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ABSTRACT

Pattern mining algorithms are often much easier applied than quan-
titatively assessed. In this paper we address the pattern evaluation
problem by looking at both the capability of models and the diffi-
culty of target concepts. We use four different data mining models:
frequent itemset mining, k-means clustering, hidden Markov model,
and hierarchical hidden Markov model to mine 39 concept streams
from the a 137-video broadcast news collection from TRECVID-
2005. We hypothesize that the discovered patterns can reveal seman-
tics beyond the input space, and thus evaluate the patterns against
a much larger concept space containing 192 concepts defined by
LSCOM. Results show that HHMM has the best average prediction
among all models, however different models seem to excel in dif-
ferent concepts depending on the concept prior and the ontological
relationship. Results also show that the majority of the target con-
cepts are better predicted with temporal or combination hypotheses,
and there are novel concepts found that are not part of the original
lexicon. This paper presents the first effort on temporal pattern min-
ing in the large concept space. There are many promising directions
to use concept mining to help construct better concept detectors or
to guide the design of multimedia ontology.

1. INTRODUCTION

In this paper we investigate the effective mining and evaluation of
pattern mining in large collections of video streams. Important as
pattern mining problems are generally regarded, it is much easier to
apply data mining algorithms to the collections at hand than to assess
the quality and utility of the patterns. i.e., whether the mining results
are meaningful and useful. With the recent development of large-
scale multimedia concept base and ontology, we can now address
the following questions: (1) How useful is algorithm X for mining
patterns in video? (2) How well can visual concepts be expressed as
combinations of other elementary concepts? (3) How shall we effec-
tively make use of the models to discover useful and novel patterns?
Once we have answers to these questions, we will be in a better posi-
tion to assess the computational feasibility of a multimedia ontology.
These results can be used to guide the design of learning algorithms
for each concept, and we will also have a rich set of patterns at our
disposal for browsing and discovery for novel structures in the data.

Our work closely connects to two research themes: develop-
ment in the definition and detection of visual concepts, and mod-
els for data mining. Finding visual concepts has been an important
problem for computer vision and multimedia community. The re-
cent development of defining and detecting the concepts is marked
by large-scale annual benchmark [1] and efforts devoted to defining
an ontology [2]. Research in multimedia indexing and search has
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shown that visual concept can improve, among others, search per-
formances [3, 4] or news story tracking [5]. In data mining, plenty
of work has been devoted to fast algorithms for finding feature co-
occurrences [6], which provide the basis for finding high-confidence
causal relationships in the database. However setting a minimum
support threshold will exclude the mining of rare and often infor-
mative patterns, and the resulting set of co-occurrence rules grows
dramatically as the support threshold lowers. Statistical unsuper-
vised models, such as the K-means clustering, mixture model, and
dynamic Bayesian networks on the other hand, offers models of con-
trollable complexity that fit the shape of the data automatically.

We investigate effective pattern mining strategies in video streams.
We apply different pattern mining models (deterministic and statis-
tic; static and temporal) and devise pattern combination strategies
for generating a rich set of pattern hypothesis. We also generate
explanations of the statistical patterns in terms of the likelihood of
each input feature. We feed the input streams containing 39 visual
concept labels [7] to models for unsupervised mining, and evalu-
ate the resulting patterns with an extended ground truth of 192 tar-
get concepts [2]. These data come from the Large Scale Concept
Ontology for Multimedia (LSCOM) challenge workshop, they pro-
vide a valuable basis for assessing the mining strategies in video. In
our experiments, more than one-third of the target concepts can be
predicted withF1 > 0.25 from the elementary observed concepts.
Among all 192 target concepts, 86 are best predicted by hierarchical
hidden Markov model (HHMM), while 56 and 43 are from frequent
itemset mining and K-means, respectively. On average, hierarchical
temporal models (hierachical HMM) has showed superior detection
performance on a comparable size of rule set while frequent item-
set and K-means tend to detect very frequent or very rare concepts
well. In addition, HHMM is capable of capturing transition patterns
that correspond to the style of video production or story structuring.
This paper presents the first effort on temporal pattern mining in the
large concept space, where previous work mostly focus on spatial
clustering [5], or on low-level feature streams [8].

In the rest of this paper, we will introduce various models for
video mining, followed by discussions on the data sets and the ex-
periments.

2. VIDEO MINING
Pattern mining in video concerns with two subproblems: how to ab-
stract from raw video data a set of nominal or numeric attributes,
and how to abstract the collection of attributes into perceptually or
structurally salient patterns. In this work we focus on the latter, i.e.,
finding effective unsupervised learning techniques for video. Our
mining framework includes an implicit feature selection process by
first incorporating all available features and then use unsupervised
feature grouping to discover useful feature subsets. There are two
categories of mining algorithms: (1) Deterministic algorithms, such
as frequent itemsets, seen in traditional data mining scenarios (Fre-
qItemfor short); (2) Statistical clustering techniques, which in turn
include static models such as K-means or mixture models that tries
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Fig. 1. Models for statistical clustering.

to independently assign cluster labels to each datum, and temporal
models such as dynamic Bayesian network that takes into account
not only point-wise similarities but also adjacent samples in time.

We now define notations for describing the models and the pat-
tern hypotheses they can induce. We will then introduce four models
in the two categories, as well as how enriched pattern hypotheses can
be generated by combinations of the clusters.

Let each videov in collectionV contain a series of time-stamped
shots{s1, . . . , sT }. Assume each shot contains a set of nominal con-
cepts (assume binary for convenience, can be trivially generalized to
multi-nominal attributes), such as the presence/absence ofpeople,
face, building, car, etc. Let this set of concepts bec = 1, . . . , C,
features in a shotst is then written asxt = [x1

t , . . . , x
C
t ]
′
, where

xc
t = 0 means the absence of conceptsc in shot t, andxc

t = 1
signals its presence.

2.1. Mining frequent co-occurrences
Frequent itemset mining aims to find item-tuples up to sizeC that
appear in a collection oftransactionswith occurrence frequencies
higher than a minimum support thresholdSmin. It is believed that
frequent tuples will provide the basis for finding high-confidence
causal relationships among the items. In the video mining case, each
shot can be treated as atransactions, and this approach can find the
most co-occurred concept tuples of any cardinality in the collection.

There are2C possible tuples in a database, making it impossible
to generate and test all of them even for moderateC. There are, how-
ever, topological relationships between the deterministic frequent
sets and its subsets so that the search space can be reduced. Closed
itemset mining [6] is a fast algorithm for generating non-redundant
itemsets (e.g., no superset of these sets have the same support).

We use the IlliMine [9] package to generate the collection of
frequent item setsΓ for all concepts in each shot, i.e.,Γ = {γi ⊂
C, ∀i}. Each itemsetγi corresponds to a labelingy1:T (i) of the
video sequence, whereyt(i)=1 if xc

t = 1, ∀c ∈ γi. In addition
to the itemsets in the same shot, we also generate itemsets across
adjacent shots by using[xt, xt−1] as the input to the mining algo-
rithm. The result will be aMarkov frequent itemsetΓ+ = {γ+

i =
γ+

i ∪ γ+
i,−1, γ+

i , γ+
i,−1 ⊂ C, ∀i}. The labelsyt(i)=1 if xc

t = 1,
∀c ∈ γ+

i andxc
t−1 = 1, ∀c ∈ γ+

i,−1.
Frequent itemset mining results in a complete and determinis-

tic list of item tuples seen more thanSmin times in the collection.
These frequent itemsets can reveal interesting relationships among
items. In our video mining results for example, the best predictor for
armed-personis an itemset containingmilitary andoutdoors, and the
best predictor forhighwayis car in the last shot along withoutdoors,
road andskyin the current shot. Albeit being complete, the number
of valid tuples often grows drastically as we lower the minimum sup-
port threshold, making it hard to identify interesting patterns with
modest support.

2.2. Statistical mining from concept streams
The three types of statistical clustering method considered are shown
in Fig. 1, where the state-space of these models are numbered 1,

. . . , K. We choose these models for the experiments because (1)
they have efficient learning algorithms that scales linearly with the
number of data points, (2) they encode an increasingly rich set of
data correlations, i.e., from independence to temporal dependence
to multi-level temporal dependence. These additional dependencies
are useful in improving the detection of concepts, as shown in the
examples in the previous subsection.

2.2.1. K-means clustering
K-means clustering maps the set of shots{x1, . . . , xT } into K clus-
ters by minimizing within cluster variation relative to between-cluster
variation. When the input contains nominal concepts, we minimize
Hamming distance in concept vector clusters by iteratively comput-
ing the distances between each data point and the cluster centroid
and assigning points into clusters. The inference in K-means is simi-
lar to the expectation-maximization algorithm for the mixture model
except that in each iteration the sufficient statistics are taken from
hard cluster assignments.

2.2.2. HMM and hierarchical HMM
Since shots in video come as a continuous program stream, we would
naturally like to take into account the temporal context by using the
adjacent shots to influence the cluster label of the current shot. Hid-
den Markov model [10] is such a model that encode the dependence
between adjacent cluster labels. Hierachical HMM (HHMM) is a
generalization of HMM with hierarchical control structure in the hid-
den states. This two-level dependency in an HHMM allows longer
events in video to have within-event variations and transitions.

The size of the state-space in these temporal models represents
the number of interesting structures in the data, and it is often desir-
able to determine the size automatically rather than manually supply
a fixed value. We use stochastic search in the state-space to find
the optimal model configuration, where the search strategy is gen-
erated with reverse-jump Markov chain Monte Carlo (MCMC), and
the trade-off criteria between data likelihood and model complexity
is based on the minimum description length (MDL) principle. De-
tails of this approach are in our prior work [8].

2.2.3. Concept subset selection
When the number of input features/concepts is large, it is likely
that not all of the concepts follow the same clustering distribution
or the same evolution dynamics. Hence it is desirable to partition
them into mutually consistent subsets that provide differentviewsof
the same dataset. Extending from the feature selection techniques
for supervised learning, and using the mutual information criteria
as the similarity measure among the feature dimensions, we cluster
the original feature setC into M mutually exclusive feature subsets
C1, . . . , CM , where∪M

m=1{Cm} = C. For each feature subset, we
learn a HMM/HHMM model with an optimized model structure. A
complete description of this approach can be found in [8].

2.2.4. Sequence labeling and hypothesis generation
The clustering algorithm in any of the types above will yield a model
ϕ on one feature subset, with which we can assign each in the origi-
nal sequence to one of theK mutually exclusive statistical temporal
clusters. Furthermore, we can explore the temporal progression of
the patterns as well as the differentviewsreflected in different feature
sets to generate composite hypotheses that may correlate with com-
plex concepts in the domain. The three types of pattern hypotheses
are summarized as follows:

1. Original cluster labels. These are the result of applying the
cluster modelϕ to the original feature sequencex1:C

1:T . i.e.,
ϕ(x1:C

1:T ) = y1:T , sequencey can be either the cluster la-
bels in K-means, or the maximum-likelihood state sequence



in HMM or HHMM. We can also represent each cluster la-
bel with a binary vectoryt = [yt(1), . . . , yt(K)]

′
, yt(k) ∈

{0, 1}, and∀k = 1, . . . , K, t = 1, . . . , T ,
P

k yt(k) = 1.

2. Temporal composition. We intersect the label sequences across
adjacent shots in order to see if the transition statistics in the
models indeed capture meaningful progressions in the video
sequence. The temporal intersection is defined as follows:
yt−1,t(k1, k2) = 1 if yt−1(k1) = 1 andyt(k2) = 1.

3. Combining different models. For modelsϕm1, ϕm2 learned
over two different feature subsetsm1 and m2, the combi-
nation labely(m1,m2)

t (k1, k2) = 1 if ym1
t (k1) = 1 and

ym2
t (k2) = 1. Note that the combination among states in the

same model is not computed because they may prefer contra-
dictory descriptions on the same input feature set, e.g., (peo-
ple, NOT-crowd) and (crowd, parade).

LetΓ be the set of pattern hypotheses and|Γ| be the total number
of the resulting pattern hypotheses.|Γ| is normallyO(M2K2) for
M feature partitions each withK distinct clusters.

3. THE VIDEO CONCEPT DATASET
The bottleneck for adequate evaluation of pattern mining algorithms
is the difficulty in obtaining large amounts of ground truth. The
evaluations in this work is made possible by the ARDA sponsored
LSCOM workshop [2] for developing an expanded multimedia con-
cept lexicon on the order of 1000.

This large set of concepts are defined and annotated on thedevel-
opmentpart of the TRECVID-2005 [1] video collection. It contains
137 programs (∼80 hours) from three English, two Chinese, and one
Arabic channels with a seventeen-day time span from October 30 to
November 15, 2005. NIST provided automatically extracted shot
boundaries [11] with representative keyframes.

In LSCOM, concepts related to events, objects, locations, peo-
ple, and programs have been selected following a multi-step process
involving input solicitation, expert critiquing, comparison with re-
lated ontologies, and performance evaluation. Participants of the
process include representatives from intelligence community users,
ontology specialists, and researchers on multimedia analytics. In ad-
dition, each concept has been qualitatively assessed according to a
set of criteria such as utility (usefulness), observability (by humans),
and feasibility (by automatic detection).

The annotation efforts in LSCOM is completed in two stages.
The first pilot stage named LSCOM-Lite [7] contains 39 concepts
obtained by analyzing BBC and TRECVID queries and ensuring that
they cover the essential semantic dimensions of news, such aspeo-
ple, activities, sites, objects, etc.A collaborative annotation effort
was completed in June 2005 to produce concept labels, in the form of
the presence or absence of each concept in each key frame, over the
TRECVID 2005 development set. Ten of the LSCOM-Lite concepts
have been chosen for evaluation in TRECVID 2005 high-level fea-
ture detection task [1]. The second stage produces the first version of
full LSCOM annotations [2] consisting of 449 unique concepts out
of the 834 originally selected, including the 39 LSCOM-Lite con-
cepts. An annotation process similar to that for LSCOM-Lite was
completed in late 2005 by student annotators at Columbia Univer-
sity and CMU.

We use the LSCOM-Lite concept labels as the pattern mining in-
put, and a 192-concept subset of LSCOM as our evalulation groundtruth
(excluding concepts with no positive examples and those overlap-
ping with LSCOM-Lite). The purpose of this evaluation strategy is
to see if patterns discovered from a small set of essential concepts be
accurately capture any semantic concept in a much larger space.

4. EXPERIMENTS

We compute each of the four models introduced in Section 2 with
different parameter configurations. Figure 2(a) contains a summary
of statistics of all the models. The model parameters include the
minimum support thresholdSmin, the cluster sizeK, and the num-
ber of feature partitionsM where applicable. Additional settings
include the use of concepts in the previous shot inFreqItem, denoted
with ”(-1)”, and the use of multiple model sets in the statistical mod-
els, denoted with ”x3” (see the next subsection). We prune empty
and singleton hypotheses (with support zero and one, respectively)
from the evaluation, since these degenerate cases will not be reason-
able predictors. We record the average number of statesK̄ (varying
due to model selection) and the average number of pattern hypoth-
esis ¯|Γ| (varying due to model selection and hypotheses pruning) as
an indicator of the model complexity and the computational load for
evaluating the patterns.

We use 39 LSCOM-Lite concepts as input, 192 LSCOM con-
cepts as targets, and test how capable each clustering technique is
in predicting the target concepts. For a pattern sequencey1:T and a
groundtruth sequencez1:T , yt, zt ∈ {0, 1}, we use theF1 measure
derived from precisionP and recallR, as its value is often regarded
as less biased than precision or recall alone:

P =

P
t(ytzt)P
t(yt)

, R =

P
t(ytzt)P
t(zt)

; F1 =
2P ·R
P + R

.

We take the maximumF1 among all candidate patterns in one model
(as the majority of the patterns will be a poor predictor for a given
target concept), we then average theF1 over all the concepts. Ex-
ceptFreqItemwhich generates deterministic results, we simulate five
independent runs for each parameter setting in each model and com-
pute the mean and standard deviation of the average F1.

4.1. Predicting concepts and topics
We examine the best predictor for each of the 192 concepts across
all runs and all models. HHMM has 86 top-detectors, while HMM,
K-means and Freq-item has 12, 56, 43, respectively (as shown in
Fig. 2(a), #{best predictior} column). We compute the average
prior of concepts best predicted by each model (shown in parenthe-
sis). It is obvious that Frequent itemsets tend to perform well in pre-
dicting frequent concepts (such asfemale/male person, adult) espe-
cially if there are input concepts closely related to the target concept.
Such results are quite reasonable – since FreqItem chooses concept
groups with high co-occurrence frequency, which in turn naturally
has a high likelihood of matching frequent target concepts. In con-
trast, HHMM and Kmeans are adapt to be capture rare concepts well,
such as gymnastics, skiing, jail, all withF1 > 0.8.

Averaging the F1 measure across all concepts, we can see that
the M HHMM models on partitioned features outperforms theM
HMMs and K-means with similar number of patterns. FreqItem has
better average performance than any single statistical model, how-
ever it is much larger in both the model size and computational load
(|Γ|) than any of the models. In order to make a fair comparison,
we simulate a few (say, three) independent runs with different ran-
dom initializations (denoted by ”x3” in Fig. 2(a)) and take the best
predictor (max. F1) for each concept across these model instances.
We observed that the performance was significantly improved with
this multi-initialization strategy, and this multi-HHMM has superior
average performance than FreqItem with less than one third of the
complexity (|Γ| ∼ 4292 vs. 17540).

4.2. Inspecting the clusters
Among the 192 best predictors, most are either specified by feature
subset intersections (81/192) or by temporal transitions (65/192).
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Fig. 2. (a) Performance comparison for different mining schemes. (b) A novel temporal pattern in a visualization system.

Many of these patterns have either confirmed intuitive ontological
relationships among concepts, or revealed the production convention
of broadcast news. For example, a pair of HHMM states with high
confidence inoutdoor, car, road, urbanand the absence ofexplosion-
fire, natural-disaster, waterscape-waterfrontmakes the bestcitis-
capepredictor; and the bestglacier detector is from K-means, pre-
scribingairplane, outdoor, skyin the current shot, andnatural-disaster,
outdoor, snow, truckandweatherin the previous shot.

In addition to predicting new concepts, the collection of patterns
can be used for browsing the videos and pinpointing novel patterns
that are not in the pre-defined concept space. Fig. 2(b) shows such
a visualization system we have developed. This is a unique tool for
exploring the statistical models such as HMM/HHMM. It not only
visualizes the feature distributions, the transitions, but also puts these
quantities in the context of the corresponding videos. A research
prototype will be made available to public.

The keyframe story board in Fig. 2(b) visualizes the transition
pattern from an HHMM state marking the presence ofstudio and
computer-tv-screento a state withweather, maps, andcharts(with
the two states highlighted in the model panel and frames color-coded
with their state labels). Neither of the two states alone are per-
ceptually significant, both of which contain several hundread shots.
However the transition between the two states concentrates itself on
an interesting production pattern that transits from news anchor to
weather report. This suggests that (1) there are salient patterns that
can only described by temporal relationships; (2) HHMM or similar
temporal models tend to capture consistent but rare temporal pat-
terns, and in some cases, it converges to context-specific production
conventions.

In summary, evaluations of temporal pattern mining on a large-
scale concept ontology and news topics show that HHMM has supe-
rior performance in detecting rare concepts and topic. Partitioning
a larger input space into small feature subsets improves concept de-
tection. The HHMM clusters discovered not only reveal interesting
ontological relationships among the input and the target concepts,
they may also capture structural information not otherwise captured
by static concepts or detectable by static models.

5. CONCLUSION
We present an investigation of pattern mining and evaluation in large-
scale video concept streams. We have used four different mining al-
gorithms and evaluated on 192 concepts from LSCOM. Results show
that HHMM has the best average prediction among all models, how-

ever different models seem to excel in different concepts depending
on the concept prior and the ontological relationship. Future work
may include extending the mining input to actual multimedia ob-
servations instead of concept labels, or extending the combination
strategies for the models learned.
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