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ABSTRACT
In this paper we propose a new framework, called active cont-
ext-based concept fusion, for effectively improving the accu-
racy of semantic concept detection in images and videos. Our
approach solicits user annotations for a small number of con-
cepts, which are used to refine the detection of the rest of con-
cepts. In contrast with conventional methods, our approach is
active, by using information theoretic criteria to automatically
determine the optimal concepts for user annotation. Our ex-
periments over TRECVID 2005 development set (about 80
hours) show significant performance gains. In addition, we
have developed an effective method to predict concepts that
may benefit from context-based fusion.

Index Terms— Active content-based concept fusion, Se-
mantic concept detection

1. INTRODUCTION

Recognition of semantic information from visual content has
been an important goal for research in image/video indexing.
In recent years, NIST TRECVID video retrieval evaluation
has included a task in detecting high-level features, such as
locations, objects, people, and events from videos. Such high-
level features, termedconceptsin this paper, have been found
to be very useful in improving quality of retrieval results in
searching broadcast news videos [6].

This paper addresses the problem of enhancing concept
detection accuracy by exploring useful context and active user
input. Semantic concepts usually do not occur in isolation -
knowing the contextual information (e.g., outdoor) of an im-
age is expected to help detection of other concepts (e.g., cars).
Based on this idea, severalContext-Based Concept Fusion
(CBCF) methods have been proposed. The Multinet approach
[3] models the correlation between concepts with a factor
graph and uses loopy probability propagation to modify the
detection of each concept based on the detection confidence
of other concepts. In [4], models based on Bayesian Networks
are used to capture the statistical interdependence among con-
cepts present in consumer photographs. The Discriminative
Model Fusion (DMF) method [5] generates a model vector
based on the detection score of individual detectors, and a
SVM is then trained to refine the detection of original con-
cepts. However, the results reported so far have indicated that

not all concepts benefit from the CBCF strategy. As reported
in [1], no more than 8 out of 17 concepts gain performance
improvement by using CBCF. The lack of consistent perfor-
mance gain could be attributed to several reasons: (1) insuffi-
cient data for learning reliable relations among concepts, (2)
unreliable detectors, and (3) scales and complexity of the con-
cept relations. Interestingly, results in [4] suggests that user-
provided labels are much more effective in helping inferring
other concepts compared to automatically detected labels.

In this paper, we propose a new fusion paradigm, called
Active CBCF, to effectively exploit the contextual relations
among concepts. We submit that in several applications, users
may be willing to be involved in the process and annotate a
few concepts in an image. The human annotated concepts are
then used to help infer and improve detection of other con-
cepts (up to hundreds). Human assisted annotation is not new
in the literature. But a new, interesting question arises in the
active paradigm - if a user is to annotate only a very small
number of concepts e.g., (1-3), which concepts should we
ask him/her to annotate? We propose an active system that
adaptively selects the right “key” concepts, different for each
image, for user annotation. In contrast, conventional meth-
ods are passive. Users are asked to annotate all concepts or a
subset of arbitrarily chosen concepts.

Based on the statistical principles, our method considers
the mutual information between concepts, the estimated per-
formance of individual concept detectors, and the confidence
of detection for each concept for a given image. Experiments
over TRECVID 2005 data (80 hours 61000 subshots) show
our active CBCF approach achieves significant performance
gains – 11.8% improvement in terms of mean average preci-
sion over individual concept detectors without CBCF.

In implementing a baseline CBCF system, we also de-
velop a simple but effective method to predict concepts that
may benefit from the use of CBCF. This is motivated by the
observation mentioned earlier that not all concepts benefit
from context-driven statistical fusion - a prudent step in selec-
tive application of the strategy is necessary. We first describe
the baseline CBCF system and the prediction process in Sec.
2. The core algorithm of active CBCF system is presented in
Sec. 3, with experiment results shown in Sec. 4.



2. A BASELINE CBCF APPROACH

This section introduces our baseline CBCF method followed
by the criterion to determine which concepts to use CBCF
learning. The scheme of our CBCF baseline method is shown
in Fig.1. Given an imagex, for conceptSi, assume that the
true label isyi, whereyi = 1 if x containsSi, and yi =
0 otherwise. The individual detector produces a detection
scorePI(yi = 1). A context-based SVM is built to utilize
the relationships among concepts to refine the detection re-
sult as follows. The concepts are treated as features of im-
ages, i.e.,x is represented in anN−1-dim feature space as
[y1, . . . , yi−1, yi+1, . . . , yN ]t. Based on this feature an SVM
classifier is trained. Then in the testing stage, for a test im-
age the estimated[PI(y1 = 1), . . . , PI(yi−1 = 1), PI(yi+1 =
1), . . . , PI(yN = 1)]t is used to approximate the true labels
(since the true labels are unknown for a test image) and is
provided to the context-based SVM to be classified. The clas-
sification result isPC(yi=1), which is the prediction of exis-
tence ofSi inferred from concepts other thanSi, based on the
relationships among concepts and detection of other concepts.
Finally, PC(yi=1) andPI(yi=1) are linearly combined into
PF (yi=1) as the refined detection result:

PF (yi =1) = λiPC(yi =1) + (1− λi)PI(yi =1) (1)

The scheme described above is similar to the DMF scheme
in [5], except we use a linear fusion step at the end to com-
bine the SVM fusion results with original detector output. In
addition, in the training stage we used ground truth labels,
rather than the individual detector outputs (as in [5]), to train
context-based SVMs. By this, we are able to use the same
data set to train the individual detectors and context-based
SVMs, alleviating the problem of not having enough data for
separate training and validation. Our experiments have indi-
cated such a training process is better than the alternative that
uses detector outputs for training the context-based SVM.
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Fig. 1. Context-based SVM forSi in our multi-level CBCF method.

As discussed above, not all concepts benefit from CBCF
learning. Intuitively, two reasons may cause performance de-
terioration on a concept using CBCF: first the concept has
weak relationships with other concepts; second the related
concepts have poor individual detectors. This also suggests an
intuitive criterion: conceptSi will use CBCF learning when
(1) Si is strongly related to some other concepts, and the av-
erage performance of individual detectors of the related con-
cepts are robust; and (2) the performance of its own individual

detector is not perfect so that there is space for improvement.
Specifically, the relationship between two conceptsSi andSj

can be measured by their mutual informationI(Si;Sj). By
using a validation set, we get validation error rateEI(Si) that
estimates the robustness of individual detector forSi. Our
criterion for applying the CBCF strategy to conceptSi is:

EI(Si)>θ, and Avg{Sj :I(Sj ;Si)>γ}EI(Sj)<η (2)
Note the first part favors concepts whose detection perfor-
mance is “improvable”, while the second part requires a con-
cept has correlated concepts (in terms of mutual information)
and they have adequate strength to help improve accuracy of
the given concept. Our experiment results (Sec. 4) show this
criterion is indeed effective, making 33 correct predictions for
the 39 concepts from TRECVID 2005.

3. THE ACTIVE CBCF APPROACH
We present the proposed active CBCF method (ACBCF) in
this section. The work flow of the ACBCF method is illus-
trated in Fig.2. In ACBCF the user is willing to label a small
number of concepts, and the labelled information is utilized
to help detection of other concepts as follows. For a test im-
agex, the user labels a set of conceptsS∗= {S∗1 , . . . , S∗n}.
The labelled ground truthy∗1 , . . . , y∗n are used to replace the
corresponding hypothesesPI(y∗1=1), . . . , PI(y∗n=1) from in-
dividual detectors to generate a mixed feature vector. In the
mixed feature vector, the entries corresponding to the labelled
concepts are the labelled ground truth from user, and the other
entries are still the estimated hypotheses from individual de-
tectors. This mixed feature vector is provided to the context-
based SVM to get a new classification resultP̃C(yi=1). Since
the labelled ground truth provides accurate inputs instead of
the inaccurate machine-predicted hypotheses,P̃C(yi =1) is
expected to be better than originalPC(yi=1). And the com-
bined estimation (by using the ACBCF detector)P̃F (yi = 1)
should outperformPF (yi =1).
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Fig. 2. ACBCF estimation for conceptSi.

Different from passive labelling that randomly selects con-
cepts, our ACBCF actively selects concepts for annotation. In
following subsections, we present a statistical criterion to se-
lect concepts based on mutual information between concepts,
and the error rate and entropy of individual detection results.

3.1. Maximizing mutual information
The average Bayes classification error for concept detection
is E = 1

N

∑N
i=1E(Si), whereE(Si) is the error rate for con-

ceptSi. The problem is to find an optimalS∗ with a small



sizen so that the labelled information can minimizeE of the
rest of concepts. Directly searching forS∗ to minimizeE is
practically infeasible. Instead, we try to minimize the upper
bound ofE , which can be derived as [2]:E ≤ 1

2N

∑
iH(Si)−

1
2N

∑
iI(Si;S∗1:n), whereS∗1:n ={S∗1 , . . . , S∗n}. Minimizing

the upper bound equals the maximizing mutual information∑
i I(Si;S∗1:n). I(Si;S∗1:n) can be written as [7]:

I(Si;S∗1:n)=
n∑

k=1

I(Si;S∗k)−
n∑

k=2

[
I(S∗k ;S∗1:k−1)−I(S∗k ;S∗1:k−1|Si)

]

The above expression can be further simplified as follows:

I(S∗k ;S∗1:k−1)− I(S∗k ;S∗1:k−1|Si) = H(Si) + H(S∗k)
So maximizing

∑
i I(Si;S∗1:n) equals maximizing:∑

i

∑n

k=1
I(Si;S∗k)−

∑
i

∑n

k=2
H(S∗k) (3)

With the objective function of Eq.(3), we can implement a
sequential concept selection process as follows:

1. Select the 1st optimalS∗1 with largestg∗1 =
∑

iI(Si;S∗1 )
2. Select thekth optimal S∗k , k > 1, with largestg∗k =∑

i [I(Si;S∗k)−H(S∗k)]=−∑
iH(S∗k |Si)

The selection criteria listed above are actually quite intuitive -
the best concept has the highest total mutual information with
the rest of concepts, and the next optimal concepts are those
having low conditional entropy (i.e., high correlations with
the rest of concepts).

3.2. Further consideration
Wheng∗k is large, accurate labels forS∗k is desired to better
estimate rest of the concepts. However ifS∗k can be classi-
fied accurately by the individual detector, i.e., user’s labelling
won’t make big difference. In this case, it will be more bene-
ficial to ask user to label a different concept that has low de-
tection accuracy. Thus we need to take into consideration the
robustness of the individual detectors. Furthermore, for a test
image, if an individual detector has very high confidence on
its hypothesis, we may risk assuming that the estimated label
of this detector is close to the true label. Then user’s labelling
will not make big difference either. Those informative con-
cepts whose individual detectors are not confident about their
estimations should get higher priorities for user annotation.

From validation, we get the validation error rateEI(Si) of
the individual detector for every conceptSi, which estimates
the average robustness of the individual detector. The con-
fidence of an individual detector about its hypothesis can be
measured by the entropy of its output:HI(Si|x) =−PI(yi=
1)logPI(yi=1)−PI(yi=0)logPI(yi=0). Note this measure is
computed for each image, thus it is image dependent. Letg̃∗k
be the normalized version ofg∗k (normalized to [0,1]). To take
into consideration the mutual information among concepts as
well as the robustness and confidence of individual detectors,
our criterion selects “key” concepts as follows: the optimal
S∗k are those having the largestG∗k, where:

G∗k = βg̃∗k + (1−β)EI(S∗k)HI(S∗k |x) . (4)

Note the inclusion of the last term makes the selection crite-
rion image-dependent. This is consistent with intuition - we
should ask users different questions for different images.

4. EXPERIMENTAL RESULTS

The data set contains 137 international broadcast news videos
from TRECVID 2005 [6] and contains 39 concepts. It is sepa-
rated into 4 data sets for training detectors, different stages of
fusion methods, and final testing (shown in Table 1). Pairwise
co-occurrences of concepts in subshots are counted based on
the training set, validation set, selection set 1 and selection set
2, based on which the mutual information in Eq.(2) is calcu-
lated. Our individual concept detectors are SVM-based clas-
sifiers over simple image features such as grid color features
and texture, extracted from key frames of a video subshot.
Such classifiers have been shown to be effective for detecting
generic concepts [1]. The outputs of the SVM classifiers are
transformed into probabilities through a sigmoid function.

Table 1. The data sets for experiments
Name Size Usage

Training Set 41837 subshots train SVMs

Validation Set 4515 subshots learn RBF kernel for SVM

Selection Set 1 6021 subshots learnθ, η, γ, λi in Eq.(1, 2)

Selection Set 2 3011 subshots learnβ in Eq.(4)

Test Set 6506 subshots performance evaluation

4.1. Evaluation of baseline CBCF
In this experiment, we evaluate the baseline CBCF approach
in Fig.1 and the criterion in Sec.2 to select concepts for updat-
ing. After validation and the selection process 1, 16 concepts
are predicted to benefit from the use of CBCF. These con-
cepts are: airplane, building, charts, corporate-leader, desert,
explosion-fire, government-leader, map, natural-disaster, of-
fice, people-marching, road, snow, truck, urban, and vegeta-
tion. Fig.3 shows the Average Precision (AP) for the 39 con-
cepts of the baseline CBCF and the individual detectors on
the test set. AP is the official TRECVID performance met-
ric. It is related to the multi-point average precision value
of a precision-recall curve. From the figure we can see that
CBCF actually improves the detection of 18 concepts, and 14
of them are automatically picked up by the proposed criterion
in Sec.2. Among the 16 selected concepts, 2 do not have per-
formance improvements, i.e., the precision of the prediction
method is 14/16 and the recall is 14/18. It is interesting to note
that “government leader” and “office” are two concepts that
benefit most from CBCF. Furthermore, most of the concepts
not selected are rejected byη andγ in Eq.(2), which indicates
that the context relation and the robustness of related context
is important to qualify a concept for benefiting from CBCF.

4.2. Evaluation of the ACBCF approach
To show the effectiveness of our ACBCF method, it is com-
pared with three other methods: the passive labelling (ran-
domly select concepts for user to label), the baseline CBCF
without active labelling, and the individual detector without
concept fusion. Note that with user’s interaction, some sub-
shots are labelled for each concept. If we calculate precision
or recall based on all the test subshots, the comparison will
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Fig. 3. Performance of our CBCF on all 39 concepts. Oval shapes
indicate that CBCF improvement is correctly predicted for the given
concept. Red boxes for false prediction and dashed boxes for misses.

be unfair to the algorithms without user labelling. To avoid
this problem, we compare the algorithms as follows: for each
conceptSi, those subshots selected to be labelled by either
our ACBCF or random labelling are taken out, and the rest of
subshots are included for calculating precision or recall.

Fig.4 (a) shows the Precision-Recall curves (the precision
is averaged on the selected 16 concepts) when the user labels
only 1 concept for each subshot. Fig.4 (b) gives the corre-
sponding AP on each of the selected 16 concepts. The fig-
ure shows that out of the selected 16 concepts, 14 has obvi-
ous performance improvements using our ACBCF. Further-
more the improvements for most concepts are significant, e.g.
650% for government-leader, 14% for map, 357% for office,
34% for people-marching, 13% for road, and 25% for urban.
The Mean AP (MAP) of ACBCF on the entire 16 concepts
is 0.322, which outperforms random labelling by4.1%, out-
performs baseline CBCF by 3.1%, and outperforms the indi-
vidual detector by 11.8%. Moreover the ACBCF yields more
stable results than both random labelling and CBCF. For ex-
ample, as reported in Sec.4.1, on 2 of the selected concepts
(airplane and truck) the CBCF performance actually deteri-
orates. The deterioration is especially severe for airplane.
On the contrary, the proposed ACBCF remains more effec-
tive consistently across all selected concepts.

In addition, we evaluate the performance when different
numbers of concepts are labelled by the user for each subshot.
The MAPs on the selected 16 concepts are given in Fig.5.
Compared with random labelling, when more concepts are
labeled, the advantage of ACBCF is more significant. Also,
on test set, when 1 concept is labelled for each subshot, out-
door is selected to be labeled for 70% of subshots. When 2
concepts are labelled, besides outdoor, airplane is the second
most popular concept selected for 43% of subshots. When 3
concepts are labeled, court is selected for 36% of subshots as
the third most popular concept besides outdoor and airplane.

5. CONCLUSION

We have developed a new statistical framework, active con-
text-based concept fusion, for improving the performance of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re
c
is
io
n

MMIEE Labelling

Random Labelling

Context-Based Detection (no labelling)

Individual Detection

ACBCF

Random Labelling

CBCF

Individual Detector

(a) Recall-Precision curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
P

MMIEE Labelling

Random Labelling
Context-Based Detection (no labelling)
Individual Detection

urban
truck

charts

explosion-fire

government-leader

people_marching

map
office

desert

building

airplane

corporate-leader

nautral-disaster

road
snow

truck

urban

vegetation

ACBCF
Random Labelling
CBCF
Individual Detector

(b) AP for each concept
Fig. 4. Performance with 1 concept labelled for each subshot.

0.31

0.36

0.41

0.46

0.51

0.56

0.61

0.66

1 2 3 4 5 6 7 8 9 10

Number of labelled concepts

M
A

P

MMIEE Labelling

Random Labelling

ACBCF

Random Labelling

CBCF

Fig. 5. MAP with different numbers of labelled concepts.

detecting semantic concepts in images and videos. The frame-
work incorporates user’s interaction to annotate a small num-
ber of key concepts per image, which are then used to improve
detection of other concepts. In addition, we propose a simple
yet accurate method in predicting concepts that may benefit
from context-based fusion. Our experiments over TRECVID05
data have confirmed the effectiveness of the proposed paradigm.
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