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Abstract 
 
The Angular Radial Edge Histogram (AREH) extends prior work on a compact 
image representation based on geometric distributions of edge pixels. 
Histograms of edge pixels are computed along the dimensions of angle and 
radius. Fourier transform is applied to accommodate rotation invariance. It 
achieves invariance for scale variation, in-plane rotation, and translation. By 
using a grid-based approach, it can also handle limited cases of partial 
occlusions. Our method is efficient � it does not require image segmentation or 
edge linking. We have evaluated its performance using an extensive set of test 
data including 12 different types of variations over diverse images (schematic 
diagrams and photos). Experimental results in image retrieval show that AREH 
outperforms baseline solutions using global edge direction histograms by a large 
margin. 
 
1. Introduction 
 
Accurate real-world content-based image retrieval requires search techniques 
that are robust to a range of distortions. One way to achieve this is to use image 
features that are invariant to geometric distortions such as scaling, rotation, and 
translation in addition to other types of distortions that introduce noise, for 
instance.  
 
Edge-based methods attempt to extract the edges that correspond to objects 
and textures in the image. Such approaches are consistent with the observation 
that objects and textures are considered salient for image retrieval and that they 
are well defined by their characteristic edge information. Edges and textures are 
especially useful for representing and matching schematic images. See Figure 1. 
 
 
 
 
 
 
 
 
 

Figure 1 : Examples of Schematic Images 



 
 
Section 2 provides a review of the state of the art in content-based image 
retrieval. Section 3 describes prior work on a highly related approach proposed 
by Chalechale et al. called Angular Radial Partitioning (ARP) [1]. Section 3 and its 
subsections explain the details of our approach. Section 4 discusses differences 
between our approach and the ARP. Section 5 contains our experiments and 
results. Conclusions and Future Work are found in Section 6 followed by 
References. 
 
2. Review of the State of the Art 
 
In their 1998 survey, Rui, Huang, and Chang summarized the advancements in 
CBIR and proposed open issues based on the state of the art methods [2]. The 
image feature representations discussed include color histogram, color moments, 
color sets, color layout, texture properties, wavelet representations, region-
based, and boundary-based descriptors.  

 

More recently, Mahmoudi et al. proposed a shape-based approach for image 
indexing and retrieval called Edge Orientation AutoCorrelogram (EOAC) [3]. The 
EOAC represents an image by a 2-dimensional histogram. One dimension 
depends upon the orientation of edges. The other dimension controls the 
distance neighborhood of edges in the same orientation. The authors showed the 
superiority of this technique over edge direction histogram. 
 

A popular research trend over the last few years is known as parts-based CBIR 
(also related to Multiple Instance Learning [4]). Techniques in this category 
represent images as a collection of parts (such as interest points or regions) and 
possibly part relations (such as inter-part distances, angles, or a description of 
the connecting path). Following part-detection, the image region associated with 
each part may or may not be normalized to achieve certain invariance properties. 
Feature descriptors are then computed for each part and part relation. Parts-
based representations may provide greater robustness to structural distortions 
such as warping or occlusion by preserving salient local structures while 
decoupling them from their spatial relationships. This contrasts with the ARP and 
AREH approaches which rely on maintaining spatial structure. 

The different parts-based methods are uniquely characterized by the subsequent 
steps for processing sets of features and calculating the similarity between them. 
Dongqing Zhang introduced the Attributed Random Graph method that can be 
used for image retrieval and near duplicate image detection [10]. Sivic and 
Zisserman developed an efficient image indexing approach for searching through 
video called Video Google [5]. Grauman and Darrell invented the Pyramid Match 
Kernel for image classification [6].  



For the Attributed Random Graph (ARG), image similarity derives from a 
probability ratio that depends on the distribution of features learned across pairs 
of labeled positive (duplicate) and negative (non-duplicate) images as well as the 
likelihood of transformation between sets of features from images pairs. By 
learning the distribution of part-based features from the image set, this method 
can adapt to any specific domain even if it grows or changes over time. Another 
important aspect of this technique is that it explicitly models part-relations by 
incorporating them into the probabilistic transformation, rather than treating 
proxomity constraints in a separate step.  

 

Video Google aims at allowing the user to crop any object or region in a frame of 
video and quickly return the other frames containing it. The authors accomplish 
this by reducing the CBIR challenge to the standard text-retrieval paradigm. 
First, image features are vector quantized according to a visual vocabulary 
defined by a set of global prototypes obtained by clustering the sets of features 
from a training pool of images. In this way, each image can be represented by a 
weighted frequency vector just as text documents are indexed by search engines 
such as Google. An inverted file accelerates the process by focusing the search 
only on candidate images which share visual terms with the query.  

 

The Pyramid Match Kernel avoids the probabilistic assumptions and complexities 
in the ARG method as well as the loss in discriminative power inherent in vector 
quantization approaches such as Video Google. Essentially, the idea is to take the 
high-dimensional feature space populated by features from two images and split 
the space by multiple histograms of increasing resolution. The similarity between 
two feature sets is calculated as the weighted combination of histogram 
intersections at corresponding resolutions. The authors claim that this technique 
approximates the optimal correspondences between the features. Advantages 
include high retrieval efficiency as well as robustness to noise and to variations in 
the sizes of sets (cardinality).  

 

As mentioned above, all parts-based CBIR methods require part detectors and 
feature descriptors. Certain invariance properties can not be obtained without 
choosing robust part detectors and features descriptors. Therefore, another 
avenue of our research concerns the optimal selection and tuning of these 
essential components. Popular part detectors include the Harris-Affine interest 
point detector [7] and the Maximally Stable region detector [8] used in Video 
Google. One of the most popular feature descriptors is Lowe�s SIFT descriptor 
[9]. 

 
 



3. Angular Radial Partitioning 
 
3.1 Method Overview 
 
The ARP approach consists of three major steps: First, preprocess the image 
(section 3.2), then partition the edge map into radial and angular sectors to 
make a histogram (section 3.3), and finally create the rotationally invariant 
descriptor by taking the 1D Fourier Transform of the histogram (section 3.4). 
The authors propose using the L1 distance metric (section 3.5). 
 
3.2 Preprocessing � grayscale, edge extraction, resize image 
 
There are three defined preprocessing steps: grayscale conversion, edge 
extraction, and image resizing. These steps are necessary to prepare the image 
for the histogram calculations in the next section. 
 
In step 1, project the color image into HSV color space. Then throw away the 
hue and saturation and keep the luminance (value) component to obtain a 
grayscale image. 
 
In step 2, perform edge detection on the grayscale image with an edge 
extraction operator, such as the Canny or Sobel edge operator.  
 
In step 3, normalize the edge map to W x W pixels. This resizing step attempts 
to achieve scale invariance for the image. Finally, threshold the edges to find the 
significant edges. Represent the edge pixels as 1�s and non-edge pixels as 0�s. 
 
3.3 Histogram Computation 
 
Partition the normalized edge map into M radial divisions and N angular divisions. 
The angle between adjacent angular partitions is θ = 2π/N and the difference in 
radius between successive concentric circles is ρ = R/M where R is the radius of 
the circle surrounding the W x W image. 
 
Next, count the number of edge pixels in each sector and form a histogram 
across all sectors: (insert formula here) 
  
3.4 FFT for Rotational Invariance 
 
An image rotation corresponds to a shift in the angular dimension of the 
histogram. Taking the 1-dimensional Fourier Transform of the discrete histogram 
yields an extra complex exponential due to this shift. We can thus theoretically 
achieve rotational invariance by taking the absolute value of the FFT across the 
angular dimension to remove this extra term. However, this only yields true 



rotational invariance if the rotation is a multiple of 2π/N. Otherwise the rotated 
pixels will be divide between adjacent partitions, and the histogram will distort 
such that the absolute FFT will no longer compensate for this rotation. The 
absolute 1D FFT is computed in the angular dimension, thus the resulting feature 
is still 2-dimensional. 
 
 
3.5 Distance Metric 
 
The L1 �Manhattan� distance is taken between two images. It is the sum of the 
absolute differences between corresponding terms in the 2-dimensional ARP 
feature. (insert L1 formula here). 
 
4. Angular Radial Edge Histogram 
 
4.1 Method Overview 
 
The Angular Radial Edge Histogram (AREH) was developed independently and 
without knowledge of the ARP method. There are just a few key differences 
between them as presented below. 
 
4.2 Preprocessing Steps � grayscale, edge extraction 
 
Similar to the ARP preprocessing steps, the AREH requires conversion of the 
image to grayscale and edge extraction. However, image rescaling is not 
performed. 
 
4.3 Histogram Computation 
 
In contrast to the ARP method, the AREH does not fit a circle around the image 
for radial standardization. Instead, the center of mass (centroid) of the edge 
pixels are found and the maximum radius, R, is chosen as the largest distance 
between any pixel and the centroid.  
 
Due to the different normalization method, our approach achieves invariance to 
scaled content within the same image size.To state this in another way, we 
expect to compute similar features for two images in which one has a scaled 
version of the content of the other while the sizes of both images are equal or 
different. 
 
Apart from this difference, the histogram computation is the same as in the ARP. 
We divide the image into M x N partitions and count the number of pixels in each 
sector. 
 



4.4 FFT for Rotational Invariance 
 
As in the ARP method, we take the absolute value of the 1D FFT along the 
angular dimension of the 2D histogram to achieve rotational invariance. The 
motivation for doing this is the same as in the ARP. By truncating the FFT, the 
feature descriptor size may be reduced without sacrificing much retrieval 
accuracy. 
  
4.5 Grid Features for Partial Images 
 
The partial image distortion represents a particularly challenging obstacle to the 
ARP method. In this image variation, some of the content has been replaced by 
a uniform color so that an area of the edge map disappears. This may shift the 
centroid of the edge pixels to a different location and change the global 
histogram significantly. 
 

 
Figure 2 : Flow Diagram shows Original Schematic on Left, Binary Edge Map in Center, 
and Grid Partitions on Right 

 
To counter this effect, we divide the edge map up into a grid of Q x P 
rectangular regions. Then for each grid region, calculate the AREH feature based 
on the center point of the region (not the centroid). These grid features are 
obtained in addition to the global feature that uses the centroid for distance 
calculations. Thus, we have 1 + QxP AREH features for each image. 
 
The grid approach is based on the assumption that only those grid regions 
affected by the distortion will change while the remaining regions will remain 
unchanged. The obvious drawback to this technique is that it also assumes no 
simultaneous geometric variations such as translation, rotation, or scaling in 
addition to the partial image distortion. If a combination of distortions were to 
occur simultaneously, then the global feature and all grid features could change 
dramatically yielding very little invariance. 
 
An alternative method to combat the partial image distortion would be to take 
the normal global feature that uses the edge centroid in addition to another 



global feature that uses the image center point. Fixing the reference point at the 
center on the global scale should yield a feature that is equally invariant to the 
partial distortion, yet would similarly be sensitive to concurrent distortions such 
as translation. Thus, we would obtain two global features in this way, rather than 
the 1+QxP features obtained using the grid approach. Although this would be 
simpler and less computationally intensive than the grid approach, the author did 
not have time to evaluate this alternative. 
 
4.6 Similarity Metric 
 
Two issues are apparent upon considering the choice of similarity metric 
between AREH features. First, we note strong reasons why the L1 distance is not 
optimal for comparing features, although the inventors of the ARP approach used 
this. Second, a balance must be found in weighting the relative importance of 
the similarity among the grid features versus the global features.  
 
The authors of the ARP method suggest using the L1 distance between features, 
but without any justification. However, there are some situations in which the L1 
distance would not be optimal. Consider two images where one has the same 
edge shape as the other, but just contains fewer edge pixels in each bin of the 
histogram. The L1 distance would be large between the features, even though 
they are very similar. Thus, a more appropriate distance or similarity metric 
would look at the correlation of the features, rather than just the difference in 
magnitude.  
 
We suggest using the cosine distance (correlation) between features instead of the L1 
distance metric. Two features, A and B, can be represented as matrices with elements 
indexed by the variables i and j. Then the formula (1.1) gives the correlation : 
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The value of the cosine distance extends from a minimum of �1 for signals with 
an angle of pi between them to a maximum of +1 for signals with angles of zero 
or 2pi. The cosine distance metric compares the angle between two signals 
rather than the difference in magnitude which is what the L1 distance measures. 
This property of the cosine distance metric helps make it invariant against 
relative in-plane scaling of the image content. 
 



The AREH yields a set of features for each image: the global feature and the grid 
features. The global feature will help match images that do not suffer from the 
partial image distortion while the grid features will. We could perhaps give a 
relative weighting to the importance of the grid features if we knew a priori what 
proportion of images in our dataset had the partial variation. Lacking this 
knowledge, we consider the two types of features equally important and thus we 
need a corresponding way to combine them. 
 
As mentioned previously, the correlation between two global features will have a 
maximum value of 1 if a perfect match is found. Thus, we also want the grid 
feature similarity to have a maximum value of 1 so that it can be equally 
weighted with the global features.  
 
An obvious way to accomplish the goal of normalizing the grid similarity is to 
take an average over all the similarities between corresponding grid features. 
However, this unfortunately gives very low similarities among the grid features 
for a partial image compared with the original. If half of the grid features are 
zero due to partial distortion, then the largest averaged grid similarity would be 
½. Doing this would make the partial image similarity much weaker against the 
global features in a situation where it is actually the more important part. Thus, 
we do not want to average over all the grid features, but just those for which the 
query has non-zero grid features.  
 

 
Figure 3 : Representation of similarity calculations from Global and Grid features. Left 
column shows features for the Query image. Middle column shows features for the Target 
image. Right column shows the cosine distance values between corresponding features. 

 ( )Similarity = 0.4 0.0 0.2 0.0 0.3 0.4 - 0.1 0.1 7 0.53+ + + + + + =  (1.2) 



 
Figure 3 represents the similarity calculations for the global and grid features. 
Since the query features have 7 non-zero grid features, only the corresponding 
set of similarity values is averaged, not all 9. The final similarity results from the 
sum of the global and averaged grid similarity values. 
 
In summary, our similarity procedure finds the correlations between all 
corresponding pairs of features at the global and grid level. The set of grid 
correlations is then averaged by the number of non-zero query grid features and 
then this average is added to the global correlation to produce an overall 
similarity metric that will be close to 0 for dissimilar images and close to 2 for 
perfectly identical images. 
 
5. Notable Differences between ARP and AREH 
 
The AREH contains several techniques that do not exist in the ARP. They are the 
inclusion of a noise removal step, a modified radial partitioning method, a grid 
approach, and a different similarity metric. 
 
The noise removal step makes the AREH more robust to noise than the ARP. 
Using the centroid for the global feature rather than the image center makes the 
AREH translation invariant. Normalizing the distances by the maximum edge 
distance makes the AREH invariant to scaled content in a static image size while 
the ARP is only invariant to whole image scaling. For the AREH, the grid 
approach achieves invariance to the partial image distortion in the absence of 
other distortions. Finally, using the correlation instead of the L1 distance metric 
should make the AREH better at finding similar images when the edge shapes 
are similar despite differences in the number of edge pixels. 
 
6. Experiments 
 
6.1 Retrieval Task 
 
We tested the performance of the AREH for an image retrieval task. The goal 
was to use a distorted version of an original as the query into the original dataset 
and rank the images such that the original match would appear near the top of 
the results.  
 
6.2 Dataset 
 
Our dataset contains 12 sets of 1200 JPEG images size 826x1169 in 24 bit color 
depth. One of the sets contains the original images while each of the other 
folders has a different distortion applied to it. The original images are scanned 
pages from a technical manual and have no colors besides shades of gray. 



Distorted versions were created artificially to simulate the various effects. 
Examples appear below. 
 

                        
Original        Scaled   In-Plane Rotation  Shifted 

             
Exposure         Nth Copy  Creased   Crumpled 

           
Handwriting        Photograph Cropping 
 
 

                     
Original        Scaled   In-Plane Rotation  Shifted 

          
Exposure         Nth Copy  Creased   Crumpled 

      
Handwriting        Photograph Cropping 



 
6.3 Implementation and Experiments 
 
In our implementation of the AREH, the Sobel edge operator was used to detect 
edges. In the noise removal step, clusters with 20 or fewer pixels were removed. 
We used 3x3 overlapping regions for the grid computation. Each grid region 
overlapped with about 2/3 of any neighboring region. We used 100 radial bins 
and 360 angular bins for each image. 
 
 
 
We used the 2D FFT instead of the 1D FFT. The 2D FFT showed slight 
improvement in retrieval performance for a few test cases, so we continued to 
use it. However, we do not think it is any better than the 1D FFT for gaining 
rotational invariance. 
 
We conducted a series of experiments with the assumption that the lower 
frequencies of the Fourier spectrum represent the histogram content the best. 
The experiments tested varying feature dimensionalities by extracting different 
regions from the 2D FFT of the 100x360 dimension AREH histogram.  
 
Our first experiment varied the feature dimensionality but only used between 
global descriptors for retrieval (results in Table 2). The second experiment varied 
the feature dimensionality using both the global descriptor and all nine grid 
descriptors in the fusion scheme described in section 3.6 (results in Table 3).  
 
6.4 Evaluation Metric 
 
We assume that the user wants to see the matching image on the first �page� of 
the ranked result set. Taking a page size to be 21 returned images, we define 
our evaluation metric as the percentage of all non-empty (contains edge content) 
queries that return a match in the top 21 results.  
 
6.5 Results 
 
The full feature using 10 transforms (25 radial dimensions, 90 angular 
dimensions) requires about 180 x 103 bytes of disk space per image, regardless 
of image size or complexity. 

 

The color codes in Table 1 should simplify the visual understanding of our 
evaluation.  

 



Note that the average matching time per query is not very stable. Although it 
correlated with the size of the feature, it also highly depended on the CPU load 
of the server used to run the simulations. Thus, there was some fluctuation, 
since the servers were shared with other research students. 

 

From the results, it is clear that the AREH descriptor is robust to Affine 
transformations including scaling, rotation, and translation. It also displays 
robustness to physical variations including exposure, nth copy, creasing, 
crumpling, handwriting, and rasterization. 
 
We observe that the global descriptor struggles with the partial and photo 
distortions. As expected, the grid feature improved performance in the partial 
variation significantly. Performance improvement occurs also for the photo 
distortion. This can probably be explained by considering the effect of an artificial 
border introduced by the photo distortions. A border around the edge of an 
image could significantly affect the location of the edge centroid. However, since 
the grid features use the centers of the grid areas, an image edge would not 
have as great of an effect. 
 
We note that for many distortions, a drastic reduction in feature dimensionality 
does not change retrieval performance significantly. Ultimately, the choice of 
feature size will depend on the retrieval specifications and storage capacity of the 
user�s system. 



Angular Radial Edge Histogram �Page 1� Results 

Color Codes 
Perfect 
100% 

Near-
Perfect 

95-100%
Good 

90-95% 
Moderate
80-90% 

Poor 
70-80% 

Failing 
under 70% 

Table 1 : Page 1 Evaluation Metric Color Codes 

 
Page 1 Evaluation Measurements for Global Descriptor 

Radial Dimension  25 15 10 10 5 10 5 4
Angular Dimension  90 45 20 10 10 5 5 4
Total Dimension Per 
Transform 2250 675 200 100 50 50 25 16
1 Scaled  99.75 99.08 98.91 99.00 98.91 98.66 98.50 98.08
2 Rotated  99.67 99.50 99.42 99.42 99.42 98.91 99.00 99.00
3 Shifted  99.83 99.50 99.50 99.58 99.83 99.83 99.75 99.58
4 Exposure  88.80 88.21 88.21 88.13 88.13 87.79 87.88 88.04
5 Nth Copy  98.50 98.25 98.33 98.25 98.33 98.00 97.92 97.75
6 Creased  99.92 99.75 99.75 99.75 99.75 99.67 99.67 99.58
7 Crumpled  89.50 87.75 89.00 88.67 89.75 85.50 85.83 80.00
8 Partial  31.65 28.35 28.02 28.60 27.43 27.43 27.51 26.25
9 Handwriting  87.33 83.75 84.17 85.00 86.00 83.00 81.42 75.67
10 Photo  68.25 62.67 64.25 64.25 65.42 56.33 55.83 45.42
11 Rasterization  96.41 94.31 94.73 95.07 95.65 94.57 94.48 92.81
Average Score  87.24 85.56 85.84 85.88 86.24 84.52 84.34 82.02
Avg Match Time Per Query 
(sec)  2.67 2.04 2.63 2.60 1.87 1.86 1.85 1.89

Table 2 : Retrieval Results using only Global descriptor 

 
 
 



 
Page 1 Evaluation Measurements for Global + 3x3 Grid Descriptor 

Radial Dimension  25 15 10 10 5 10 5 4
Angular Dimension  90 45 20 10 10 5 5 4
Total Dimension Per 
Transform 2250 675 200 100 50 50 25 16

Total Dimension Per Image 22500 6750 2000 1000 500 500 250 160
1 Scaled  100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.92
2 Rotated  95.83 92.98 90.38 87.12 81.77 78.26 71.57 61.37
3 Shifted  99.83 99.75 99.75 99.75 99.67 99.67 99.50 98.58
4 Exposure  91.64 91.97 99.75 90.64 90.55 90.55 90.55 90.38
5 Nth Copy  99.25 99.33 90.56 99.25 99.25 99.25 99.25 99.08
6 Creased  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 Crumpled  95.17 93.75 94.92 95.42 95.58 95.33 95.33 94.50
8 Partial  77.55 71.73 63.88 57.05 53.08 53.08 47.76 44.22
9 Handwriting  97.00 96.58 96.08 96.00 95.92 95.08 94.92 94.50
10 Photo  81.42 70.58 71.42 73.92 74.75 73.67 73.83 71.50
11 Rasterization  99.75 99.67 99.67 99.58 99.50 99.67 99.58 99.50
Average Score  93.51 92.40 91.46 90.79 90.00 89.26 88.39 86.69
Avg Match Time Per Query 
(sec)  22.84 11.15 17.85 17.41 12.58 11.85 16.20 15.53

Table 3 : Retrieval Results using Global + Grid Descriptors 

 
6. Conclusions and Future Work 
 
We presented a new image feature that extends the work of the ARP method. 
The AREH shows good robustness to many types of distortions. Its benefit over 
the ARP is improved robustness against noise and partial images, scaled content 
in static image size, and a more intuitive similarity metric. 
 
Both the ARP and AREH suffer from requiring the user to tune many design 
parameters. This might afford these approaches flexibility over a wide range of 
application areas, but it also means that many users will find these techniques 
quite demanding to work with. 
 
The strength of these image descriptors lies in their ability to retain the relative 
spatial geometry of the image in a robust and compact form. This contrasts with 
other image features such as color histograms and moment-based features that 
lose a sense of spatial structure. 
 
In the future, we would like to further investigate the effect of varying the design 
parameters such as the number of angular and radial partitions. Additionally, we 
would like to see if comparable retrieval accuracy can be achieved by computing 
smaller initial AREH histograms before taking the Fourier transform. 



 
In addition, it would be interesting to try a soft binning approach rather than a 
hard assignment of edge pixels in to the histogram bins. The choice of edge 
detector and edge threshold can be investigated as well as different noise 
removal schemes. We might also try to compare the grid approach to a fixed 
global feature that uses the image center.  
 
Finally, it should be noted that this feature does well for the given problem, that 
of matching a distorted image to its original version. However, neither the ARP 
nor the AREH would probably do well for finding semantically similar images with 
quite different edge maps, because these methods are highly sensitive to the 
edge structure. 
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