {αi} are a set of monotonically increasing values that are in
the range of [0, 1]. Let the variances of X, Y, and Zi be σ2

X, σ2
Y,

and σ2
Zi. If we also assume X and Y are independent, then we have,

() 22222
1

YiXiZ
i

!"!"! #+=

If σ2
X = σ2

Y, the curve for σ2
Zi is a symmetric quadratic

function, shown as in Fig. 4a. But in typical cases, the curve is
more like that shown in Fig. 4b, where σ2

X is not equal to σ2
Y, and

X and Y are not independent. When the variance of either X or Y
is small, the variance curve may only contain either the decreasing
or the increasing pattern, such as illustrated in Fig. 4c.

Fig. 4. The variance curves of some typical dissolve transitions

The sub FSM of the dissolve detector is designed to capture

the characteristic curves shown in Fig. 4. A state variable,
AverageVariance, is used for pinpointing the starting and ending
frame of the dissolve transition. Its initial value is set to 3.5 and it is
updated by following IIR filter in state 0,

15.0*85.0* IHVianceAverageVarianceAverageVar += (3)
where HVI is the intensity histogram variance.

Verification is a key component of this FSM. The main
challenge is that the variance curve may not be smooth due to

motion or camera flashes in the original sequences X and/or Y. For
verification purposes, we extract a set of heuristic features based on the
entire transition. In this section, we only present a few interesting
features, for more details, please refer to [9].

From the variance curve, shown in Fig. 5, we first pinpoint the
starting and ending frames. To do that, we start from the minimum
variance frame in the candidate transition, and then search forward and
backward for the maximum absolute delta variance frames, which are
fmin and fmax in the figure. Then from fmin, we further search backward
until the delta variance of the current frame is less than half of the delta
variance of the next frame or 2*AverageVariance. This frame is set as
the starting frame of the candidate dissolve. Similarly, we search from
fmin forward, and locate the ending frame.

Fig. 5. The curves of variance and delta variance

Then a set of heuristic features are extracted for verification

purpose. For example, the height of the variance curve, Δ, is the
difference of the maximum and minimum variances within the
transition. Knowing that the delta variance is roughly a linear curve
between fmin and fmax, we do a linear fitting for the delta variance. We
also compute the estimation error for each image in the transition from
its neighboring images, and the matching error between the starting
and ending frames of the transition.

The baseline dissolve verification employs a sequence of threshold-
based criteria relying on these features. A more robust approach is to
apply SVM on these features, and we discuss this more in Section 4.7.

4.6. Wipe detector

Wipe is the most ill defined transition. There are more than 20 different
types of wipe that are commonly used in video editing and there is no
single rule that applies to all of them. In this system, we only consider
one common type of wipe, where the first scene gradually changes to
the second scene, and for a certain intermediate frame, part of the
frame comes from the first scene, and part of it comes from the second
scene.

A wipe is triggered by a smooth change, when the matching error
MEA is bigger than 1.5*AverageME and less than 4*AverageME. In
Fig. 6, we denote the starting and the ending frames of the candidate
wipe transition as X and Y, and an intermediate frame as Zi, i = 1, ..., L
-1, where L is the duration of the transition. We partition frame Zi into
8x8 blocks, and find the best match with motion compensation from
both X and Y for each block. When the matching error is too high, the
block does not come from either X or Y. Then we compute the portion
of blocks with match from X, denoted as xi, and the portion of blocks
with match from Y, denoted as yi. Finally, we measure the linearity of
xi and yi curves to verify the wipe transition.

Fig. 6. Illustration of wipe verification

4.7. SVM Models

Support vector machines are now a standard for fast and robust
classification. While this classifier greatly reduces training time by
analyzing only marginal samples, care must be given to the
training parameters and underlying kernel chosen. In our
experiments, we evaluated both linear and radial basis functions in
a 3-fold validation process. We searched 7 linear settings and 70
RBF settings with random subsets of our training set split into
80/20 percent training/testing partitions. All features are globally
normalized with a sigmoid before feeding the SVM.

5. FUSION OF DETECTOR RESULTS

Fusion of detector results occurs when all frames are processed.
We first sort the list of raw results by their starting frames and then
merge all overlapped transitions with different priorities assigned
to each transition type. Currently the order used is (from highest to
lowest) FOI, dissolve, fast dissolve, cut, and wipe. The final step is
to map the system types into two categories: cut and gradual. All
shot boundaries except cuts are mapped into gradual.

6. EVALUATION RESULTS

In the TRECVID SBD evaluation, each group can submit up to 10
runs. Fig. 7 shows the overall performance of all participants, with
AT&T’s runs plotted with squares. In term of F-measure, our
system achieved the best overall performance. Table I shows the
four best submissions for AT&T’s SBD system in TRECVID2006.

Table I. The best runs of AT&T’s submissions

Performance (%)
Category Recall Precision F-

Measure

Report
localized
changes

SVM
Verification

Kernel
Overall 85.5 89.2 87.3

Cut 88.9 90.4 89.6
Gradual 76.5 85.6 80.8
Frame 87.1 91.9 89.4

No

Linear
SVM

Overall 85.1 87.6 86.3
Cut 89.4 90.4 89.9

Gradual 73.6 79.5 76.4
Frame 86.9 93.0 89.8

No

None

Overall 83.8 90.5 87.0
Cut 86.2 92.2 89.1

Gradual 77.5 85.8 81.4
Frame 87.4 92.3 89.8

Yes

RBF 2

Overall 82.6 90.9 86.6
Cut 86.1 92.3 89.1

Gradual 73.1 86.9 79.4
Frame 88.9 92.1 90.5

Yes

RBF 1

Among these results we varied the usage of local changes and the
inclusion of an SVM verification stage. The SVM based dissolve
verification boosts the overall performance by 2.5% and gradual
transition performance by 3.4%, a significant improvement when the
initial performance is already high. The frame based gradual transition
performance of all our 10 runs leads the other systems by more than
3.5%, meaning the proposed gradual transition (mainly the dissolves)
boundary location approaches are very accurate. Also, on an Intel
3.7GHz Xeon machine, all of the proposed system runs faster than 0.4x
real time.

Fig. 7. SBD overall performance in TRECVID2006

7. CONCLUSIONS

In this paper, we described a system developed for the shot boundary
determination task in TRECVID 2006. The evaluation results show
that our proposed SBD algorithm is effective and robust enough to
detect several different types of cuts and gradual transitions. We also
demonstrated that with a simple fusion of FSM’s and optional SVM
verification, we achieved very high performance at execution times
faster than real time.

8. REFERENCES

[1] H. J. Zhang, A. Kankanhalli, S. W. Smoliar, “Automatic

Partitioning of Full-motion Video,” ACM Multimedia System,
Vol. 1, No. 1, pp. 10-28, 1993.

[2] B. L. Yeo and B. Liu, “Rapid Scene Analysis on Compressed
Video,” IEEE Transactions on Circuits and Systems for Video
Technologies, 5(6), pp. 533-544, 1995.

[3] B. Shahraray, “Scene Change Detection and Content-based
Sampling of Video Sequences,” in Digital Video Compression:
Algorithms and Technologies 1995, Proc. SPIE 2419, February
1995.

[4] Y. Wang, Z. Liu, and J. Huang, “Multimedia Content Analysis
Using Audio and Visual Information,” IEEE Signal Processing
Magazine, pp.12-36, Nov. 2000.

[5] W. Kraaij, P. Over, A. Smeaton, “TRECVID 2006 - An
Introduction,” TRECVID 2006 Workshop, Gaithersburg, MD,
Nov. 13-14, 2006.

[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Addison Wesley, 1993.

[7] V. N. Vapnik, “Statistical Learning Theory,” John Wiley & Sons,
1998.

[8] D. Gibbon, Z. Liu, and B. Shahraray, “The MIRACLE video
search engine,” IEEE CCNC, Jan. 2006.

[9] Z. Liu, D. Gibbon, E. Zavesky, B. Shahraray, P. Haffner, “AT&T
Research at TRECVID 2006,” TRECVID 2006 Workshop,
Gaithersburg, MD, Nov. 13-14, 2006.

