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ABSTRACT

cityscape
concept score

A novel framework is introduced for visual event detection.
Visual events are viewed as stochastic temporal processes i
the semantic concept space. In this concept-centeredagipro
to visual event modeling, the dynamic pattern of an event is
modeled through the collective evolution patterns of the in
dividual semantic concepts in the course of the visual event
Video clips containing different events are classified by em
ploying information about how well their dynamics in the di- Fig. 1. Evolution patterns of concepisdoorsandcityscapein the event
rection of each semantic concept matches those of a givefxiting building”. 7 =start of event,T}, =switch from indoors to out-
event. Results indicate that such a data-driven statistiza doors, whereityscapeconcept will become significaril,, =end of event.
proach is in fact effective in detecting different visuaéats
such asexiting car, riot, andairplane flying

indoors
concept score

>

(time) T.

for example in surveillance applications, quickly beconmes
feasible for videos with unconstrained content and miniynal
1. INTRODUCTION controlled context, such as news footages. The works in the

Providing semantic access to video repositories has alwaygcond category, on the other hand, have less of a computer
been a major goal for the multimedia community. In recentision flavor and analyze an event from a pure statisticaltpoi
years, a good amount of effort has been put into methods fé¥f vView. In [5], for example, statistical models of featurg-d
modeling the visual semantic concepts, i.e. general cetego namics were learned for audio and video channels, and their
of objects, scene, their coexistence and interactionseptec COmbination was used to detect events suakxatosion Xie
able results have been achieved for the case where enough@l- [6] detected and segmented thlay andbreakevents in
annotated training data exist for concepts in a lexiconyas e SOccer videos by learning the dynamics of the color and mo-
idenced by the annual TRECVID [1] benchmark. However tion features for each event. However, these approaches rel
the majority of the concepts that have been reported are éfirectly on low-level features, which are often not as itwei
static nature, such amdoors outdoors greenery etc. For ~ @s other event components, such as objects or visual cancept
events, or concepts that are distinct in the action of objaatl
the evolving interaction among objects and the scene, ssicha We propose a novel approach to the problem of event
“airplane takeoff” and“riot” , automatic detection still re- modeling and detection. Events in our approach are regarded
mains a challenging problem. as stochastic temporal processes in the semantic conca@ sp
The prior literature on the problem of visual event detec{/]- An available pool of semantic concept detectors fore th
tion could be divided into two main categories. The first cat-0@sis of this space. Each concept detector provides its view
egory, which we refer to asbject-centeredregards an event ©Of the world as depicted in a video clip.
as a spatial, temporal, and logical interaction of multipte The central assumption in our approach is that during the
jects (agents, actors). The primary focus of the works is thi Progression of a visual event, several concurrent conesptse
category is to track the objects and analyze their activity p in @ pattern specific to that event. Figure 1 illustratesites
terns [2, 3, 4]. The object-centered approach has a decompitits simplified form. During an event such esiting a build-
sition view of the events [4] in space-time and tries to esttra NG, ONe expects to observe the concieptoorsin the initial
constituent elements of an event and analyze their characteéstage of the event and then as the event progresses switch to
istics. This approach, which is rooted in computer visionthe conceptityscapeand stay in that state for some time (Fig.

although has been successfully applied to certain prohlems)- We submit such a framework is powerful and can be used
to model a large number of events, as will be confirmed in our

*Work performed while visiting IBM T.J. Watson Research Cente experiments later (Section 3).




zggf:p‘ | | | | | | | | from the available news video corpus distributed by NIST.
} 1 The events targeted for modeling in this work were se-
! lected from the LSCOM lexicon. LSCOM is an ARDA spon-
sored [10] effort for developing an expanded multimedia-con
cept lexicon on the order of 1000.
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2.2. Modeling

Let's assume that a concept detector Aet= {d1,...,0n}

is available. LetV be the collection of videos, where each
videoV € Vs represented as a sequence of its fraies
{flw “afT}'

Applying each available concept detector to the frames of
avideo clip results in an array of semantic concept confidenc
Fig. 2. Example of projecting a video segment of the event airplargiign ~ SCOr€SCT.p = {cf, ..., cp}, wherec} = 4,(f;) is the score
onto a three-dimensional concept space (airplane, skytatiys) assigned to the — th frame by then — th concept detec-
tor. The matrix®(V) = ®(.) ® V = [Cl.; |CEp|. .. [CN7]
maps the video clij/ into a trajectoryx(t) in the semantic

_This approach, which is concept-centered as opposed {Q,cent spacér)as depicted in figure 2, through the projec-
object-centered, aims at learning the dynamics of conntirre tion operatod(.) = [5,(.), ..., on ()]

concepts from exemplars of an event in a pure data-driven
fashion. In this work, we develop novel use of this space b¥uti

modeling the temporal dynamics within. The concept—spac%e concept detectors are independent from each atber

used in the present paper, was formed by 39 LSCOM-lit . . : . .
[8] concept detectors, which were obtained by training Sup?-hey have been independently trained, possibly usingreiffe

. - : ent data sets. The basis for this assumption is because these
port Vector Mac_hme (SVM) classifiers [9]. over visual fea- scores can be independently obtained (using separateesourc
tures such as grid qual color, texture, motlo_n, and edge. Thof data, labeling, classifier etc.), rather than assertiegsta-
proppsed approac'h IS tested on se\{eral different event ¢ fétical independence of the score values on any dataset. Du
egories. Results indicate the effectiveness of the concep

. X . o the independence assumption, we can decompose the tra-
centered approach for certain events, suchi@dshelicopter . A L .
hovering WIIDtE a clear performance gain froﬁs‘Vfto 58‘7? jectorya(t) in C into its projections onto th& semantic con-
. . . ' cept axis.

In the rest of this paper, we provide the details of our ap- pWeX'I[hen roceed to model the evolution pattermgft)
proach and modeling scheme, followed by the experiments .  ~. b . b RLE),
and discussions Which is the shqdow of the trajectonyt) on then — th_con—

' cept axis. A Hidden Markov Model (HMM) [11] with the

structure as shown in figure 3 is used to model the pattern of

After projecting the video clips intC) we model the evo-
on pattern of the concepts in this space. We assume that

2. MODELING EVENTSIN THE SEMANTIC the dynamics of the concept score on each axis. One of the
CONCEPT-SPACE states captures tHen time state” of the concept during the
2.1. Semantic Conceptsand Events event and the other state capturesdf$ time state”.

The proposed method in this paper relies on the availability The application of the modeling scheme to all concur-
of a pool of semantic concept detectors. We employ the 3gent concept threads is depicted in figure 3, where the HMM
semantic concepts of LSCOM-Lite [8], which are the interimmodel has been unrolled for each of the threads. As shown in
results of the effort in developing a Large-Scale Concept Onthis figure, we do not take into account the interdependency
tology for Multimedia (LSCOM) [10]. between the hidden states of the different concept threads,
The concepts were selected based on semi-automatic mahich can increase the number of the parameters of the model
ping of 26377 noun search terms from BBC query logs in lateexponentially.
1998 to Wordnet senses, division of semantic concept space The multi-thread model of the event is learned from a
into a small number of orthogonal dimensions, and evaluaset of previously annotated exemplars of the event of inter-
tion of 2003 and 2004 TRECVID search topics [1]. The di-est. After training the thread models, a set of test seqence

mensions consist of program category, setting/scengggite  Vialidaion = {V4,..., Vk} are passed through the semantic
ple, object, activity, event, and graphics. A collaborat@f- projection operatof(.) to obtain their corresponding trajec-
fort was completed in 2005 to produce annotations of the 3®ries in the concept-spade; (t), ..., ax(t)}. Each trajec-

concepts over the entire development set of TRECVID 200%ory is then passed through the array of HMM models, and is
videos. Human subjects judge the presence or absence of eassigned a score by them. Three different types of scores are
concept in the keyframe of each shot. Statistical concept déried in this paper, 1-0g-Likelihood (LL) 2-State Histogram
tectors were built for each of the 39 LSCOM-Lite concepts(SH), 3-Fisher Score (FSJ12]. Log-likelihoodis a natural
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Fig. 3. On the right-hand side the concurrent thread models is shohe.
top level for each thread, is the sequence of hidden states, and the bottom ) )
row is the sequence of length of observation for that thread. The 2-state licopter hovering parade andriot, all part of the LSCOM

HMM used for each thread is shown on the top left cormner. lexicon [10]. The minimum duration of the sequences for all
seven events is 5 |I-Frames long and the number of sequences

scoring of a sequence with respect to a HMBfiate histogram available for each is more than 52. We assume that an event is
is employed to capture then-off pattern of concepts during manifested in a single shot. Therefore, we are not concerned

an event and if any of the two states in each thread is donfPOUt Cross-shot dynamics in this paper. _
inant. Fisher score [12], is used to extract features from a_Available sequences for each event were decomposed into
sequence with respect to a generative model. It is a maglo?o, 40%, 20% ratios for the experiments. The I-Frames of
ping from the observation sequence to the gradient space §RCh sequence (2.5 | frames per second on average) in the
the generative model. The partial derivative of the genarat data set were passed through the available 39 LSCOM-lite
model with respect to each parameter provides a descriptidrPNCePt detectorsto form the basis of the semantic concept
of the way that particular parameter contributes to thegsec SPaCE(C) in our experiments. These detectors are SVM clas-
of generating an observed sequence, therefore is an indicaSifiers and were previously trained from a news video corpus,
for how well the observed sequence could be generated by tH§ing raw color and texture features. Concept detectors map
model. all sequences to the semantic concept spéte

Based on the type of score used, trajectosy(t) gets Foreach event = {1,..., M}, using thgfirst portion of
mapped to poinw[s] in score-space,.; by score operator the data, an array of HMM models were trained, one per con-
U, (.), wheres ek (LL,SH,FS} de[ﬂarmines the type of cept thread. The secord% of the sequence from all events
sc:[:)]re ’The score opera£ors ére the following: were then evaluated by the models for evenfFigure 3) and

' ' mapped to three different score-spasgs,), Sis ), Sirs) (Fig-
Uirr () = (log(P(.|H,)), ure 4). In each space a linear SVM classifier was trained,
Vs () = ((hi(.|H,)), which resulted in three diﬁgrent classifiers for eventor; .
Uipg() = ([Volog(P(|Hy. )]) osm) OFs)- These classifiers were then used to distinguish

(FSI\-) = UV r0g L [ Ho, (1) between sequences of eventand those from other events

 whereH,_is the HMM model for thread, (Figure 3),() in different score-spaces using the remairi2agj of the data

is the set of parameters of the HMM model, ahdis the set

) ; . . To form a baseline to compare the effectiveness of model-
fraction of the length of input sequence that it spends itesta . ) . .
j ing the evolution pattern of an event in the semantic concept

— . . space, we trained SVM classifiers on the key-frames of each
After projection of the input sequences into the score- :
- sequence using the array of concept scores for the key-frame

space of the multi-thread model, a discriminant classifier i s
T e : . For each sequencey(t), a key-framef; was selected (we
used in this space for classification of sequences intordiffe .
. e chose the middle I-Frame of the sequence).
ent event categories. SVM classifiers are used for the catego .
The key-frames of the different sequences were then mapped

rization of sequences in the concept-space due to their wetI(I) the semantic concent-space using the same Mapbing ober-
proved discrimination performance. The SVM classifier es- Pt-Sb 9 ppIng op

sentially fuses the output scores of the multi-thread HMMatorcD.(..). For eac h event category, we then trained a SVM
models. classifier to distinguish between its key-frames and thdse o

other events. The same decomposition of the data set used in

3. EXPERIMENTSAND RESULTS Lairplane, animal, boat ship, building, bus, car, chartspguuter tv, cor-

A set of seven different events was selected for the experhorate leader, court, crowd, desert, entertainment, esiplo fire, face, flag
ments, based on the number of sequences available for eah 9overnment leader, map, meeting, military, mountaatyral disaster,

! . office, outdoor, people marching, person, police secupitigoner, road, sky,
event and the Iength of the sequences. The eventsaarre: snow, sports, studio, truck, urban, vegetation, walkingning, waterscape
plane flying exiting car, ground combathandshakinghe-  waterfront, weather
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in the results, the approach wasn't as effective for certain
event categories. This could be due to the fact that the 39
LSCOM:-lite concepts used for making the semantic concept-
space are not adequate in the context of those events. The
second issue is how to select the most informative concept
threads and discard nuisance threads to better model the evo
lution pattern of the events in concept-space. This bdgisal
equivalent to selecting the most informative sub-spacaef t
concept-space.
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(1]

the dynamic case was also employed in this case to make the
two experiments (dynamic vs. static) comparable. Note that?!
experiments for both the dynamic (evolving models) and sta-
tic (key-frames) cases were done in 5 rounds of randomizeq3]
sequences. Figure 5 shows ttvecision at depth LOFrom

this chart we see that for evehtandshakingthe dynamic
model does worse-10%) than static (key-frame based) one,
meaning that mappings of the sequences obtained from thi&'!
event into the 39-dimensional concept space spanned by the
LSCOM-lite detectors lack discriminability. However, for 5
eventsriot (+58%), exiting car(+46%) andhelicopter hov-
ering (+28%), there is signifcant gain when the evolution
pattern of the events in concept space is used, employing the
FSscore. Eventsirplane flying ground combatandparade 6]
both methods essentially are the same, indicating thahgive
the 39-dimensional concept space there is no dynamics in-
volved in those events. The other two scor8s] andLL

do not perform as well aBS. This could be attributed to the [7]
fact that Fisher score captures how well an observed sequenc
could have been generated by the model, rather than being a
single score such as log-likelihood.

4. DISCUSSION AND CONCLUSION 8
We proposed a concept-centered as opposed to object-@gnter
approach for visual event modeling and detection. This is aI9]
novel event modeling approach, which aims at learning thElO]
evolution pattern of an event in the semantic concept-spac
Results verify that the approach is effective for detectieg
tain kinds of events. This is the first attempt in exploring th
use of semantic concept-space for modeling events thaf are 311
dynamic nature.

There are many issues to be addressed in the future n
using the concept-centered approach for event modeling arL%Z]
detection. The first and foremost, is the sufficiency of the se
mantic concept-space for modeling a certain event. As shown

contract NBCHC050097.
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