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ABSTRACT

A novel framework is introduced for visual event detection.
Visual events are viewed as stochastic temporal processes in
the semantic concept space. In this concept-centered approach
to visual event modeling, the dynamic pattern of an event is
modeled through the collective evolution patterns of the in-
dividual semantic concepts in the course of the visual event.
Video clips containing different events are classified by em-
ploying information about how well their dynamics in the di-
rection of each semantic concept matches those of a given
event. Results indicate that such a data-driven statistical ap-
proach is in fact effective in detecting different visual events
such asexiting car, riot, andairplane flying.

1. INTRODUCTION

Providing semantic access to video repositories has always
been a major goal for the multimedia community. In recent
years, a good amount of effort has been put into methods for
modeling the visual semantic concepts, i.e. general categories
of objects, scene, their coexistence and interactions. Accept-
able results have been achieved for the case where enough
annotated training data exist for concepts in a lexicon, as ev-
idenced by the annual TRECVID [1] benchmark. However,
the majority of the concepts that have been reported are of
static nature, such asindoors, outdoors, greenery, etc. For
events, or concepts that are distinct in the action of objects and
the evolving interaction among objects and the scene, such as
“airplane takeoff” and “riot” , automatic detection still re-
mains a challenging problem.

The prior literature on the problem of visual event detec-
tion could be divided into two main categories. The first cat-
egory, which we refer to asobject-centered, regards an event
as a spatial, temporal, and logical interaction of multipleob-
jects (agents, actors). The primary focus of the works in this
category is to track the objects and analyze their activity pat-
terns [2, 3, 4]. The object-centered approach has a decompo-
sition view of the events [4] in space-time and tries to extract
constituent elements of an event and analyze their character-
istics. This approach, which is rooted in computer vision,
although has been successfully applied to certain problems,
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Fig. 1. Evolution patterns of conceptsindoorsandcityscapein the event
”exiting building” . Ts =start of event,Tb =switch from indoors to out-
doors, wherecityscapeconcept will become significant,Te =end of event.

for example in surveillance applications, quickly becomesin-
feasible for videos with unconstrained content and minimally
controlled context, such as news footages. The works in the
second category, on the other hand, have less of a computer
vision flavor and analyze an event from a pure statistical point
of view. In [5], for example, statistical models of feature dy-
namics were learned for audio and video channels, and their
combination was used to detect events such asexplosion. Xie
et al. [6] detected and segmented theplayandbreakevents in
soccer videos by learning the dynamics of the color and mo-
tion features for each event. However, these approaches rely
directly on low-level features, which are often not as intuitive
as other event components, such as objects or visual concepts.

We propose a novel approach to the problem of event
modeling and detection. Events in our approach are regarded
as stochastic temporal processes in the semantic concept space
[7]. An available pool of semantic concept detectors form the
basis of this space. Each concept detector provides its view
of the world as depicted in a video clip.

The central assumption in our approach is that during the
progression of a visual event, several concurrent conceptsevolve
in a pattern specific to that event. Figure 1 illustrates thisidea
in its simplified form. During an event such asexiting a build-
ing, one expects to observe the conceptindoors in the initial
stage of the event and then as the event progresses switch to
the conceptcityscapeand stay in that state for some time (Fig.
1). We submit such a framework is powerful and can be used
to model a large number of events, as will be confirmed in our
experiments later (Section 3).
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Fig. 2. Example of projecting a video segment of the event airplane landing
onto a three-dimensional concept space (airplane, sky, vegetation)

This approach, which is concept-centered as opposed to
object-centered, aims at learning the dynamics of concurrent
concepts from exemplars of an event in a pure data-driven
fashion. In this work, we develop novel use of this space by
modeling the temporal dynamics within. The concept-space
used in the present paper, was formed by 39 LSCOM-lite
[8] concept detectors, which were obtained by training Sup-
port Vector Machine (SVM) classifiers [9] over visual fea-
tures such as grid local color, texture, motion, and edge. The
proposed approach is tested on several different event cat-
egories. Results indicate the effectiveness of the concept-
centered approach for certain events, such asriot, helicopter
hovering, with a clear performance gain from28% to 58%.

In the rest of this paper, we provide the details of our ap-
proach and modeling scheme, followed by the experiments
and discussions.

2. MODELING EVENTS IN THE SEMANTIC
CONCEPT-SPACE

2.1. Semantic Concepts and Events
The proposed method in this paper relies on the availability
of a pool of semantic concept detectors. We employ the 39
semantic concepts of LSCOM-Lite [8], which are the interim
results of the effort in developing a Large-Scale Concept On-
tology for Multimedia (LSCOM) [10].

The concepts were selected based on semi-automatic map-
ping of 26377 noun search terms from BBC query logs in late
1998 to Wordnet senses, division of semantic concept space
into a small number of orthogonal dimensions, and evalua-
tion of 2003 and 2004 TRECVID search topics [1]. The di-
mensions consist of program category, setting/scene/site, peo-
ple, object, activity, event, and graphics. A collaborative ef-
fort was completed in 2005 to produce annotations of the 39
concepts over the entire development set of TRECVID 2005
videos. Human subjects judge the presence or absence of each
concept in the keyframe of each shot. Statistical concept de-
tectors were built for each of the 39 LSCOM-Lite concepts

from the available news video corpus distributed by NIST.
The events targeted for modeling in this work were se-

lected from the LSCOM lexicon. LSCOM is an ARDA spon-
sored [10] effort for developing an expanded multimedia con-
cept lexicon on the order of 1000.

2.2. Modeling

Let’s assume that a concept detector set∆ = {δ1, . . . , δN}
is available. LetV be the collection of videos, where each
videoV ∈ V is represented as a sequence of its framesV =
{f1, . . . , fT }.

Applying each available concept detector to the frames of
a video clip results in an array of semantic concept confidence
scoresCn

1:T = {cn1 , . . . , c
n
T }, wherecnt = δn(ft) is the score

assigned to thet − th frame by then − th concept detec-
tor. The matrixΦ(V ) = Φ(.) ⊗ V = [C1

1:T

∣

∣C2
1:T

∣

∣ . . .
∣

∣CN
1:T

]

maps the video clipV into a trajectoryα(t) in the semantic
concept space(C)as depicted in figure 2, through the projec-
tion operatorΦ(.) = [δ1(.), . . . , δN (.)]′.

After projecting the video clips into(C) we model the evo-
lution pattern of the concepts in this space. We assume that
the concept detectors are independent from each other,i.e.
they have been independently trained, possibly using differ-
ent data sets. The basis for this assumption is because these
scores can be independently obtained (using separate sources
of data, labeling, classifier etc.), rather than asserting the sta-
tistical independence of the score values on any dataset. Due
to the independence assumption, we can decompose the tra-
jectoryα(t) in C into its projections onto theN semantic con-
cept axis.

We then proceed to model the evolution pattern ofαn(t),
which is the shadow of the trajectoryα(t) on then− th con-
cept axis. A Hidden Markov Model (HMM) [11] with the
structure as shown in figure 3 is used to model the pattern of
the dynamics of the concept score on each axis. One of the
states captures the“on time state” of the concept during the
event and the other state captures its“off time state”.

The application of the modeling scheme to all concur-
rent concept threads is depicted in figure 3, where the HMM
model has been unrolled for each of the threads. As shown in
this figure, we do not take into account the interdependency
between the hidden states of the different concept threads,
which can increase the number of the parameters of the model
exponentially.

The multi-thread model of the event is learned from a
set of previously annotated exemplars of the event of inter-
est. After training the thread models, a set of test sequences
Vvalidation = {V1, . . . , VK} are passed through the semantic
projection operatorΦ(.) to obtain their corresponding trajec-
tories in the concept-space{α1(t), . . . , αK(t)}. Each trajec-
tory is then passed through the array of HMM models, and is
assigned a score by them. Three different types of scores are
tried in this paper, 1-Log-Likelihood (LL), 2-State Histogram
(SH), 3-Fisher Score (FS)[12]. Log-likelihood is a natural
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Fig. 3. On the right-hand side the concurrent thread models is shown.The
top level for each threadτn is the sequence of hidden states, and the bottom
row is the sequence of lengthT of observation for that thread. The 2-state
HMM used for each thread is shown on the top left corner.

scoring of a sequence with respect to a HMM.State histogram
is employed to capture theon-off pattern of concepts during
an event and if any of the two states in each thread is dom-
inant. Fisher score [12], is used to extract features from a
sequence with respect to a generative model. It is a map-
ping from the observation sequence to the gradient space of
the generative model. The partial derivative of the generative
model with respect to each parameter provides a description
of the way that particular parameter contributes to the process
of generating an observed sequence, therefore is an indicator
for how well the observed sequence could be generated by the
model.

Based on the type of score used, trajectoryαk(t) gets
mapped to pointψ[s]

k in score-spaceS[s] by score operator
Ψ[s](.), wheres ∈ {LL, SH,FS} determines the type of
score. The score operators are the following:

Ψ[LL](.) = (log(P (.|Hτn
)),

Ψ[SH](.) = ([hj(.|Hτn
]),

Ψ[FS](.) = ([∇θlog(P (.|Hτn
)]) (1)

, whereHτn
is the HMM model for threadτn (Figure 3),(θ)

is the set of parameters of the HMM model, andhj is the
fraction of the length of input sequence that it spends in state
j.

After projection of the input sequences into the score-
space of the multi-thread model, a discriminant classifier is
used in this space for classification of sequences into differ-
ent event categories. SVM classifiers are used for the catego-
rization of sequences in the concept-space due to their well
proved discrimination performance. The SVM classifier es-
sentially fuses the output scores of the multi-thread HMM
models.

3. EXPERIMENTS AND RESULTS

A set of seven different events was selected for the experi-
ments, based on the number of sequences available for each
event and the length of the sequences. The events are:air-
plane flying, exiting car, ground combat, handshaking, he-
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Fig. 4. Mapping activities from concept-space to score-space and finding
the discriminating hyper-plane between instances of an event and negative
examples.

licopter hovering, parade, and riot, all part of the LSCOM
lexicon [10]. The minimum duration of the sequences for all
seven events is 5 I-Frames long and the number of sequences
available for each is more than 52. We assume that an event is
manifested in a single shot. Therefore, we are not concerned
about cross-shot dynamics in this paper.

Available sequences for each event were decomposed into
40%, 40%, 20% ratios for the experiments. The I-Frames of
each sequence (2.5 I frames per second on average) in the
data set were passed through the available 39 LSCOM-lite
concept detectors1 to form the basis of the semantic concept
space(C) in our experiments. These detectors are SVM clas-
sifiers and were previously trained from a news video corpus,
using raw color and texture features. Concept detectors map
all sequences to the semantic concept space(C).

For each eventm = {1, . . . ,M}, using the first portion of
the data, an array of HMM models were trained, one per con-
cept thread. The second40% of the sequence from all events
were then evaluated by the models for eventm (Figure 3) and
mapped to three different score-spacesS[LL],S[SH],S[FS] (Fig-
ure 4). In each space a linear SVM classifier was trained,
which resulted in three different classifiers for eventm: σm

[LL],
σm

[SH], σ
m
[FS]. These classifiers were then used to distinguish

between sequences of eventm and those from other events
in different score-spaces using the remaining20% of the data
set.

To form a baseline to compare the effectiveness of model-
ing the evolution pattern of an event in the semantic concept-
space, we trained SVM classifiers on the key-frames of each
sequence using the array of concept scores for the key-frames.
For each sequenceαk(t), a key-framef̂k was selected (we
chose the middle I-Frame of the sequence).

The key-frames of the different sequences were then mapped
to the semantic concept-space using the same mapping oper-
atorΦ(.). For each event categorym, we then trained a SVM
classifier to distinguish between its key-frames and those of
other events. The same decomposition of the data set used in

1airplane, animal, boat ship, building, bus, car, charts, computer tv, cor-
porate leader, court, crowd, desert, entertainment, explosion fire, face, flag
us, government leader, map, meeting, military, mountain, natural disaster,
office, outdoor, people marching, person, police security,prisoner, road, sky,
snow, sports, studio, truck, urban, vegetation, walking running, waterscape
waterfront, weather.
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Fig. 5. Comparison between the performance of the proposed modeling
approach (using 3 different scores), and the classificationof static key-frames
in concept-space. The results of applying an event model to test sequences
were ranked and the precision at top 10 was obtained. Comparable results
could be obtained with different settings for the measure.

the dynamic case was also employed in this case to make the
two experiments (dynamic vs. static) comparable. Note that
experiments for both the dynamic (evolving models) and sta-
tic (key-frames) cases were done in 5 rounds of randomized
sequences. Figure 5 shows theprecision at depth 10. From
this chart we see that for eventhandshaking, the dynamic
model does worse(−10%) than static (key-frame based) one,
meaning that mappings of the sequences obtained from this
event into the 39-dimensional concept space spanned by the
LSCOM-lite detectors lack discriminability. However, for
eventsriot (+58%), exiting car(+46%) andhelicopter hov-
ering (+28%), there is signifcant gain when the evolution
pattern of the events in concept space is used, employing the
FSscore. Eventsairplane flying, ground combat, andparade
both methods essentially are the same, indicating that given
the 39-dimensional concept space there is no dynamics in-
volved in those events. The other two scores,SH, andLL
do not perform as well asFS. This could be attributed to the
fact that Fisher score captures how well an observed sequence
could have been generated by the model, rather than being a
single score such as log-likelihood.

4. DISCUSSION AND CONCLUSION

We proposed a concept-centered as opposed to object-centered
approach for visual event modeling and detection. This is a
novel event modeling approach, which aims at learning the
evolution pattern of an event in the semantic concept-space.
Results verify that the approach is effective for detectingcer-
tain kinds of events. This is the first attempt in exploring the
use of semantic concept-space for modeling events that are of
dynamic nature.

There are many issues to be addressed in the future in
using the concept-centered approach for event modeling and
detection. The first and foremost, is the sufficiency of the se-
mantic concept-space for modeling a certain event. As shown

in the results, the approach wasn’t as effective for certain
event categories. This could be due to the fact that the 39
LSCOM-lite concepts used for making the semantic concept-
space are not adequate in the context of those events. The
second issue is how to select the most informative concept
threads and discard nuisance threads to better model the evo-
lution pattern of the events in concept-space. This basically is
equivalent to selecting the most informative sub-space of the
concept-space.
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