
COMPLEXITY ADAPTIVE H.264 ENCODING FOR LIGHT WEIGHT STREAMS

Yong Wang, Shih-Fu Chang

Digital Video | Multimedia Group, Dept. of Electrical Engineering, Columbia University
1312 Mudd, 500 W 120 Street New York, NY 10027

ABSTRACT
Emerging video coding standard H.264 achieves significant efficiency
improvements, at the expense of greatly increased computational
complexity at both the encoder and the decoder. Most prior works
focus on reducing the encoder complexity only. In this paper, we
develop a novel approach to reduce the decoder complexity without
changing any implementation of standard-compliant decoders. Our
solution, called complexity adaptive motion estimation and mode
decision (CAMED), involves several core components, including a
rigorous rate-distortion-complexity optimization framework, com-
plexity cost modeling, and a complexity control algorithm. Such
components are incorporated in the encoder side. Experiments over
diverse videos and bit rates have shown that our method can achieve
significant decoding complexity reduction (up to 60% of interpola-
tion computation) with little degradation in video quality (≤ 0.2dB)
and very minor impact on the encoder complexity. Results also show
that our method can be readily combined with other methods to re-
duce the complexity at both encoder and decoder.

1. INTRODUCTION

H.264 is the latest ITU-T/MPEG joint video coding standard [1]. It
incorporates a set of advanced techniques, such as variable block
size motion estimation and context adaptive binary arithmetic cod-
ing [1]. As a consequence H.264 achieves significant improvement
in rate-distortion (R-D) efficiency compared to existing standards at
the cost of considerably increased computational complexity [2]. To
address this problem, many works have been proposed for complex-
ity reduction, mostly focusing on either the encoder algorithm sim-
plification or hardware design optimization. Among those, Tourapis
extended the EPZS (Enhanced Predictive Zonal Search) algorithm
to reduce the motion estimation (ME) cost [3]. Yin et al proposed a
fast mode decision method to speed up ME procedure [4]. Zhou et
al implemented H.264 decoders based on Intel’s single-instruction-
multiple-data (SIMD) architecture to reduce the decoding complex-
ity of H.264 [5].

In this paper, we focus on algorithmic-level solutions to reduce
the computational cost at the H.264 decoders. Our effort has been
motivated by the fact that a large number of mobile or handheld de-
vices begin to support video applications. However, playback of
complex video streams (such as H.264) on such devices still re-
quires a lot of computations [2]. Algorithmic solutions for reducing
computational cost at the decoder will nicely complement other so-
lutions for simplifying encoder-side cost and other solutions based
on hardware-level approaches. Specifically, we define our problem
as follows - how to modify the non-normative part of H.264 en-
coder algorithm so that the encoded video streams can be decoded
with much less computational cost by any standard-compliant de-
coder, while keeping the video quality degradation (if any) mini-
mal. Our solution, called complexity adaptive motion estimation

and mode decision (CAMED), provides a systematic method to ef-
fectively reduce the cost of the most expensive component at the
algorithm level. Our system includes several novel components: a
rigorous rate-distortion-complexity (RDC) optimization framework,
complexity cost modeling, and a complexity control algorithm. The
experiments over different video contents and bit rates have con-
firmed the excellent performance of the proposed solution - saving
of up to 60% of interpolation operations within 0.2dB of video qual-
ity difference. When combined with other methods intended for en-
coder cost reduction, our solution also demonstrates very promising
performance.

The remainder of this paper is organized as follows. Section2
provides an overview on motion estimation and mode decision in
H.264. Section 3 introduces our proposed CAMED framework.
Section 4 reports the experiment results and analysis. The conclu-
sion is given in Section5.

2. MOTION ESTIMATION AND MODE DECISION

2.1. Sub-pixel interpolation

We discuss the most complex operation, sub-pixel interpolation, in
H.264 decoder in this section. H.264 applies up to quarter pixel pre-
cision to enhance the performance of the motion estimation (ME)
and motion compensation (MC) processes. The reference blocks lo-
cated at sub-pixels are obtained through interpolation [1]. Figure 1
illustrates the details of this procedure, where gray blocks with cap-
ital letters indicate the integer locations and the white blocks with
lowercase letters the sub pixels. All half-pixel locations undergo 6-
tap FIR filtering horizontally and/or vertically. All quarter-pixel lo-
cations undergo 2-tap average filtering using integer and half pixels.
The amount of filtering operations varies depending on the exact lo-
cation of the pixel.Table 1lists the possible interpolation operations
and the associated complexity. It is clear that different interpolation
methods have different computing complexities. According to the
benchmark data in [2], interpolations dominate the computational
complexity (up to 50%) of H.264 decoding. Therefore, reducing the
interpolation amount (especially 6-tap filtering) can decrease the de-
coding complexity. Our statistical analysis shows that 40% to 80%
of motion vectors are located on sub pixels with different interpo-
lation complexities. Therefore one intuitive idea for complexity re-
duction is to change motion vectors from high complexity sub pixel
positions into the ones with low complexity, or even to integer-pixel
positions. However, doing so may adversely affect the ME perfor-
mance and thus the final video quality. Therefore, we need a system-
atic framework for intelligently determining the types of the motion
vectors in order to optimize the tradeoff between quality, bitrate, and
computational complexity.

G
 a
 b
 c
 H

d
 e
 f
 g

h
 i
 j
 k
 m

n
 p
 q
 r

F
E
 I
 J

M
 N
L
K
 P
 Q

cc
 dd
 ee
 ff

s

Fig. 1. Notations for sub-pixel locations in H.264.

Table 1. Sub pixel locations and their interpolation complexities
Sub Pixel Type Points Interpolation

(0, 0) G No
(0, 1

2
, (1

2
, 0) b, h 1 6-tap

(0, 1
4
), (1

4
, 0), (0,3

4
), (3

4
0) a, c, d, n 1 6-tap + 1 2-tap

(1
4
, 1

4
), (1

4
, 3

4
), (3

4
, 1

4
), (3

4
, 3

4
) e, g, p, r 2 6-tap + 1 2-tap

(1
2
), (1

2
) j 7 6-tap

(1
2
, 1

4
), (1

4
, 1

2
), (3

4
, 1

2
), (1

2
, 3

4
) i, f, k, q 7 6-tap + 1 2-tap

2.2. Block mode

H.264 defines a diverse set of block mode options. Besides the
conventional modes of intra, forward, backward, bi-directional, two
more important modes are introduced. First, H.264 allows to par-
tition an macroblock (MB) into several blocks with variable block
size, ranging from 16 pixels to 4 pixels in each dimension. An MB
can comprise up to 16 blocks. Each block can have its individual
motion vectors. Second, the SKIP/DIRECT mode is utilized for the
P/B frame to further increase the coding efficiency. The basic idea
is to use the spatial/temporal neighbor motion vectors to predict the
motion vector of the current block, without sending extra bits to en-
code the current motion vector. Details regarding the SKIP/DIRECT
mode can be found in [1].

Block mode has direct impact on the decoder computational
complexity, because it determines what kind of motion vectors is
recorded in the bit stream. R-D framework is usually conducted in
motion estimation and mode decision [6]. Optimal selection of the
block mode and the associated motion vectors is the main problem
addressed in our work, where a systematic solution is derived.

3. COMPLEXITY ADAPTIVE MOTION ESTIMATION
AND MODE DECISION

Given defined metrics for signal distortion and computational com-
plexity, CAMED explores the tradeoff between video quality and
resource consumption (both bit rate and computational complexity
at the decoder) to determine the optimal motion vectors and block
mode used in the MC process in the decoder. CAMED consists
of several components: the RDC joint optimization framework, the
complexity cost modeling, and the complexity control algorithm.

3.1. The Rate-Distortion-Complexity optimization framework

In CAMED, the optimal motion vectorV∗ for each blockB is se-
lected through a RDC joint cost function and the Lagrange multiplier
method:

V∗(B, M) = arg min
V
{JR,D

MOTION (V|B, M) (1)

+γMOTIONCMOTION (V|B, M)}

whereM indicates the current block mode,CMOTION is the
complexity cost associated with the selected motion vector(V|B, M),
γMOTION is the Lagrange multiplier for the complexity term,JR,D

MOTION

is the R-D joint cost function defined in [6].
Similarly the optimal block modeM∗ is found by the following.

M∗(MB, QP) = arg min
M
{JR,D

MODE(M |MB, QP) (2)

+γMODECMODE(M |MB, QP)}
whereCMODE is the complexity cost associated with the block

mode,γMODE is the Lagrange multiplier,JR,D
MODE is the R-D joint

cost function defined in [6]. WhenγMODE , γMOTION = 0, the
solutions of Equation (1) and Equation (2) are identical with con-
ventional R-D framework. Considering the difference between dis-
tortion values used in Equation (1) and Equation (2) (mean of ab-
solution difference or MAD, and mean of squared error or MSE re-
spectively), the following relationship is justified empirically [6].

γMOTION =
√

γMODE (3)

3.2. Complexity cost modeling

In the joint cost function described above, we need a quantitative
model to estimate the complexity associated with each candidate
motion vector and block mode. The computational complexity is
heavily influenced by the type and the location of the motion vector
and the interpolation filters used in the MC process. If we just fo-
cus on the interpolation filtering cost, quantitative estimates of such
complexities can be approximated by the number of filtering opera-
tions needed in interpolation, as listed inTable 1. Furthermore, fil-
tering of different lengths incur different computational costs. Con-
sidering 6-tap filtering is much more complex than 2-tap one, a sim-
plified cost function model based onTable 1is as follows:

cP (V) =





0 V is integer MV
1 V is subpixel a, b, c, d, h and n
2 V is subpixel e, g, p, r
7 V is subpixel i, j, f, k, q

(4)

Our optimization framework is general and other cost models
can be easily incorporated into Equation (1) and (2). For example, a
combined metric taking into account both numerical operations and
memory access transactions may be used to more accurately model
the power consumption condition in some specific mobile devices.

Each block may be associated with multiple reference blocks,
each of which needs a motion vector. For example, for bi-directional
prediction, each block may need two motion vectors for forward and
backward prediction respectively. Thus, the computational cost for
a block B with the block modeM is calculated as:

CMOTION (V|B, M) =
∑

j

(
cB(Vj , M, B)

)
(5)

where the summation is over each reference block. Each MB
may consist of several smaller blocks, depending on the block mode,
M . The overall computational cost associated with a MB and a block
mode can be calculated as:

CMODE(M |MB) =
∑

i

∑
j

(
cB(Bi,Vj , MB)

)
(6)

wherei is the index of the individual blocks contained in the
MB, andj is the index for multiple motion vectors associated with a

single block. Equation (5) and Equation (6) are generic and applica-
ble to all inter-coded block modes, including foreword/backward/bi-
directional ME and SKIP/DIRECT mode.

3.3. Complexity control

The RDC framework above allows us to find optimal motion vec-
tors and block modes with respect to the given constraints of bit rate
and computational complexity. Given the overall computational re-
source, we also need a method to allocate the complexity resource
among the coding units and to determine parameters like Lagrange
multiplier γMODE to be used in the optimization procedure. for
each coding unit. Solutions to such problems are called complexity
control methods, analogous to rate control methods used in conven-
tional video coding. In this section, we describe two components of
the complexity control algorithm - the complexity modeling and the
buffer management.

3.3.1. Complexity modeling

In complexity control, we need a model for predicting the relation
between the control parameter (γMODE in our case) and the result-
ing complexity. This is analogous to the rate modeling relationship
used in practical video coding. However, so far there is very lit-
tle knowledge available for such prediction model. Therefore, we
resort to our empirical observations from experimental simulations.
Specifically, we have found a reasonable log-linear model as follows.

CMODE = D
(
K1 ln(γMODE) + K0

)
(7)

whereCMODE is the computational complexity,D is a factor
characterizing the video content (e.g., scene complexity and motion
activity). K0, K1 are the model parameters that needed to be de-
termined empirically. Due to different coding mechanism, P and B
frames will have distinguished model parameters and need to be han-
dled separately. Using the above model,γMODE(t) for the current
coding unitt can be determined by the following.

γMODE(t) = exp

{
CMODE(t)−K0D(t)

K1D(t)

}
(8)

whereCMODE(t) is the allocated budget of computational re-
source and andD(t) is the content feature extracted from the current
coding unit. We have developed some content features (such as aver-
age motion vector magnitude and average DCT coefficient energy)
approximating the content characteristics. Details about such fea-
tures and fitting of the above complexity model can be found in [7].

3.3.2. Buffer management

Complexity buffer is a virtual buffer to simulate the complexity us-
age status on the decoder side. It is analogous to the rate buffer
used in the rate control to update the estimation of available resource
and avoid issues of buffer overflow or underflow. DenoteCGOP the
complexity budget available for the current group of pictures (GOP),
NP , NB the remaining numbers of P, B frames respectively, andη
the complexity ratio between P and B. The target complexity lev-
els for P, B frameCP , CB are calculated by solving the following
equations:

CB

CP
= η (9)

NP CB + NBCB = CGOP (10)

OnceCP , CB are available,γMODE(t) is determined using Equa-
tion (8). The formulations in Equation (9) and Equation (10) assume
the basic coding unit as one frame. It can be easily extended to
smaller units for a finer granularity.

4. EXPERIMENT RESULTS

In our experiment H.264 reference codec of version JM82 was used.
Both Main and Baseline profiles were evaluated. Unless specified
elsewhere, full search is used in ME. The experiment was carried
on for four sequences (Akiyo, Stefan, ForemanandMobile at CIF
resolution) and only the results forForemanare presented here due
to space limitation, though similar performance was observed for all
of them.

4.1. Rate-distortion-complexity performance in CAMED

Figure 2 lists the rate-distortion performance together with rate-
complexity results by differentγMODE values using Main profile.
The remaining complexity are relative to original JM82 results. The
additional complexity in encoding (see Equation (1) and (2)) is
trivial and will not be discussed here. Several important findings
are in order. First, adjustingγMODE is an efficient way to control
the computational complexity. A considerable ratio of interpolation
computation can be saved with much smaller quality degradation.
Secondly, the video quality is well maintained when the complex-
ity is reduced. Up to 60% of the 6-tap interpolation computational
cost can be saved without visible impairment (see500Kbps with
γMODE = 20 and PSNR drop about 0.2dB). Subjective perceptual
quality evaluation also provided confirmative conclusion.

The reason of the above excellent performance can be attributed
to the statistical characteristic of video signals. In ME not every
sub-pixel motion vector is equally important in predicting the refer-
ence signal required in the motion compensation process. Moving
less critical ones to the alternatives with reduced complexity will not
dramatically increase the prediction error, but will help significantly
in reducing the computational cost at the decoder. This important
feature, however, could not be utilized using R-D framework. Our
proposed CAMED can efficiently take advantage of this.

4.2. Compatibility with fast motion estimation

Fast motion estimation (FME) is widely used in video encoding ap-
plications in order to reduce encoding complexity. In FME not all
pixels (sub pixels) are checked, which might have potential influ-
ence on CAMED in that the optimal motion vector with best RDC
performance might be skipped. We also investigate the compatibil-
ity of our CAMED with FME. The experiment results in this section
were obtained using the Baseline profile. FME was switched on for
integer motion vectors, and subpixel ME use either 3-step full search
(FS) [4] or fast fractional motion estimation (CBFPS, or center bi-
ased fractional pel search, the algorithm described in [8]).

Table 2 lists the result at400Kbps. Four options are compared:
FS, CBFPS, FS+CAMED, and CBFPS+CAMED. Several conclu-
sions can be drawn. First, though CBFPS can efficiently reduce the
encoding complexity, it has small contribution to decoding complex-
ity (e.g., we observed 2.0% saving forStefanin our experiment).
This is reasonable because CBFPS (and other FME algorithms) ac-
tually does not take into account the decoder complexity in its de-
sign. Second, the combination of CAMED with the encoder-side
simplification method (CBFPS) can effectively reduce the complex-
ity at both the encoder and the decoder (64.75% and 74.28% for en-

0
 500
 1000
 1500
29

30

31

32

33

34

35

36

37

38

39

40

41

42

Foreman PSNR

Bitrate (Kbps)

P
S

N
R

(d
B

)

H.264

Lamda=5

Lamda=20

Lamda=50

H.264 JM82

Gamma = 5

Gamma = 20

Gamma = 50

Gamma = 200

Gamma = 500

0
 500
 1000
 1500

0

10

20

30

40

50

60

70

80

Foreman Complexity

Bandwidth (kbps)

R
em

ai
ni

ng
 C

om
pl

ex
ity

(%
)

Lamda=5

Lamda=20

Lamda=50

Lamda=200

Lamda=500

Gamma = 5

Gamma = 20

Gamma = 50

Gamma = 200

Gamma = 500

Fig. 2. Performance of rate-distortion and rate-complexity using the
proposed CAMED system. Note the complexity includes only the
6-tap interpolation computation required for reconstructing the ref-
erence signals in the decoder, the most demanding component in
decoding.

coding and decoding saving respectively). The quality degradation
is very small (0.206dB). This demonstrates that CAMED has very
good compatibility with FME algorithms. We believe this result is
very significant for real applications in order to achieve encoding-
decoding joint complexity reduction.

4.3. Complexity control

During complexity control, the basic operations are to adjustγMODE

and manage the complexity buffer. In our experimentγMODE was
initialized to 10 for all sequences and adjusted during complexity
control. Table 3 summarizes the performance of complexity con-
trol at 100Kbps with baseline profile. These results confirm that
large savings of the computational complexity can be achieved with
small quality degradation when the complexity control process is in-
corporated. Complexity control error is calculated as the difference
between the actual resulting complexity and the target complexity,
normalized by the target complexity. Our results in Table 3 also show
that the complexity control process is working effectively, adaptively
updating the control parameterγMODE in allocating resource over
multiple coding units and meeting the overall resource constraint.

5. CONCLUSIONS

We present a novel complexity adaptive motion estimation and mode
decision (CAMED) method and use it to effectively reduce the decoder-
side computational cost required at the H.264 decoder. Our extensive

Table 2. Evaluation of compatibility with Fast ME (FME):Foreman
PSNR(dB)† Encoding

Saving\
Decoding
Saving]

FS 36.024 0.00% 0.00%
CBFPS -0.044 61.80% 17.39%
FS+CAMEDγ = 10 -0.147 0.00% 70.08%
CBFPS+γ = 10 -0.206 64.75% 74.28%
† Except for FS, other values indicate the quality degradation
\ Encoding saving is based on the amount of checked sub pixels
] Decoding saving is based on the amount of interpolations

Table 3. Complexity control performance (100Kbps)

Target Complexity (6-tap Interpolation) 10K 20K 30K
Complexity control error (%) 5.00 1.50 3.38

Foreman Complexity saving (%) 81.70 65.67 45.95
Quality degradation (dB) 0.16 0.09 0.03

experiments using JM82 reference software over different video se-
quences, different bit rates, and different complexity levels demon-
strate the power of the proposed system. Up to 60% of the interpo-
lation complexity can be saved at the decoder without incurring no-
ticeable quality difference (within 0.2 dB). The proposed complexity
control scheme can reliably meet the target complexity requirement
for a wide range of video content. We have also shown that it can be
effectively combined with other methods to jointly reduce the com-
putational complexity at both the encoder and decoder sides.

References
[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and et al, “Overview

of the h.264/avc video coding standard,”IEEE Trans. Circuits
Syst. Video Technol., , no. 7, pp. 560–576, Jul. 2003.

[2] V. Lappalainen, A. Hallapuro, and T.D. Hamalainen, “Complex-
ity of optimized h.26l video decoder implementation,”IEEE
Trans. Circuits Syst. Video Technol., , no. 7, pp. 717–725, 2003.

[3] A. M. Tourapis, “Enhanced predictive zonal search for sin-
gle and multiple frame motion estimation,” inProceedings of
VCIP’02, Jan 2002, pp. 1069–1079.

[4] P. Yin, A. M. Tourapis, H.-Y. Cheong, and J. Boyce, “Fast mode
decision and motion estimation for jvt/h.264,” inProc. ICIP’03,
14-17 Sept. 2003, vol. 3, pp. 853–856.

[5] X. Zhou, E. Li, and Y.-K. Chen, “Implementation of h.264 de-
coder on general-purpose processors with media instructions,”
in Proc. VCIP’03, Jan. 2003.

[6] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for
video compression,”IEEE Signal Processing Magazine, vol. 15,
no. 6, pp. 74–90, Nov. 1998.

[7] Y. Wang and S.-F. Chang, “Motion estimation and mode deci-
sion for low-complexity h.264 decoder,” Tech. Rep. 210-2005-4,
Columbia University DVMM Group, 2005.

[8] Z.B. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional
pel motion estimation for jvt,” inJVT of ISO/IEC MPEG and
ITU-T VCEG, JVT-F017, Awaji, Japan, 5-13 Dec. 2002.

	 Introduction
	 Motion estimation and mode decision
	 Sub-pixel interpolation
	 Block mode

	 Complexity Adaptive Motion Estimation and Mode Decision
	 The Rate-Distortion-Complexity optimization framework
	 Complexity cost modeling
	 Complexity control
	 Complexity modeling
	 Buffer management

	 Experiment Results
	 Rate-distortion-complexity performance in CAMED
	 Compatibility with fast motion estimation
	 Complexity control

	 Conclusions

