
EE 6850 Project, VisGenie 12/16/2001

 Page 1 of 9

VisGenie: a Generic Video Visualization System

Yong Wang
 Dept. of Electrical Engineering

Columbia Univ.
ywang@ee.columbia.edu

Lexing Xie
Dept. of Electrical Engineering

Columbia Univ.
xlx@ee.columbia.edu

ABSTRACT
In this project, we designed and realized VisGenie, a generic system for visualizing
multimedia streams and the associated metadata stream. Information visualization is not
only useful for end users, but also beneficial for researchers who work on analyzing the
media data and improving our understanding and presentation of multimedia information.
The basic building blocks of the system include: the media renderer, the curve drawer,
the frame display, the scalable event display, the system initializer, and the external data
interface. And the integration of these blocks provides the flexibility and extensibility to
different kinds of applications. Prospective applications range from signal- level
processing to semantic analysis of multimedia data, and in this report, we present three
examples: video coding, shot boundary detection, and soccer video analysis.

I. INTRODUCTION
In this project, we introduce VisGenie, a generic multimedia visualization system. The
role of our system is to visualize the audio-visual stream, along with its associated
metadata stream. The metadata not only include high- level concepts as most existing
visualization systems do, it also include low-level features that are of particular interest to
researchers who work on analyzing the content and developing automatic content
filtering and concept extraction techniques. A better visualization interface will not only
facilitate user interaction, e.g. random access, search and browsing; it will also help
researchers reach a better understanding of their problem, and in turn develop even better
tools for multimedia analysis and representation.

Visualization and user interface has been an active research topic for decades, tracing
back to the design of early UI design of computer operating systems such as MS-DOS,
and the first ACM SIGCHI conference in year 1982. The principle of visualization,
epitomized by Shneiderman [7] as “overview first, zoom and filter, then details on
demand”, can be interpreted in three different aspects of a good visualization: multi-scale
structure, intuitive presentation, and ease of interaction. In visualizing attributes [1] and
concepts [5], the expressiveness of textual data is greatly enhanced by mapping them to a
2-D plane, and giving meanings to the geometric properties such as shape, size and
distance. In visualizing multimedia data, the InfoMedia project [3] had an integrated
interface for image storyboard, closed caption and random access. And in visualizing
other modalities, an increase in dimensionality often brings much richer information than
the original signal, such as: visualizing music timber in 3-D space [4], or highlighting
protein coding regions in a DNA sequence [2].

The primary scope of our VisGenie system is to visualize data streams with temporal
evolvement (esp. video and its metadata) on a planar display. And the system has the

EE 6850 Project, VisGenie 12/16/2001

 Page 2 of 9

following characteristics: (1) Generality: it is independent from particular metadata
extraction modules, it can compute, parse and display various types of user-defined
metadata; (2) Flexibility: the users are placed within the design loop, and they can decide
how the final visualization should look like. At the bottom layer of the VisGenie system
is a dozen independent functional components realizing various basic tasks such as
playing the media, drawing continuous curves, displaying image storyboard, etc. The
middle layer is the central control of the system; it is responsible for synchronization
between components, routing data streams to different components, etc. Preference of the
user is at the top of the whole architecture, which and how many components to use, the
look and feel of individual components, and the association between each component and
different metadata stream are all maintained in this layer.

Section 2 is an overview of the system; in section 3 we briefly introduce each of the
system components; in section 4 we present how these components are organized and
controlled; in section 5 three sample applications and their generalization are given; and
section 6 concludes this report.

II. SYSTEM OVERVIEW
The foundation of the VisGenie system is a blank outer window; it is initialized as soon
as the application is launched. And after that, individual functional components are
launched according to the specific application and the user preference. These components
take the form of floating sub-windows, and the users are allowed to drag-drop, and
customize their appearances, independently. We decide to use this freeform component
design rather than the popular fixed-panel layout such as [3] because we are addressing a
wide variety of potential applications rather than a specific application. And we are aware
that it is neither possible to have a universal optimal layout for all applications, nor is it
feasible to construct a separate layout for every single application, so this task is left to
the user. Take Figure 3, 4, and 5, for example, the appearances of VisGenie are vastly
different for different applications, hence it is more preferable to optimize the layout for
each new application.

Each of the functional sub-windows is realized as a COM component. They are
packaged independently, and the entrance of each includes several necessary
configuration inputs and the data stream. The synchronization among these components
is maintained by a central control that will be discussed in section 4, and the initialization
and data routing are the responsibility of a data interface. We will present each
component, the system configuration and data interface, and then system integration
issues in the sections that follow.

III. SYSTEM COMPONENTS
3.1 The media renderer

Central to the whole system is the media renderer, based on Microsoft DirectShow
library. A typical media player interface by its look, it also takes the additional
responsibility of maintaining the system clock and providing online processing
interface.
The primary responsibility of this component is the playback of media streams. The
generality of the library enable us to handle a wide variety of media format of

EE 6850 Project, VisGenie 12/16/2001

 Page 3 of 9

different modalities: from MPEG-2, MPEG-4, AVI, MP3, to still images (i.e. nearly
every media type that Microsoft Media Player supports). DirectShow has a filter-
module structure where each independent filter performs a specific task in the whole
rendering assembly. Figure 1 is an illustration on how this works for an mpeg stream.
For example, the MPEG Video Decoder takes the de-multiplexed video stream as
input, decodes it into a certain pixel format and forwards the result to the Video
Renderer.

Figure 1. Media rendering flowchart for MPEG audio-visual stream

In addition to using the existing media filters, we also designed a new DirectShow
filter, the Video Hook, to take care of two important tasks: providing online
processing interface, and the system synchronization signal.
Figure 2 shows a pixel- level processing hook. The hook intercepts the decoded image
data before they are passed to the display, and then these data are sent to a user-
defined online processing module. After the image data are processed, the application
can send the extracted features to other visualization components, and at the same
time send the image data back if the processed image is meant to appear in the display.
Shot boundary detection as discussed in section 5.2 (Figure 4) is an example where
this scenario is exactly applicable. Other applications of online processing include
real-time transcoding, content filtering, object segmentation and tracking, etc.
Similarly, this idea of a processing hook can be easily adapted to the processing of
other modalities such as the audio or the closed caption; and compressed domain
processing can also be realized by simply moving the hook to an earlier stage where
compressed bit-stream is available.

Figure 2. Video Hook

EE 6850 Project, VisGenie 12/16/2001

 Page 4 of 9

Another task of the Video Hook is to send out a global sync signal upon rendering
each video frame, and this is used to control the feature display, as further illustrated
in section 4.2.

3.2 Generic curve display
Curve display is very useful, as many video features can be abstracted as different
types of curves, such as the histogram, PSNR, bit rate, feature distances, etc. Our
current version of generic curve window supports various curve formats such as
column, line and shape; we provide interface for the users to customize the color, line
width and the style of their curves; some convenient controls such as zooming and
browsing via the curve are also provided; in addition, this curve component is also the
basis of more specialized and sophisticated components such as the event window
(section 3.4).

3.3 Image storyboard
The image storyboard display is widely used in many state-of-art visual information
systems. The key-frame collection layout has been successful because it transforms
the sequential nature of the video stream into a 2D parallel display, thus enables fast
overview and navigation, and the loss of audio and motion dynamism is compensated
by letting the users quickly access the original video segment from key-frames.
Our frame storyboard can, but is not limited to displaying key frames from the video:
the users are allowed to put any meaningful images into this window, such as
segmentation maps for each shot, edge maps for each image cluster, etc; the users can
also associate a set of textual or numerical metadata with each frame, including
inherent frame properties such as the time stamp, size and color, and custom
properties such as decision confidence, user comments, etc.

3.4 Event window
There are scenarios where low-level features or frame maps are not enough to tell the
whole story, and here higher- level abstraction comes into play. Typically, these
applications involve machine decision, or semantic abstraction of the content, such as
the indoor/outdoor concept, output of a face detector, or more domain-specific
concepts such as a dialogue in film, or a scoring event in a sports game.
The layout of our event window (Figure 5) is inspired by MovieDNA[6], and the
Shneiderman three steps [7] are better embodied in this window than in other
components: the iconic compact representation in the lower panel provide an
“overview” of the whole video clip; the adjustable upper panel let the user “zoom and
filter” at their will; the user can easily request any “details” of the original content
from their point of interest in any level of the zoom representations.

3.5 System configuration
VisGenie allows the user to control the look and feel of their visualization via a global
configuration file. The kinds of control that the system currently supports can be
divided into 4 categories: (1) Global info: which kind of component to use, how many
of them; (2) Window properties: the size and position, back ground color, grid size
and color, window title… (3) Data association: which media file or data file is
associated with this window, data format options, data-specific parameters such as the

EE 6850 Project, VisGenie 12/16/2001

 Page 5 of 9

time-normalizing factor… (4) Window content properties: the color and style of
curves, granularity of the event overview window, annotation of key frames, …
Specifically, we adopt the windows .ini file format, which is both machine and human
readable. We put properties of each window in a separate section, and each key value
represents a specific property. Hence it is easy to define new properties or make
changes to existing properties.

3.6 Offline data interface
This module is used to parse different data files and supply different kinds of
visualization components with offline feature values, event flags, or key-frame info. It
can handle sequential data access as well as non-sequential access by searching
closest timestamp upon request from the central control.

IV. SYSTEM INTEGRATION
4.1 Initialization

Upon loading a configuration script, the system initializes all components as
requested, and pre-fetches data if specified by data option.

4.2 Synchronization
The Video Hook filter (section 3.1) starts sending out timestamps after the video starts
playing. The control module takes this timestamp, sends it to all other active
components; they in turn fetch the data from file or memory, and update the display.

4.3 Extensibility and reusability
We are trying to ensure that VisGenie is an easily extensible and reusable system
throughout the design. Extensions such as new visualization components, new curve
types, new data formats or new data properties are straight- forward; further
extensions may include new UI, new modality, as discussed in section VI.
The system is reusable in three different levels: the highest, application reuse, which
is most useful for end users and researchers, is our primary target in designing this
system, examples can be found in section V; COM reuse stands for the mid- level,
where researchers and developers can easily include their own online processing
modules or new components with minimum programming; source code reuse is at the
lowest level, and it provides the maximum level of flexibility and customization for
system developers.

V. SAMPLE APPLICATIONS
In this section, we will present three specific examples where the VisGenie system is
applied, and these examples are taken in increasing order of content abstraction.
5.1 Video coding

The interface is shown in figure 4. Here is pure signal- level processing, without
trying to understand the content.
Specifically, we compare 2 different rate-control schemes in MPEG-4 verification
model. Both streams are encoded at a same target bit-rate of 112KBps; one algorithm
allocates more bits to I-frames, and the other algorithm does not have such bias
among different frame type.

EE 6850 Project, VisGenie 12/16/2001

 Page 6 of 9

In VisGenie interface, two synchronized encoded video streams, along with their
PSNR curves are shown. And the quality difference indicated by the PSNR or the
perceptual image quality can be easily verified with regard to each other.
This kind of application can generalize to other signal processing scenarios such as:
VBR traffic monitoring, visualizing temporal, spatial, or other factors in trans-coding
utility functions, showing network condition, etc.

5.2 Shot boundary detection
The interface is shown in figure 5. Here low-level content processing is employed,
and this is done without semantic understanding.
In this setup, the shot boundary of a video is detected using color histogram distance,
and all the computation is done in real- time.
As the video is playing, the 64-bin HSV histogram for every frame is computed and
displayed; the L2 and cosine distance of the current histogram with regard to the
histogram of the previous frame is computed and displayed; a shot boundary is
declared present if this distance exceed a preset threshold, and the first frame of the
new shot (along with its textual metadata) is dumped to the image storyboard panel.
The user can also navigate through the video clip and verify that the shot boundaries
are indeed correct by clicking the image thumbnails, or using the random access
function of the media player.
Examples for generalization include: edge detection, motion estimation, object
tracking, content-based video retrieval, and so on.

5.3 Soccer video analysis
The interface is shown in figure 6. Here semantic analysis of the content is involved.
Specifically, the basic semantic units of a soccer game, i.e. play and break, are
automatically classified using statistical learning techniques [8].
In VisGenie interface, we can see the video, the two continuous feature curves used in
computation, and the semantic states as marked by ground-truth, the intermediate
stage of the algorithm, and the algorithm output. Thus it is more intuitive which kind
of feature values lead to what decision, and we will have a better idea about why the
algorithm success and when it will fail.
This application can also be generalized to real-time content filtering, scene- level
video structure analysis, video summarization, … and various others.

VI. CONLUSION AND DISCUSSION
In summary, we have designed and realized a generic video visualization system, which
amounts to more than 15,000 lines in C++, and about a dozen COM components.
A prototype as it is, there is much room for improvement:
(1) There has always been a trade-off between the generality of system architecture and

the performance it can achieve on specific tasks. To improve the efficiency of the
system, we need to consider the amount of assumptions we have on prospective data
more carefully. Such as whether the data are stored sequentially, whether the request
for data will come sequentially or at random, whether the data are uniformly sampled,
whether the data request comes in regular intervals or in a sporadic manner, …

EE 6850 Project, VisGenie 12/16/2001

 Page 7 of 9

(2) The interface could be better if some cosmetic improvements are employed. For
example, having graphical representation of objects will be more intuitive that just
drawing color blocks.

(3) As users are more comfortable with graphical dialogue boxes rather than textual
initialization scripts, it will be useful if we setup an interactive subsystem for building
new demos and customizing existing demos.

(4) In addition, there is much to do for additional visualization schemes in other
categories and media data in other modalities. Such as the ViBE [5] interface for
visualizing concepts; or visualizing the audio channel in an mpeg stream, though we
are aware that audio visualization is an active research problem in itself.

REFERENCES
[1] Ahlberg, C. and Shneiderman, B. "Visual Information Seeking: Tight Coupling of Dynamic

Query Filters with Starfield Displays", Proc. ACM CHI 1994 Conference on Human Factors
in Computing Systems, Boston, pp313-322.

[2] Anastassiou, D., "Genomic Signal Processing", IEEE Signal Processing Magazine, v18 n4,
July 2001 Page(s): 8 -20

[3] Christel, M., Martin, D., “Information Visualization Within a Digital Video Library”, Journal
of Intelligent Information Systems 11(3); pp. 235-257, 1998

[4] Freed, A. “Improving Graphical User Interfaces For Computer Music Applications,”
Computer Music Journal, vol. 19, 4-5, 1995.

[5] Olsen, K. A. et al. (1993). “Visualization of a document collection: The VIBE system.”
Information Processing and Management, 29(1): 69--81

[6] Ponceleon, D., Dieberger, A., “Hierarchical brushing in a collection of video data”, Proc.
34th Hawaii International Conference on System Sciences 2001, pp 1654 -1661

[7] Shneiderman, B., “The eyes have it: A task by data type taxonomy for information
visualizations”, Proceedings IEEE Visual Languages, pp 336-343, Boulder, CO, Sept 1996

[8] Xie, L., Chang, S.-F., Divakaran, A., Sun, H., “Structure analysis of soccer video with hidden
Markov models”, Proc. ICASSP 2002, to appear

EE 6850 Project, VisGenie 12/16/2001

 Page 8 of 9

Figure 3. Demo #1: video coding

EE 6850 Project, VisGenie 12/16/2001

 Page 9 of 9

Figure 4. Demo #2: shot boundary detection

Figure 5. Demo #3: soccer video analysis

