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Abstract

We present a novel discriminative-generative hybrid ap-
proach in this paper, with emphasis on application in multi-
view object detection. Our method includes a novel gen-
erative model called Random Attributed Relational Graph
(RARG) which is able to capture the structural and appear-
ance characteristics of parts extracted from objects. We de-
velop new variational learning methods to compute the ap-
proximation of the detection likelihood ratio function. The
variaitonal likelihood ratio function can be shown to be a
linear combination of the individual generative classifiers
defined at nodes and edges of the RARG. Such insight in-
spires us to replace the generative classifiers at nodes and
edges with discriminative classifiers, such as support vec-
tor machines, to further improve the detection performance.
Our experiments have shown the robustness of the hybrid
approach – the combined detection method incorporating
the SVM-based discriminative classifiers yields superior de-
tection performances compared to prior works in multi-
view object detection.

1. Introduction

Part-based object detection by learning from example
images have been a popular computer vision research topic
in recent years. Much of the previous research has been
focusing on single view object detection. In contrast, multi-
view object recognition aims at recognizing objects and
learning object models in images under different views.
Multi-view object detection is more challenging as the view
point change could result in the spatial constellation change
of parts, as well as significant changes in part appearances.

This material is based upon work funded in whole by the U.S. Gov-
ernment. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily
reflect the views of the U.S. Government.

Previous approaches for part-based object detection lie
in three categories: generative methods, discriminative
methods and hybrid methods that combine generative and
discriminative approaches.

Generative method assume an object instance is gener-
ated from a statistical model that captures the variations
of object structure and appearance. Object detection is
realized by calculating the likelihood ratio under positive
and negative hypotheses based on the statistical model.
One of the well-known generative models is the constella-
tion model [4][12], which captures the spatial relationship
among the parts by a joint Gaussian density function, and
part appearance by another set of Gaussian density func-
tions. Part correspondence between the object and model
is established before detection or learning using a state-
space search algorithm, known as A-star algorithm. Learn-
ing is realized by a E-M like algorithm by iteratively find-
ing the correspondence and re-estimating the parameters of
Gaussian functions. Another type of generative model is
pictorial structure , which models the relations among parts
locally as pairwise relations. Originally, the pictorial struc-
tural model was used to locate the objects and their parts,
but more recently [2], they have been extended to generic
object detection.

Both the constellation model and the pictorial structure
model were only applied to single view object detection.
For multi-view object detection, an effective object model
should be able to model the occlusion of parts as well as par-
tial relationship among parts resulting from occlusion. Al-
though the constellation model can handle part occlusion, it
models the part relations as a global constellation. Whereas,
pictorial structure has the capability of modeling partial re-
lationship, yet it does not provide the explicit model for
learning the occlusion statistics of individual parts.

While in generative models, learning is conducted in
positive examples and negative examples separately to max-
imize the likelihood, discriminative models directly min-
imizes the relaxed error function, which makes discrim-
inative models often more accurate. The boosting-based



method is an instance of the discriminative models. Vi-
ola and Jones first applied boosting to real-time face detec-
tion [10]. Opelt et al.[1] then extended boosting to generic
mutli-view object detection. In contrast to the generative
models, boosting based methods cannot model the relation-
ship among parts. Despite this limitation, the boosting-
based methods have performed very well in multi-view ob-
ject recognition.

It is not difficult to imagine that combining the genera-
tive and discriminative approaches could complement two
methods. Recently, there have been several attempts to
combine the generative and discriminative approaches. For
instance, Holub and Perona [7] has developed Fisher ker-
nels based on the constellation model. For every input,
Fisher kernel method calculates the Fisher score of the in-
put, and Support vector Machine (SVM) is applied to classi-
fication in the Fisher score space. Fisher kernel method is a
convenient way to construct a valid kernel for SVM. Yet, it
remains unclear whether fisher kernel is an optimal way for
SVM based classification, as the optimal decision bound-
ary in the Fisher score space is not necessarily optimal for
the original object instances. Another path towards gener-
ative and discriminative classification is through boosting,
Bar-Hillel et al. [6] has presented a boosting-based method
based on their own generative model, which, similar to the
constellation model, models part relations as a global distri-
bution function.

In this paper, we first propose a new method for genera-
tive part-based object modeling, called Random Attributed
Relational Graph (RARG or Random ARG). The model is
similar to the pictorial structure model, but with extended
capabilities in modeling graph topological change, part oc-
clusion and unsupervised learning. The modeling of the
topological variation and the node attribute variation make
the model an extension of the traditional random graph [3],
in which only variation of graph topology is modeled. This
is where the term RARG comes from. We will show later
the RARG model captures the advantages of both the con-
stellation model and the pictorial structure model. It accom-
modates part occlusion and models the partial relationship
among object parts. Such unique strength makes it a strong
candidate for multi-view object detection.

Under the RARG framework, object instances and im-
ages are modeled as Attributed Relational Graphs(ARGs).
An image ARG consists of an object ARG generated from
RARG and additional background parts. Object detection
is realized by computing the likelihood ratio of positive
and negative hypotheses under this generative model. We
realize likelihood computation by constructing a Markov
Random Field based on the model RARG and the image
ARG. We then show an important relation between the like-
lihood ratio and the partition functions of the Markov Ran-
dom Fields. By exploiting the log convexity of the partition

functions of MRFs, the logarithm of a partition function can
be approximated using variational methods, avoiding expo-
nential complexity of exhaustive search. The approximated
partition functions can then be used to compute the likeli-
hood ratio needed for object detection.

The variational approximation/representaiton of the like-
lihood function is a linear combination of the likelihood ra-
tio functions defined at the individual vertices and edges of
the RARG. Our key insight is that each individual likeli-
hood ratio function can be thought of as an classifier. Note
for generative models, these likelihood functions are spec-
ified by the part appearance distribution functions, which
are often Guassian density functions. For multi-view object
recognition, the Guassian density or similar single-modal
distributions are often inaccurate. However, we can replace
the individual likelihood ratio functions with more power-
ful discriminative classifiers, for instance Support Vector
Machines, to obtain better performance. In the learning
process, such replacement results in an iterative procedure
of estimating part correspondences and training the dis-
criminative classifiers, similar to the original Expectation-
Maximization process used in generative learning.

We conduct experiments using the Graz data set [1] to
evaluate the performance of the proposed technique and
competing solutions for multi-view object detection. The
performance of our proposed method is notably better than
that of the pure generative approach. It is also better than
the performance achieved by the previous boosting-based
method. These results confirm the capability of our new
generative model of learning informative object model from
training data with unlabeled parts, and the superior perfor-
mance of the incorporated discriminative learning methods.

The paper is organized as follow. In Sec. 2, we intro-
duce the new generative model based on RARG with de-
tails of the learning and detection procedures. In Sec. 3, we
describe the discriminative extension of the proposed gen-
erative model to make it a hybrid approach. In Sec. 4, we
present the experimental results and comparisons with pre-
vious work.

2. Random ARG for Object Recognition

In our system, an object instance or image is represented
as an Attributed Relational Graph [5], formally defined as

Definition 1 An Attributed Relational Graph(ARG) is de-
fined as a triplet O = (V,E, Y ), where V is the vertex set,
E is the edge set, and Y is the attribute set that contains
attribute yu attached to each node nu ∈ V , and attribute
yuv attached to each edge ew = (nu, nv) ∈ E.

For an object instance, a node in the ARG corresponds to
one part in the object. The node attribute yu is a feature
vector consisting of appearance features such as moments,
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Figure 1. A two-step generative model of objects. Nodes and attributes are first sampled from RARG to
form an ARG instance. Then background parts are added to form an image.

colors and spatial features such as spatial coordinates. The
edge attribute yuv may include relational features such as
coordinate difference or neighborhood adjacency.

For an object model, we use a graph-based representa-
tion similar to the ARG but attach random variables to the
nodes and edges of the graph. We call such model as Ran-
dom Attributed Relational Graph

Definition 2 A Random Attributed Relational Graph
(RARG) is defined as a quadruple R = (V,E,A, T ), where
V is the vertex set, E is the edge set, A is a set of random
variables consisting of Ai attached to the node ni ∈ V with
pdf fi(.), and Aij attached to the edge ek = (ni, nj) ∈ E
with pdf fij(.). T is a set of binary random variables, with
Ti attached to each node (modeling the presense/absence of
nodes).

fi(.) is used to capture the statistics of part appearances.
fij(.) is used to capture the statistics of part relational fea-
tures. Ti is used to handle part occlusion. ri = p(Ti = 1)
is referred to as the occurrence probability of part i in the
object model.

An ARG hence can be considered as an instance gen-
erated from RARG by two steps: first draw samples from
{Ti} to determine the topology of the ARG, then draw sam-
ples fromAi andAij to obtain the attributes of the ARG and
thus the appearance of the object instance.

2.1 Bayesian Classification under Ran-
dom ARG Framework

We follow the previous work to formulate the object de-
tection problem as a binary classification problem with two
hypotheses: H = 1 indicates that the image contains the
target object (e.g. bike), H = 0 otherwise. Let O denote
the ARG representation of the input image. Object detec-
tion problem therefore is reduced to the likelihood ratio test.
An instance of object is said to be detected if

p(O|H = 1)

p(O|H = 0)
>
p(H = 0)

p(H = 1)
= λ (1)

Where λ can be empirically set to adjust the precision and
recall performance. The main problem now is thus to com-
pute the positive likelihood p(O|H = 1) and the negative
likelihood p(O|H = 0). p(O|H = 0) is the likelihood
assuming the image is a background image without the tar-
get object. Due to the diversity of the background images,
we adopt a simple decomposable i.i.d. model for the back-
ground parts. We factorize the negative likelihood as

p(O|H = 0) =
∏

u

p(yu|H = 0)
∏

uv

p(yuv|H = 0)

=
∏

u

f−B1
(yu)

∏

uv

f−B2
(yuv) (2)

where f−B1
(·) and f−B2

(·) are pdf s modeling the statistics of
the appearance and relations of the parts in the background
images, referred to as background pdf s. The minus super-
script indicates that the parameters of the pdf s are learned
from the negative data set. To compute the positive likeli-
hood p(O|H = 1), we assume that an image is generated
by the following generative process (Figure 1): an ARG is
first generated from the RARG, additional patches, whose
attributes are sampled from the background pdfs, are inde-
pendently added to form the final part-based representation
O of the image. In order to compute the positive likelihood,
we further introduce a variable X to denote the correspon-
dences between parts in the ARG O and parts in the RARG
R. Treating the correspondence X as a hidden variable, we
have

p(O|H = 1) =
�

X

p(O|X,H = 1)p(X|H = 1) (3)

Where the correspondence X can be represented in differ-
ent manner. In the previous papers [4][7], X is represented
as a integer-valued vector, in which the value of compo-
nent is the index of the object part. However, X can be
also represented as a binary matrix, with xiu = 1 if the
part i in the object model corresponds to the part u in the
image, xiu = 0 otherwise. If we assign each xiu a node,
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Figure 2. ARG, RARG and the Association Graph.

then these nodes form an Association Graph as shown in
Figure 2. The Association Graph can be used to define
an undirected graphical model (Markov Random Field) for
computing the positive likelihood in Eq. (3). In the rest
of the paper, iu therefore is used to denote the index of
the nodes in the Association Graph. Compared with the
integer-valued representation, binary representation allows
more choices of inference algorithms, for instance Belief
Optimization algorithms[11][13]. Furthermore, if the size
of ARG is large, binary representation allows us to eas-
ily prune the MRF by discarding vertices in the association
graph that correspond to pairs of dissimilar parts so that the
inferencing process can be made faster.

2.2 Design MRF by RARG parameters

The factorization in Eq. (3) requires computing two
components p(X|H = 1) and p(O|X,H = 1). These two
terms shall be designed according to the parameters of the
RARG.

First, p(X|H = 1), the prior probability of the corre-
spondence, is designed in a way that a part in the object
can only match at most one part in the model, vice versa.
Furthermore, p(X|H = 1) is also used to encode the oc-
currence probability ri. To achieve these, p(X|H = 1)
is designed as a binary pairwise MRF with the following
Gibbs distribution

p(X|H = 1) =
1

Z

�

iu,jv

ψiu,jv(xiu, xjv)
�

iu

φiu(xiu) (4)

Where Z is the normalization constant, a.k.a the partition
function. ψiu,jv(xiu, xjv) is the two-node potential func-
tion defined as

ψiu,jv(1, 1) = ε, for i = j or u = v;
ψiu,jv(xiu, xjv) = 1, otherwise (5)

where ε is set to 0 or a small positive number. Therefore, if
the part correspondences violate the one-to-one constraint,
the prior probability would be zero (or near zero). φiu(xiu)
is the one-node potential function. Adjusting φiu(xiu) af-
fects the distribution p(X|H = 1), therefore it is related to

the occurrence probability ri. Each potential φiu(.) defined
at vertex iu in the association graph has two parameters
φiu(1) and φiu(0). Yet, it is not difficult to show that dif-
ferent φiu(1) and φiu(0) with the same ratio φiu(1)/φiu(0)
would result in the same distribution p(X|H = 1) (but dif-
ferent partition function Z). Therefore, we can let φiu(0) =
1 and φiu(0) = zi. zi is independent of u, as we treat every
image node that possibly matches the model part i equally.

Second, we need to derive the conditional density
p(O|X,H = 1). Assuming that yu and yuv are indepen-
dent given the correspondence, we have

p(O|X,H = 1) =
∏

uv

p(yuv|X,H = 1)
∏

u

p(yu|X,H = 1)

Furthermore, yu and yuv should only depends on the RARG
nodes that are matched to image parts u and v. Thus

p(yu|x11 = 0, ..., xiu = 1, ...,H = 1) = fi(yu)
p(yuv|x11 = 0, ..., xiu = 1, xjv = 1, ...,H = 1) = fij(yuv)

Also, if there is no node in the RARG matched to u and v,
this means image parts u and v are extra parts coming from
the background. Then yu,yuv should be sampled from the
background pdfs, i.e.

p(yu|x11 = 0, xiu = 0, ..., xNM = 0,H = 1) = f+
B1

(yu)

p(yuv|x11 = 0, xiu = 0, ..., xNM = 0,H = 1) = f+
B2

(yuv)

where f+
B1

(·) and f+
B2

(·) is the background pdf trained from
the positive data set. Note that here we use two sets of back-
ground pdfs to capture the difference of the background
statistics in the positive data set and that in the negative
data set. Such distinction is reasonable as a specific class
of objects often occur more frequently in certain types of
backgrounds, rather than completely random backgrounds.
These two distributions can be set to be equal, if we assume
the background statistics of the positive and negative sets
are the same.

Combining all these elements together, we can prove
(proof in [15]) the following relationship between the de-
tection likelihood ratio and the partition function.

Theorem 1 The likelihood ratio is related to the partition
functions of MRFs as the following

p(O|H = 1)

p(O|H = 0)
= σ

Z′

Z
(6)

where Z is the partition function of the Gibbs distribution
p(X|H = 1). Z ′ is the partition function of the Gibbs dis-
tribution of a new MRF, which happens to be the posterior
probability of correspondence p(X|O,H = 1), with the
following form

p(X|O,H = 1) =
1

Z′
�

iu,jv

ςiu,jv(xiu, xjv)
�

iu

ηiu(xiu) (7)



where the one-node and two-node potential functions have
the following forms

ηiu(1) = zi
fi(yu)

f+
B1

(yu)
; ςiu,jv(1, 1) = ψiu,jv(1, 1)

fij(yuv)

f+
B2

(yuv)
(8)

As shown above, the potential functions depend on the ap-
pearance features of the nodes and relational features of the
edges. All other values of the potential functions are set to
1 (e.g. ηiu(xiu = 0) = 1). σ is a correction term

σ =
∏

u

f+
B1

(yu)/f−B1
(yu)

∏

uv

f+
B2

(yuv)/f−B2
(yuv)

2.3 Computing the Partition Functions

Theorem 1 reduces the likelihood ratio calculation to the
computation of the partition functions.

The partition function of the prior correspondence dis-
tribution Z can be computed by closed form in polynomial
time or using the following upper bound approximation (see
proof in [15])

Lemma 1 The log partition function satisfies the following
inequality

lnZ≤
N∑

i=1

ln(1 +Mzi)

and the equality holds when N/M tends to zero (N and M
are the numbers of parts in the object model and image
respectively). Is the MRF is pruned, the upper bound is
changed to

lnZ≤
N∑

i=1

ln(1 + dizi)

where di is the number of the nodes in the ARG that are
allowed to match to the node i in the RARG after pruning
the Association Graph.

The challenge is to compute the partition functionZ ′, which
is a summation over all correspondences, whose number is
exponential in MN .

There are several ways to approximate Z ′. The simplest
method is using Viterbi approximation, which first finds the
most likely correspondence, then calculating the partition
function by using the obtained maximum likelihood corre-
spondence and discarding all other correspondence. This
approximation may not be accurate as it does not consider
alternative part correspondences. A more accurate approach
is using variational approximation. Because the log parti-
tion function of a MRF is convex, the convex duality prop-
erty [11] can be used to represent the log partition function
as a variational form. Equivalently, Jensen’s inequality can

be applied to find the lower bound of the partition function
for approximation as the following

lnZ ′ ≥
∑

(iu,jv)

q̂(xiu, xjv) ln ςiu,jv(xiu, xjv)

+
∑

(iu)

q̂(xiu) ln ηiu(xiu) + H(q̂(X)) (9)

Where q̂(xiu) and q̂(xiu, xjv) are known as one-node and
two-node beliefs, which are the approximated marginal of
the Gibbs distribution p(X|O,H = 1). H(q̂(X)) is the ap-
proximated entropy, which can be approximated by Bethe
approximation[14]. Calculating beliefs, known as proba-
bilistic inference, can be realized by different methods. We
have used two methods to perform inference : Gibbs sam-
pling scheme and Loopy Belief Propagation (LBP). It turns
out that the LBP algorithm only works when the part rela-
tions are not taken into account. And LBP usually does not
converge. To solve this problem, we have developed a spe-
cial LBP convergence scheme. Consequently, LBP based
method yields quite good performance, as reported in our
previous technical report. Gibbs sampling scheme can be
also used in the viterbi search. It turns out that a very small
number of samples already yields very good performance.
More accurate methods, such as semideiminite relaxation,
can also be applied, but their computational cost is too high
in our application.

2.4 Learning Random Attributed Rela-
tional Graph

In the generative model, Gaussian density functions
are used for all random numbers defined at the RARG
and the background model. Therefore, the Gaussian pa-
rameters for the vertex i and edge ij in the RARG
and the background need to be learned, including
µi,Σi,µij ,Σij ;µ+

B1
,Σ+

B1
,µ+

B2
,Σ+

B2
;µ−

B1
,Σ−

B1
,µ−

B2
,Σ−

B2
. and

zi.
Learning the RARG can be realized by Maximum

Likelihood Estimation (MLE). Directly maximizing the
positive likelihood with respect to the parameters is
intractable, instead we can maximize the lower bound
of the positive likelihood through Jensen’s inequality
lower bound, resulting in a scheme known as variational
Expectation-Maximization (Variational E-M).

Variational E-Step: Perform inference or Gibbs sam-
pling search to obtain the one-node and two-node beliefs.

M-Step: Maximize the overall log-likelihood with re-
spect to the parameters, which results in a set of parameter
update equations (see [15] for detailed equations).

For the background Gaussian function parameters
µ−

B1
,Σ−

B1
,µ−

B2
,Σ−

B2
, the maximum likelihood estimation re-



sults in the sample mean and covariance matrix of the part
attributes and relations of the images in the negative data
set.

Besides the Gaussian function parameters, we also need
to learn the parameter zi, which is related to the occurrence
probability ri and required by the computation of Eq.(8).
However, it turns out that directly learning zi is difficult.
Instead, we can learn ri first and then convert ri back to zi.
Learning ri requires the following lemma (proof in [15])

Lemma 2 ri and zi is related by the following equation:

ri = zi
∂lnZ
∂zi

where Z is the partition function defined in Eq. (4).

The occurrence probability then can be learned using the
following simple equation

ri =
1

K

�

k

�

u

q̂(xk
iu = 1) (10)

Where K is the number of the positive training data. Com-
bining lemma 1 and lemma 2, we can convert ri back to zi

using the following equation zi = ri/((1 − ri)M) (for the
complete MRF, likewise for the pruned MRF).

2.5 Spanning Tree Approximation for
Spatial Relational Features

Our approaches described so far assume the RARG is
fully-connected and the parts and edges are independent.
However, this assumption may not be valid in some cases.
For example, if the relational feature yij represents coordi-
nate difference. the relational features among three nodes
(y12, y23, and y31) are mutually dependent. For graphs
with dependent features, the factorization process men-
tioned above for deriving the likelihood function needs to
be modified. For this, we adopt a pruned tree represen-
tation in the E step of the inferencing process, while still
keeping the full graph in the M step. We prune the fully-
connected RARG to a tree by a spanning tree approximation
algorithm, which discards the edges whose variations of the
coordinate differences are high. This results in a modified
variational E-M scheme, which ensures the independence
assumption is correct. Note the above method is not equiv-
alent to a tree-based model, since a fully-connected graph is
still used in the M step and the discarded edges are dynam-
ically selected in each iteration.

3 Discriminative Learning and Classification

Under the generative learning frame work, the positive
and negative hypotheses are learned separately by max-
imum likelihood estimation. If the probabilistic density

functions of the positive and negative hypotheses are pre-
cise, then the classification based on likelihood ratio is opti-
mum according to the Bayesian classification theory. How-
ever, for multi-view object detection, modeling the distrib-
utions of part appearances as Gaussian functions are inac-
curate due to large variations. Therefore, the performance
of the generative classification often degrades if data distri-
bution is complex. In contrast, discriminative methods di-
rectly maximize the classification errors, thus often yielding
superior performance against generative methods.

Motivated by the above, we further explore a key insight
about the inferencing processing of RARG in order to en-
hance its robustness over multi-view objects. The insight
reveals that the variational approximation (in Eq.(9) or the
Viterbi approximation of the detection likelihood ratio can
actually be considered as a linear aggregation of the individ-
ual classifiers defined on nodes and edges in the RARG. The
classifier at node ni in the generative model is the log likeli-
hood ratio function ln ηiu(xiu) and the classifier at edge eij

is the log likelihood ratio function ln ςiu,jv . In the genera-
tive classifiers, these likelihood ratio functions are specified
by the Gaussian distributions. In order to increase the dis-
criminative power, we can replace the log likelihood ratio
functions with discriminative classifiers, such as SVMs, re-
sulting in a generative and discriminative hybrid method.
The new classifier can be written as

C(O) =
∑

(iu,jv)

q̂(xiu, xjv)Cij(yuv) +
∑

(iu)

q̂(xiu)Ci(yu)

where Ci is the discriminative classifier at node ni, and
Cij is the discriminative classifier at edge eij . q̂(xiu and
q̂(xiu) are beliefs computed from the MRF. And Ci and
Cij are related to the earlier potential functions by ηiu(1) =
exp(Ci(yu)) and ςiu,jv(1, 1) = exp(Cij(yuv)).

The learning process now consists of two passes: gen-
erative learning initialization and discriminative learning.
Generative initialization, similar to the learning process
described in Sec 2.4, is intended to roughly discover the
structure of the object model, and learn an approximate
part appearance and relation distribution. The learned
generative models are used to find the probabilities of the
initial part correspondences, with which the discriminative
learning step is conducted by using a new E-M procedure:

Variational E-Step: Perform inference or Gibbs sam-
pling search (Viterbi approximation) to obtain q̂(xiu) and
q̂(xiu).

M-Step: Perform discriminative learning of each
individual classifiers to minimize the classification error.

In the M-step, for vertex i of the RARG model, the parts
in the positive images that are matched to i (in the case
of viterbi approximation) and all parts from the negative



Figure 3. Examples of object images in Graz02
data set

Figure 4. Part detection examples using salient
region detector

images are used for training. If variational approximation
is used, then positive parts are sampled according to the
matching probabilities computed from inference. Some-
times, the negative data set may be large, resulting in high
computational cost. In that case, a sampling process (cur-
rently uniform) is used to obtain a smaller subset of the neg-
ative samples.

4 Experiments

In the experiments, we compare the performance of our
method with the generative methods and previous methods
for multi-view object detection. We use the Graz data Set
[1] which contains images of objects under different views
with large variations in scale, orientation, color and shape.
Graz data set consists of two data sets: Graz01 and Graz02.
Graz01 data set contains two object classes, “bike” and
“person”, and one background class. Graz02 data set con-
tains three object classes, “car”, “bike” and “person”, and
one background class. Objects in the Graz02 data set have
more variations in scale and spatial position. Graz data sets
have been used for evaluating object detection in [1] and
[7]. Figure 3 shows some sample images from the Graz02
data set.

We use Kadir’s Salient Region Detector [9] with the
same parameters across all classes to extract object parts
in the images . Such detector has been successfully used
in other object detection work, such as [4]. The maximum

Grz01 Gen Hyb std

Car 76.5 77.3 1.4
Person 68.7 71.8 0.8

Grz02 Gen Hyb std

Car 71.0 72.8 1.1
Bike 74.7 76.7 1.3
Person 74.8 79.8 1.4

Table 1. Performance comparison between the
generative and hybrid approaches (std: standard
deviation of the performance of the hybrid ap-
proach)

number of parts in each image is restricted to 100 in order to
control the computational cost. Each data set for a class is
randomly partitioned with equal size into training and test-
ing sets. Each test set is further randomly partitioned into
two equal subsets for conducting two-fold cross validation.
Namely, one sub set is used for tuning parameters, includ-
ing the size of the RARG and the SVM RBF kernel width,
while the other is used for the final testing. The averaged
Equal Error Rate (EER) [4][1] then is computed. To test the
sensitivity of the performance to the training data selection,
we repeat the above process four times, and compute the
mean value and standard deviation of EER. For SVM, we
use an implementation known as OSU-SVM [8], by which
we need to tune the parameter λ , which is related to the
kernel width of the RBF kernel. The generative learning
process normally converges in 15 to 20 iterations, which
is significantly smaller than that of the method used in [4].
The E-M iterations in the discriminative learning normally
converges in 8 to 12 steps.

Features extracted from image parts include regular
color moments (ten components), size (output from region
detector), and spatial coordinates. Relational features in-
clude spatial coordinate differences. In our experiments,
we have found that the color moments slightly outperform
PCA coefficients features used in [4].

Choosing the size of the RARG (number of nodes) re-
mains a challenging problem. Currently, we use an exhaus-
tive search method to find the optimal choice among some
discrete choices (5, 10, 15) by comparing the performance
over the validation data set. It turns out that in most cases,
RARGs with 15 nodes yield the best results, while a size
larger than 15 nodes actually does not yield better perfor-
mance.

We compare the performance difference between the hy-
brid method and the pure generative method (Table 1). The
standard deviation of the performance is also shown to as-
sess the significance of the performance gain. In the case of
the generative method, the likelihood ratio in Eq.(1) is used
for classification. In some separate experiments reported
in [15], we have found our RARG-based generative model
achieves about the same accuracy as that using the well-
known constellation model. As shown in Table 1, the per-
formance of the new discriminative-generative hybrid ap-



Graz01 boosting ours

Bike 76.5 77.3
Person 68.7 71.8

Graz02 boosting ours

Car 70.2 72.8
Bike 76.5 76.7
Person 77.2 79.8

Table 2. Performance comparison of boosting[1]
and our method.

proach is consistently better than the generative method.
The improvement is particularly significant for the ”person”
class.

Finally, we compare the performance of our hybrid
method with that by the boosting-based method reported in
[1]. In [1], the experiments are conducted under different
settings using different features. We compare our method
with one of their settings with the most similar features.
For Graz01, we compare with their system using moment
invariant features (Basic moments were not used in their
experiments. And for Graz02, we compare with their sys-
tem using basic moments. Other more sophisticated fea-
tures such as SIFT features are also used in [1]. However,
their advantages in detection performance are not consistent
across different data sets.

The above table shows that our approach outperforms the
prior work consistently across all classes. The improvement
is significant for classes like ”car”, but minor for classes like
”bike”. This may be because it is difficult to capture the
structure of the ”bike” object, as many bike images in the
training set include just bike wheels instead of full bike.

Previous work using discriminative and generative learn-
ing with Fisher kernel [7] has reported their results in
Graz01 data set. Their performance in Graz02, which is
more difficult, is nevertheless unavailable. Directly compar-
ing our experiments with [7] may be incomplete. Here, we
list the performance of our system and theirs (single model
with 3-part) in Graz01 as a reference

Graz01 boosting [1] Fisher [7] ours

Bike 76.5 76.4 77.3
Person 68.7 74.9 71.8

Table 3. Performance comparison using Graz01
data set

5 Conclusion

We have presented a new generative-discriminative
model for multi-view object detection. We develop a rig-
orous generative component based on Random Attributed
Relational Graph and derive the fundamental relations be-
tween MRF partition functions and likelihood ratio func-
tions for learning and detection. The model is effective and

intuitive - it automatically learns the structure and appear-
ance variations of an object class in an unsupervised man-
ner. We then incorporate a discriminative learning scheme
into the generative framework. Our experiments have con-
firmed the power of the generative model and the robustness
of the hybrid approach in object detection, outperforming
the pure generative approaches as well as previous work.
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