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Summary 
 
Emerging video coding standards like H.264 achieves significant advances in improving 
video quality, reducing bandwidth, but at the cost of greatly increased computational 
complexity at both the encoder and the decoder. Playing encoded videos produced by 
such compression standards requires major computational resources and thus power on 
various handheld devices that are getting increasingly popular in mobile applications. 
Among the components in the decoding system, the interpolation procedure used in the 
motion compensation component consumes the largest computation (about 50%) due to 
the use of sub-pixel motion vectors. One way to reduce this major cost is to change the 
coding algorithm so that the generated compressed bit streams incur less interpolation 
operations. In this work, we propose a novel Complexity Adaptive Motion Estimation 
and mode Decision (CAMED) system to optimize the selection of the motion vectors and 
motion compensation block modes in order to significantly reduce the computational cost 
while keeping the video quality virtually unchanged. We accomplish this goal by (1) 
applying a rigorous methodology to extend the conventional rate-distortion optimization 
framework to include the computation term, (2) developing a complexity model that can 
reliably determine the appropriate parameter (i.e., Lagrange multiplier) needed for 
optimizing the rate-distortion-complexity tradeoff relationships, and (3) a complexity-
control algorithm to meet any specified target complexity level while keeping the 
complexity as consistent as possible throughout the video sequence. Our method can be 
applied to any existing H.264 encoder system and is compatible with any standard-
compliant decoder. Our extensive experiments with different video contents, bit rates, 
and complexity levels show very promising results in reducing the number of 
interpolation by up to 60% while keeping the video quality almost intact (quality 
difference less than 0.2dB). Since the interpolation operation constitutes the largest 
computational cost component at the decoder, our results have great potential for 
reducing the power consumption in any practical video decoding systems using the latest 
video coding standard such as MPEG-4, H.264 and Motion Compensated Embedded 
Zero Block Coding (MC-EZBC). 
  
Innovation Claims: 
 
 
1. An improved H.264 video encoder that generates video bit streams that have high 

quality but require much less computation (power) in any standard compatible 
decoder. 



2. A joint rate-distortion-complexity (R-D-C) optimization framework and associated 
algorithms that allow for optimization of the tradeoff among video quality, bit rate, 
and computational complexity (described in Section 3.1) 

3. Methods for estimating the computational complexity and hardware power 
consumption associated with each coding options using different motion vector type 
and block mode (described in Section 3.2) 

4. A novel complexity control method that can achieve arbitrary target complexity 
levels by monitoring the complexity consumption status and effectively predicting the 
appropriate control parameter to be used in the R-D-C optimization procedure 
(described in Section 3.3) 

 
 
  



Description 
 
1. Introduction 
 
Most of today’s video coding systems encode the video bit streams to achieve the best 
video quality (e.g., the minimal signal distortion) while satisfying certain bitrate 
constraints. Specifically the following optimization problem formulation is often adopted. 
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where P  represents the control variables (CV) which eventually determine the final video 
quality and bit rate. Typical CVs include quantization parameter (QP), motion vector, 
motion estimation block mode, etc. D is the distortion introduced by the encoding 
process. R is the bit rate of the encoded video and TR  is the target bit rate. The solution 
of the above problem aims at finding the optimal control variables for each coding unit in 
order to minimize the average distortion while satisfying the bit rate constraint. Though 
in practice, some comprised choices may be made for the control variables due to the 
resource limitations (e.g., memory and computational complexity), Equation (1) does not 
explicitly models the required complexity in video encoding or decoding. As a matter of 
fact, many recent advances in the coding efficiency are accomplished by using 
increasingly complex computational modules, such as sophisticated processes for motion 
estimation. 
 
On the contrary, many media application devices such as mobile handheld devices are 
getting smaller and lighter. The computational resources available on the handheld 
devices become relatively scarce, given the increasing functionalities and complexity of 
applications running on the devices. Therefore, recently in the literature there is growing 
interest in complexity (power) aware video coding solutions. ARMS and National 
Semiconductor develop a systematic approach called PowerWise technology, which can 
efficiently reduce the power consumption of mobile multimedia applications through 
adaptive voltage scaling (AVS) [9]. Zhou et al implements an H.264 decoder based on 
Intel’s single-instruction-multiple-data (SIMD) architecture that reduces the decoding 
complexity and improved the H.264 decoding speed by up to three times [8]. In [14] Ray 
and Radha propose a method to reduce the decoding complexity by selectively replacing 
the I-B-P Group of Pictures (GOP) structure with one using I-P only. Lengwehasatit and 
Ortega develop a method to reduce the decoding complexity by optimizing the Inverse 
DCT implementation [15].  He et al optimizes the power-rate-distortion performance by 
constraining the sum of absolute difference (SAD) operations during the motion 
estimation process at the encoder [16]. In addition, power aware joint source channel 
coding is also an active topic for mobile wireless video communication [10][11][12].  
Unlike the conventional paradigm using complex encoding and light decoding, Girod et 
al proposes the distributed video coding system, which transfers the motion estimation 
process from the encoder to the decoder so that the encoding complexity can be greatly 
reduced [17]. 



 
In our work, we focus on an important aspect of the complexity minimization problem – 
how to develop an encoding algorithm that achieves both high video quality and low 
decoding complexity while satisfying the bit rate constraint. Our goal is to reduce the 
complexity requirement of emerging video codecs like H.264 on the resource-limited 
devices like handheld devices. Our work is different from the rest in that we modify the 
video encoding algorithm to minimize the required complexity at the decoder, not the 
encoder. Our approach does not require any change in the existing decoder 
implementations. Our method modifies the non-normative parts of the H.264 encoding 
algorithm to generate bit streams that can be decoded by standard-compliant decoders. In 
other words, we develop novel H.264 encoding algorithms that generate low-decoding-
complexity and high-quality bit streams. Other techniques for the decoder power 
minimization, such as those in [8][9][14][15], are complementary and can be combined 
with our solution. 
 
Specifically, when considering the decoder’s complexity during video encoding, we 
reformulate the optimization problem as follows. 
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where C is the computational complexity at the decoder. Compared with the problem 
defined in Equation (1), a constraint on computational complexity is explicitly added. 
The solution for in Equation (2) needs to determine the best control variables, P, for each 
coding unit. Similar to the case for Equation (1), the control variables include 
quantization parameter, block mode of the motion compensation process, and the 
associated motion vectors.  
 
Among the control variables, the motion vectors have the largest impact on the decoding 
complexity. Motion vectors can be of integer or fractional values corresponding to a 
displacement distance of integral pixels or fractional pixels. When a motion vector is of a 
sub-pixel value, multi-tap filtering is required to compute interpolation to form a 
reference block that is needed in the motion compensation process in the decoder. Such 
interpolation filtering involves huge computational cost and typically significantly 
increases the overall decoding complexity. Fig. 1 shows the breakdown of the complexity 
of a typical H.264 decoder implementation [3]. It is clear that the interpolation 
component constitutes about 50% of the decoding complexity. Although for mobile 
multimedia applications there are other power consuming components like wireless 
communication, display, and memory access, the decoding process is typically a 
significant one. Therefore improving the cost associated with the interpolation process is 
important for achieving a low-power decoding system, either in hardware or software.  



 
 

Fig. 1: Computational complexity distribution in decoding the Foreman video sequence 
of the QCIF resolution 

 
In this work, we extend the conventional rate-distortion framework based on the 
Lagrange optimization method to incorporate the computational complexity. To estimate 
the complexity associated with different types of motion vectors, we develop models to 
approximate the implementation cost involved in the interpolation filtering process. In 
addition, we extend the rate control algorithm to handle the joint rate-complexity control 
issue so that both the targets of rate and complexity can be met. Our optimization method 
intelligently selects the block mode and motion vector type of each coding unit to achieve 
the highest video quality. When tested over a diverse set of video sequences over 
different bit rates, our solution achieves very significant complexity reduction (up to 
60%) of the most complex component, interpolation filtering, while keeping the video 
quality almost intact (degradation within 0.2dB). When incorporated into the practical 
system, our solution has great potential in reducing the overall power consumption.  
 
The rest of this paper is organized as follows. Section 2 includes reviews of principle 
components of a typical hybrid video coding system such as H.264. It describes the basic 
concepts of motion estimation, motion compensation, and their implication on the 
computational complexity.  The rate-distortion optimization framework based on the 
Lagrange optimization method is reviewed. It also explains the process used to control 
the rate over frames to meet the overall target. In Section 3, we present the proposed 
CAMED method for generating low-complexity bit streams. Section 4 includes the 
experiment results. Conclusions and future work are described in Section 5. 
 
2. Review of Typical Hybrid Video Coding Systems 
 
Fig. 2 illustrates the system diagram for a typical hybrid motion compensation and block-
transform video coding system. The darker box shows the decoding procedure, which is 
also simulated in the encoder system for rate control purpose. The basic decoding unit is 
a macroblock (MB). For each MB, the encoded bit stream first undergoes entropy 
decoding to obtain the syntax bits (not shown in the figure), motion vector V , and 
quantized coefficients ( )Td t , where t is the time index of the image frame. Typical 
entropy codecs include variable length coding (VLC) and adaptive arithmetical coding 
(AAC). Inverse quantization is then employed to obtain the transform coefficient ( )Td t , 
which is further fed to an inverse transform module to reconstruct the pixel value or 



prediction error ( )d t , depending on whether intro- or inter-coded mode is utilized during 
encoding. For inter-coding mode, motion compensation is applied to generate the 
reference image ( )RP t using motion vector V  and previously decoded and buffered 
reference image ( 1)P t − . We use motion compensation to refer to the process of 
compensating the image displacement due to motion across frames.  When the motion 
vector is of a sub-pixel value, interpolation is needed to compute the reference image.  
Lastly, by combining the prediction error ( )d t and the reference image ( )RP t  the decoded 
image of the current frame is output.  
 
The computational complexity of each component varies. Some are relatively constant 
and independent of the encoded data while others heavily depend on the coding results.  
For example, the components of inverse quantization and inverse transform have nearly 
fixed computational cost per coding unit while the motion compensation component has 
variable complexity depending on the block mode and the type of motion vector. 
Furthermore, as shown in Fig. 1, the decoder complexity is dominated by the 
interpolation filtering process used in motion compensation if the motion vectors are sub-
pixel. Other parts of the decoding system, like entropy decoding and inverse transform, 
do not incur significant computational cost when compared to the interpolation process.  
 
Note motion estimation is usually the most computationally complex process since it 
involves searching over a large range of possible reference locations, each of which may 
require interpolation filtering. Recognizing this, many fast motion estimation algorithms 
such as those proposed in [18][19] have been developed to reduce the motion estimation 
complexity during encoding. Other work proposes scalable methods for motion 
estimation [20] to control the coding complexity. Nevertheless these methods all focused 
on the encoding complexity reduction instead of the decoding complexity. 
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Fig. 2: Conceptual diagram for typical video coding systems 
 



2.1 Sub-pixel interpolation  
 
Motion estimation is one of the most important components, and also the most 
computationally complex part in any video coding systems. Motion estimation can be 
illustrated using Fig. 3.  The basic idea is to search for an optimal block with similar 
values in previous coded frames as the reference signal for the block in current frame so 
that the encoding cost can be minimized. The optimal reference signal position is 
indicated by the displacement vector, called motion vector (denoted as V in Fig. 3). 
Motion estimation applies the basic idea of inter-frame predictive coding. Sometimes, 
multiple reference signals are used to form motion estimation, like the case for bi-
directional inter-frame prediction. Motion vectors are entropy encoded in a differential 
and predictive manner [1]. Compared to motion estimation, motion compensation is the 
procedure by which the decoder extracts a reference signal from the location indicated by 
the motion vector. In reconstructing the reference signal, interpolation is a widely 
adopted technique to improve the compensation precision when the motion vector has a 
sub-pixel value. The effectiveness of the sub-pixel motion compensation has been 
verified in H.263 and subsequent coding standards, at the cost of increasing complexity 
(up to 50% referring to Fig. 1). Therefore reducing the motion compensation complexity 
becomes the most important target for improvement.  
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Fig. 3: Motion compensation between current and the reference frames 
 
H.264 uses up to quarter pixel precision during interpolation [1][2]. Fig. 4 illustrates the 
details of this procedure, where gray blocks with capital letters indicate the integer 
locations and the white blocks with lowercase letters the sub pixels. All half-pixel 
locations undergo 6-tap FIR filtering horizontally and vertically, whenever any one 
applies. All quarter-pixel locations undergo 2-tap average filtering using integer and half 
pixels. For example, the following formulae are used to calculate sub pixel b and e:  
 

( )( )5 20 20 5 16 / 32b E F G H I J= − + + − − +  
 

( )1 / 2e b h= + +  
 

The amount of filtering operations varies depending on the exact location of the pixel. 
Table 1 lists the possible interpolation operations and the associated complexity. It is 



clear that different interpolation methods have quite different computing complexities. 
Some up-to-date video codecs may even have more complex interpolation. For example, 
in the recent 3D scalable video coding standard like MC-EZBC, an 8-tap floating filtering 
process is used to achieve high interpolation accuracy. 
 
Given the information about the interpolation cost associated with each type of motion 
vectors, the basic idea of reducing the decoder complexity is to select motion vectors that 
involve less interpolation complexity while keeping the video quality high. Our empirical 
analysis of some H.264 statistical data shows that depending on the video content, 40% to 
80% of motion vectors are located on sub pixels with different interpolation complexities. 
Therefore the principal approach to complexity reduction is to change motion vectors 
from high complexity sub pixel positions into the ones with low complexity, or even to 
integer-pixel positions.  
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Fig. 4: Notations for sub-pixel locations in H.264  
 
 Table 1. Sub pixel locations and their interpolation complexities  

Sub Pixel Type Points Interpolation 
(0, 0) G No 

(0, 1/2), (1/2, 0) b, h 1 6-tap 
(0, 1/4), (1/4, 0), (0, 3/4), (3/4, 0) a, c, d, n 1 6-tap + 1 2-tap 

(1/4, 1/4), (1/4, 3/4), (3/4, 1/4), (3/4, 3/4) e, g, p, r 2 6-tap + 1 2-tap 
(1/2), (1/2) j 7 6-tap 

(1/2, 1/4), (1/4, 1/2), (3/4, 1/2), (1/2, 3/4) i, f, k, q 7 6-tap + 1 Bilinear 
 
2.2 Block mode 
 
In order to further reduce the temporal redundancy and improve the efficiency of motion 
estimation, H.264 defines a diverse set of block mode options. Besides the conventional 
modes of {intra, forward, backward, bi-directional}, two new important modes are 
introduced: variable block size and SKIP/DIRECT.  
 
Firstly, unlike earlier coding standards using a fixed block size (usually 16x16 or 8x8) 
during motion estimation, H.264 allows to partition an MB into into several blocks with 
variable block size, ranging from 16 pixels to 4 pixels in each dimension. The possible 
modes of different block sizes are shown in Fig. 5. An MB can comprise up to 16 blocks. 



Each block with reduced size can have its individual motion vectors to estimate the local 
motion at a finer granularity. Though such finer block sizes incur overhead such as extra 
computation for searching and extra bits for coding the motion vectors, they allow more 
accurate prediction in the motion compensation process and consequently the residual 
errors can be considerably reduced, which are usually favorable for the final rate-
distortion performance.  
  

Mode 1 Mode 2 Mode 3 Mode 4

Mode 4 Mode 5 Mode 6 Mode 7

16 x 16

8 x 8

 
 

Fig. 5: Modes of variable block sizes in H.264 
 
Secondly, the SKIP/DIRECT mode is utilized for the P/B frame in H.264 motion 
compensation to further increase the coding efficiency. The basic idea is to use the 
spatial/temporal neighbor motion vectors to predict the motion vector of the current 
block, without sending extra bits to encode the current motion vector. Fig. 6 (a) illustrates 
the SKIP mode, where the motion vectors of blocks A, B, C and D (if available) may be 
used to estimate the motion vector of MB E. In Fig. 6 (b) the motion vector of the current 
block in a B frame is interpolated from the motion vector of the co-located block from the 
adjacent frames, assuming a constant global motion. Details regarding the SKIP/DIRECT 
mode can be found in [1][4]. In our mode decision algorithm to be described later, both 
the variable-size block mode and the SKIP/DIRECT mode are considered during the 
search process. 
 

     
                           (a) SKIP                                         (b) DIRECCT 

 
Fig. 6: the SKIP/DIRECT mode for the P/B frame in H.264  

 
The selection of block mode has direct impact on the decoder computational complexity, 
because it determines what kind of motion vectors is recorded in the bit stream. Optimal 



selection of the block mode and the associated motion vectors is the main problem 
addressed in our work, where a systematic solution is derived. 

 
2.3 Motion vector searching and block mode selection 
 
As introduced in Section 1, conventional video coding systems encode the video bit 
stream by solving the optimization problem defined in Equation (1). The main control 
variables P  involved in this procedure include motion vector V , block mode M  and 
quantization parameter QP . There is complex interaction between the choices of these 
variables and thus finding the optimal solution is difficult. In practice, compromised 
approaches are taken and approximate solutions are developed. For example, typically 
QP  is determined through some empirical models and updated throughout the video 
sequence by some rate control algorithms. Given QP , the other variables, motion vector 
and block mode, are decided by applying some rate-distortion optimization process. An 
excellent survey of these procedures is described in [5]. We present a brief summary in 
the following.  
 
Specifically, for each block B with a block mode M, the motion vector associated with 
the block is selected through a rate-distortion joint cost function [5]:  
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where *V is the optimal motion vector, sup{ }V  defines the search space, whose 
dimensions include the prediction direction, the reference frame list and the search range. 

MOTIONR  is the estimated bit rate to record the motion vector. DFDD  represents the 
prediction error between the current block and the reference block. Usually the sum of 
absolute difference (SAD) is adopted because the search space of motion vector is much 
larger than that of mode and SAD has lighter computation cost compared with the sum of 
squared difference (SSD). , ( )R D

MOTIONJ V  is the rate-distortion joint cost comprising of 
MOTIONR  and DFDD . MOTIONλ  is the Lagrange multiplier to control the weight of the bit rate 

cost, relative to the signal distortion caused by the prediction error.  
 
In a similar manner the block mode M  for an MB is decided by the following. 
 

( ) { }* ,

sup{ } sup{ }
, arg min ( , ) arg min ( , ) ( , )R D

REC MODE RECMODE
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where *M  is the optimal block mode, and sup{ }M  is the set of block mode options (such 
as INTRA, SKIP, DIRECT, FORWARD, BACKWARD, BIDIRECTION, etc). A full list 
of block mode options in H.264 can be found in [4]. RECD  is the SSD between the current 
MB and the reconstructed one through motion compensation. RECR  is the estimated bit 
rate associated with mode M. , ( )R D

MODEJ M is the joint cost comprising of rate MR  and 



distortion MD , and MODEλ  is the Lagrange multiplier. The motion vectors associated with 
the optimal block mode ( )* *,B MV  will be the final coded data recorded in the bit stream.  
 
The Lagrange multipliers used in the above two cost functions determine the relative 
weights between signal quality and bit rate. To simply the search process, an empirically 
derived relationship as the following is typically used in practice. The square root 
relationship is partly due to the fact that SAD is used in modeling DFDD  while SSD is used 
for RECD .  
 

MOTION MODEλ λ=                                                              (5) 
 

2.4 Rate control 
 
Rate control (RC) is the procedure of adjusting CVs so that the target rate requirement 
can be achieved while optimizing the overall video quality. Given a target bit rate, we can 
compute the average allocated bit rate for each basic coding unit. Then we can use the 
Lagrange optimization method to find the optimal set of control variables. However, 
searching over the entire variable space is very complex. In practice, most 
implementations use empirical models to restrict the search space. For example, a popular 
method, called rate-quantization modeling, maps the target bit rate to the quantization 
parameter, from which the Lagrange multipliers are decided. In addition, since coding of 
a data unit may not result in a bit rate that exactly matches the target, a separate process, 
called buffer management, is used to monitor the available bit rate budget for the 
remaining data units and thus update the allocated recourse. We briefly review these 
processes in the following. 
 
Rate-Quantization (RQ) model describes the relationship between QP  and the bit rate. A 
widely adopted quadratic RQ model is [6]: 
 

  ( )2
2

1
1

−− ⋅+⋅= QPPQPPDR                                                    (6) 
 
where D  is the source complexity of the video signal, and usually measured using the 
motion estimation prediction errors (such as SAD), and 1 2{ }P , P  are model parameters. 
Some systems use 2 0P =  for simplicity. A typical RQ modeling procedure involves two 
major steps: model estimation and QP  prediction. Fig. 7 shows a conceptual illustration 
of these procedures. Firstly several basic coding units are coded using some preset QP 
values. The coding units may include a certain number of MBs or one whole frame. The 
resulting rate-quantization-distortion (R-Q-D) points are collected, as indicated by the 
gray circles in Fig. 7. The model in Equation (6) is then estimated based on the 
observations. The estimated model is indicated by the multiple curves shown in Fig. 7. 
The estimated model can then be used to determine the QP  value for the next coding unit 
based on the target bit rate tR  and source complexity tD  for the new unit. The former is 
decided by the buffer management process to be described below, and the latter is 
predicted using previous observations of the source complexity. Usually the source 



complexity is assumed to vary gradually and can be estimated using some simple 
relationship such as a linear model. Once coding of the new unit is completed, new 
observations of the R-Q-D points are collected and used to update the estimation of the 
RQ model in a sliding window manner. Namely, the oldest R-Q-D point is purged and 
the latest point is added to update the model.  

Rate
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Fig. 7: Rate-Quantization model estimation and QP  prediction in the rate control process 
 
The buffer management employs a virtual buffer to simulate the behavior of the data 
buffer on the decoder side. It is an important component in rate control in order to adjust 
the target bit rate for each coding unit and avoid the problem of buffer overflow or 
underflow. For example, given a target bit rate for the video sequence, the average bit 
rate allocation for each Group of Pictures (GOP) can be computed, and the allocated bit 
rate, tR , for a new frame to be coded (such as P frame) can be determined by monitoring 
the actual number of bits spent on the previous frames.  
 
In H.264, given the target rate and QP for the coding unit, the following empirical 
relationship is often used to determine the Lagrange multiplier needed in the rate-
distortion tradeoff optimization.  
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= ×                                                     (7) 
 
The validity of such a model is justified by empirical simulations, though some analytical 
explanations have been offered in the literature such as [5]. Such an empirical model is 
very useful in simplify the search process in the Lagrange optimization method, while 
practical implementations have often shown satisfactory performance. Other parameters 
like  MOTIONλ  can also be found according to Equation (5). 
 
3. Complexity adaptive motion estimation and mode dcecision 
 
We propose a new system for Complexity-Adaptive Motion Estimation and mode 
Decision (CAMED). Given defined metrics for signal distortion and computational 
complexity, the CAMED method explores the tradeoff between video quality and 
resource consumption (both bit rate and computational complexity) to approximate the 
optimal motion vectors and block mode used in the motion compensation process in the 
decoder. The CAMED system consists of several components: the rate-distortion-



complexity (R-D-C) joint optimization framework, the complexity cost function, and the 
complexity control algorithm. The R-D-C framework extends the previously discussed 
Lagrange optimization framework to incorporate the complexity term. The complexity 
cost function provides quantitative measurements of the required computation for each 
motion vector type. The complexity control algorithm is used to control the complexity 
over different coding units to meet the overall target complexity. We discuss each of 
them in the following. 
 
3.1 The Rate-Distortion-Complexity optimization frameowrk 
 
Our proposed CAMED system basically tries to solve the problem defined in Equation 
(2), with an explicit Lagrange term to model the complexity cost. Therefore, the motion 
vectors are selected through a rate-distortion-complexity joint cost function:  
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where MOTIONC  is the complexity cost function associated with the selected motion vector 
( , )B MV , MOTIONγ  is the Lagrange multiplier for the complexity term, , ( )R D

MOTIONJ V  is the 
rate-distortion joint cost function defined in Equation (3), and , , ( )R D C

MOTIONJ V is the rate-
distortion-complexity joint cost function.  
 
Similar to the earlier case described in Equation (4), the block mode search process is 
guided by the following. 
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where MODEC  is the complexity cost function associated with the block mode, MODEγ  is 
the Lagrange multiplier, , ( )R D

MODEJ V  is the rate-distortion joint cost function defined in (4), 
and , , ( )R D C

MODEJ V is the rate-distortion-complexity joint cost function.  
 
Now consider two extreme cases. When 0MODEγ = , the solutions of Equations (8) and 
(9) are identical with the ones in Equations (3) and (4), namely no consideration was 
given to the complexity constraint and many motion vectors may be of sub-pixel values 
in order to minimize the distortion.  When MODEγ = ∞ , all motion vectors are forced to 
integer pixel locations in order to minimize the complexity involved in interpolation for 
sub-pixel locations. Clearly there is a tradeoff between these two extremes to balance the 
performance in terms of quality and complexity.  
 
For simplification, we can adopt restrictions like that described in Equation (5) to limit 
the search space. For example, in our experiments to be described later, we use the 
following relationship to link MODEγ  and MOTIONγ . 
 



MOTION MODEγ γ=                                                        (10) 
 
3.2 Complexity cost function 
 
In the joint cost function described above, we need a quantitative model to estimate the 
complexity associated with each candidate motion vector and block mode. As discussed 
in Section 2.1, the computational complexity is heavily influenced by the type of the 
motion vector (integer, half-pixel, or quarter-pixel) and the interpolation filters used in 
the motion compensation process. If we just focus on the interpolation filtering cost, 
quantitative estimates of such complexities can be approximated by the number of 
filtering operations needed in interpolation, such as those listed in Table 1. For example, 
using the same 6-tap filter and 2-tap filter implementations, the complexity of each 
motion vector type is as follows.  
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where ( )Bc V is the computational cost for the current coding block, V is the  motion 
vector, ( )Pc V  is the computational complexity required for calculating a reference pixel, 

BN  is the number of pixels in the current coding block, and 6 2{ , }e e  are the estimated 
complexities for 6-tap and 2-tap interpolation respectively. Our experiment later will 
show that a simplified model ignoring the 2-tap interpolation will mostly result in the 
same selection of the motion vectors. With such simplification, the above model becomes 
the following with a common factor 6e  removed.  
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V                                         (13) 

 
The estimated cost of interpolation can be derived from the specific software or hardware 
implementations. For example, each interpolation operation can be divided into a number 
of basic operators such as addition, shifts, and/or multiplications. In this case, 6 2{ , }e e  can 
be modeled with more details such as the following.  
 

( ) ( ) , 2,6i j j
j

e N o P o iρ= =∑                                               (14) 



where jo  is the basic operator involved in the interpolation implementation, ( )jN o is the 

required number of operator jo , ( )jP o  is the power consumption of operator jo , and 1ρ ≥  
is the adjustment factor to consider additional power cost such as memory access. For 
instance, Fig. 8 shows a hardware implementation of interpolation that was introduced in 
[7]. Its estimated complexity is 
 

( )6 6 2add shifte P Pρ= +                                               (15) 
 

where ,add shiftP P  are the power consumption for the addition operator and the 2-bit shift 
operator respectively.  
 

 
 

Fig. 8: A hardware implementation for the interpolation unit 
 
Each block may be associated with multiple reference blocks, each of which needs a 
motion vector. For example, for bi-directional prediction, each block may need two 
motion vectors for forward and backward prediction respectively. Thus, the 
computational cost for a block B with the block mode M is calculated as: 
 

( ) ( )( ), , ,MOTION B j
j

C B M c M B=∑V V                                          (16) 

where the summation is over each reference block.  
 
Each MB may consist of several smaller blocks, depending on the block mode, M. The 
overall computational cost associated with a MB and a block mode can be calculated as:  
 

( ) ( )( ), ,MODE B i j
i j

C M MB c B MB=∑∑ V                                           (17) 

where i is the index of the individual blocks contained in the MB, and j is the index for 
multiple motion vectors associated with a single block. Equation (16) and (17) are 
generic and applicable to all inter-coded block modes, including foreword/backward/bi-
directional motion compensation and SKIP/DIRECT.   
 
 
 



3.3 Complexity control 
 
Complexity control, analogous to the rate control process described in Section 2.3, is a 
process to allocate the complexity resource among the coding units and to determine 
parameters like Lagrange multiplier MODEγ  to be used in the optimization procedure. In 
Section 2.3, the allocated bit rate is mapped to the quantization parameter, which in term 
is used to find the Lagrange multiplier MODEλ . In this section, we describe two 
components of the complexity control algorithm – the complexity modeling and the 
buffer management. The former is used to characterize the relationship between the target 
complexity and the Lagrange multiplier MODEγ . The latter is for monitoring the 
complexity usage and updating the available computational resource for each new data 
unit.  
 
3.3.1 Complexity modeling 
 
In complexity control a feasible modeling of complexity and control parameter ( MODEγ  in 
our case) is necessary. So far there is very little knowledge regarding the statistical 
properties of the computational complexity in H.264. Therefore, similar to the practical 
solutions used in most rate control algorithms, we resort to empirical observations from 
experimental simulations.  
 
One of the objectives is to find the relationship between the target complexity and the 
optimization control parameter, MODEγ . Fig. 9 shows some simulations results revealing 
such relationship. The details of the experiment will be described later in this paper. The 
results indicate there is an approximately linear relationship between the complexity 
value and log of the Lagrange multiplier. It is also clear the type of the frame (B or P) 
influences greatly the relationship. 
 

10
0

10
1

10
2

10
30

5

10

15

20

25

30

35

40
Mobile, 600kbps

Lagrange multiplier

C
om

pe
lx

ity
 (1

K
 In

te
rp

ol
at

io
ns

) B Frames 

P Frames 

 
 

Fig. 9: Relationship between Lagrange multiplier and the resulting complexity (top: B 
frames, bottom: P frames) 

 



A reasonable model based on the above observations is as follows. 
 

( ) ( )( )1 0lnMODE MODEC D K Kγ γ= +                                          (18) 
 

where C is the complexity, D  is a factor measuring the video source complexity similar 
to that used in Equation (6) for rate control. 1 0,K K  are the model parameters that needed 
to be learned during the coding procedure. Due to different coding mechanism, P and B 
frames will have distinguished model parameters and need to be handled separately.  
 
Though lacking a theoretical explanation, the above model is driven by the empirical 
simulation observations. The linear dependence of the computational complexity on the 
signal source complexity is also intuitive – the more complex the signal source is, the 
higher accuracy is needed in estimating the motion vector and thus there is a larger gain 
in using sub-pixel motion vectors, resulting in an increased computational cost. Fig. 10 
shows the approximate linear relationship between the computational complexity and the 
mean prediction error (measured in mean absolute difference, MAD) from our simulation 
(details to be described in later sections). Like the previous case of rate control, the MAD 
measure can be considered as approximate estimation of the signal source complexity. 
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Using the above model, the Lagrange multiplier ( )MODE tγ  for the current coding unit t can 
be determined by the following.  
 

( ) ( ) ( )
( )
0

1
expMODE

C t K D t
t

K D t
γ

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

                                                  (19) 

 
where C(t) is the allocated computational budget and ( )D t  is the predicted complexity 
measurement for unit t . In practice, in order to avoid large quality fluctuation, the 
change rate of ( )MODE tγ  is bounded by some thresholds.  



 
3.3.2 Buffer Management 
 
Complexity buffer is a virtual buffer to simulate the complexity usage status on the 
decoder side. It is analogous to the rate buffer used in the rate control to update the 
estimation of available resource and avoid issues of buffer overflow or underflow. 
Denote GOPC  the remaining complexity budget in one GOP, PN , BN  the remaining 
numbers of P, B frames respectively, and η  the complexity ratio between P and B, which 
is updated along the video coding. The target complexity levels for P, B frame ,P BC C  
are calculated by solving the following equations:  

B

P

C
C

η=                                                             (20) 

P P B B GOPN C N C C+ =                                                    (21) 
 

Once ,P BC C  are available, ( )MODE tγ is determined using the model described in the 
previous subsection. The formulations in Equation (20) and (21) assume the basic coding 
unit as one frame. It can be easily extended to smaller units for a finer granularity.  
 
4. Experiment Results 
 
4.1 Experiment environment 
 
Table 2 lists the experiment environment used in our simulation. Four standard test video 
sequences were chosen and they had distinguished characteristics in motion intensity and 
texture complexity, two crucial factors influencing the motion estimation performance. 
H.264 reference codec of version JM82 was used. We use equation (13) to calculate the 
complexity cost function.   
 
 Table 2. Experiment Environment 

Sequence Information 
Sequence Name Akiyo, Foreman, Mobile, Stefan 
Image Format CIF ( 352 288× pixels) 
Video Format 30 frame per second, GOP size = 15, sub GOP size = 3 
IBP structure IBBPBBPBBP… 

Simulation Parameters 
Bit rate  100, 200, 400, 600, 800, 1000, 1500 Kbps 

MODEγ  values  From 0 to 500 (Lambda in the figure) 
H.264 Configuration (selected) 

Profile Main 
Search Range 32 
Inter Search Block Mode All On 
Use Fast Motion Estimation Off 
Frame / Slice Mode Frame Mode 
Direct Mode Type Temporal 
Basic Rate Control Unit 11 Macroblocks 
S-P Frame No 
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Fig. 11: Performance of rate-distortion and rate-complexity using the proposed CAMED 

system 
 



4.2 Rate-distortion-complexity performance in CAMED 
 
Fig. 11 lists the rate-distortion performance together with rate-complexity results by 
different MODEγ  values. The latter is measured in terms of the ratio of the remaining 
complexity when applying the proposed CAMED method to the original complexity 
when using the H.264 JM82 codec (i.e., 0MODEγ = ). Note the complexity includes only 
the computation required for reconstructing the reference signals in the decoder, which is 
the most demanding component in the decoding process.  
 
Several important findings are in order.  Firstly, adjusting MODEγ  is an efficient way to 
control the computational complexity. Up to 95% of the interpolation cost can be 
removed within a relatively small range of MODEγ  (see Foreman at 1000kbps with 

MODEγ =500). Secondly, the video quality is well maintained when reducing the 
complexity. If we use 0.5dB as the perceptual quality difference threshold, up to 60% of 
the computational cost can be saved without visible impairment (see Stefan at 1000kbps 
with MODEγ =50 and PSNR drop of 0.197dB). Fig. 12 further shows the frame-to-frame 
quality and complexity over the entire video sequence Stefan. In fact, for all sequences, 
30~50% cost saving can be obtained within 0.1dB quality loss. According to the 
benchmark provided in [3], this can be translated into an overall decoding complexity 
saving up to 30%.  
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Fig. 12: Frame-to-frame video quality and computational complexity comparison. The 

video quality is well maintained though the complexity is greatly reduced. 
 
 
The reason of the above excellent performance probably can be attributed to the 
statistical characteristic of video signals. Without theoretical explanation, our intuitive 
conjecture is that not every sub-pixel motion vector is equally important in predicting the 
reference signal required in the motion compensation process. Moving less critical ones 



from the sub-pixel resolution to the integer resolution will not dramatically increase the 
prediction error, but will help significantly in reducing the computational cost at the 
decoder. Fig. 13 shows one example comparing the motion vector distribution with and 
without applying the proposed CAMED method. It is obvious that many motion vectors 
shift to the locations with lower interpolation complexities (integer or half-pixel 
locations).  
 

 

 
Fig. 13: Subpixel motion vector distribution with and without the proposed CAMED 

method 
 

4.3 Complexity Control 
 
During complexity control, the basic operations are to adjust MODEγ  and manage the 
complexity buffer. First of all, the complexity model presented in Equation (18) need to 
be verified. Fig. 9 illustrates the relationship between Lagrange multiplier and resulting 
complexity for the sequence Mobile at 600kbps. Each curve is for one P or B frame. The 
linear relationship between the complexity and logarithmic MODEγ  is evident, especially 
for P frames. B frames usually have larger complexity because of bi-directional 
prediction. For the same frame type, we hypothesize the variation is caused by different 
content complexity in each frame. Like the empirical approach used in the conventional 
rate control process, we use MAD as an approximate measure of the frame content 
complexity. Fig. 14 compares the frame-to-frame evolution of computational complexity 
with some major coding parameters for the P frames in the Mobile sequence at 600kbps 
with 5MODEγ = . Compared to other options (such as quantization parameter), MAD 
appears to demonstrate the closest correlation with the computational though some 
variance is still noticeable. Study of improved measures capturing the statistical 
properties of the computational complexity is an interesting topic for future research. 
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Table 3 lists the main parameters used in the complexity control experiment. Some 
parameters may be further fine-tuned in order to find better tradeoff between quality 
fluctuation and control efficiency. We leave such potential improvement in future studies.  
 

Table 3: Parameters used in complexity control 
Basic control unit One frame 
Frame complexity prediction window size 6 
Frame complexity prediction model Linear 

MODEγ   prediction window size 6 

MODEγ   prediction model Equation (19) 

MODEγ   range [0 3000] 

Maximum C
Mλ  change magnitude 80 

Initial ratio of B/P frame complexity 1.6 
Initial C

Mλ  value 10 
Target complexity per GOP (amount of 
interpolations, defined in Equation (13)) 50K ~ 250K 

  
Fig. 15 shows the detailed complexity control results for the sequence Foreman at 
1000kbps with different target complexity levels. The complexity of the baseline H.264 
JM82 result is also shown for comparison. The results are very promising. Though in all 
cases the initial MODEγ  is set to the same value 10, it can be adaptively adjusted and the 
target complexity level is consistently accomplished, except for the case aggressively 
reducing the complexity from about 250K to 50K (80% reduction). The latter aggressive 
case will not be achievable without sacrificing greatly the video quality. For other cases, 
some fluctuation can still be seen at the end of the sequence starting from 14th GOP, 
where the sequence contains rapid camera panning. Our complexity control method 
cannot completely smooth this huge complexity increase because we bound the 
maximum magnitude and the maximum change rate of the MODEγ  parameter in order to 
avoid excessive quality loss and quality fluctuation. In other words, we try to maintain 
some consistence in video quality throughout the entire video sequence as well. 
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Fig. 15: Complexity control performance 

 
Table 4 summarizes the complexity control performance at 1000kbps. Complexity 
control error is calculated as the difference between the actual resulting complexity and 
the target complexity, normalized by the target complexity. Complexity Saving is the 
percentage of the original computational cost that has been removed. Quality Degradation 
is the quality difference (in PSNR) between the bit stream generated using original H.264 
and the one using our complexity control method. These results confirm that large 
savings of the computational complexity (30% to 60%) can be achieved with small 
quality degradation (0.3dB). Improvements from different video clips are different 
depending on the type of the content and the complexity of the signal. The most 
challenging case is the Mobile sequence, which has a steady camera motion (slowly 
panning left) and thus the SKIP/DIRECT mode is frequently used. It is difficult for the 
proposed CAMED method to change the motion vector to the integer one without 
incurring significant increase of bit rate. This is partly because that the SKIP/DIRECT 
mode is already a very efficient coding mode – very few bits are needed in coding the 
mode information and changing the mode will not improve much the prediction accuracy 
due to the motion in the video content. However, even for such a challenging case, our 
proposed CAMED method can still achieve about 33% complexity saving in order to 
keep the video quality more or less intact. 
 

Table 4: Complexity control performance (at 1000kbps) 
Target Complexity 50K 100K 150K 200K 250K 

Complexity control error 19.78% 2.81% 0.09% 0.2% 1.4% 
Complexity Saving 76.78% 60.15% 41.80% 22.63% 4.45% Foreman 
Quality Degradation (dB) 0.60 0.28 0.13 0.06 0.02 
Complexity control error 61.43% 1.73% 1.16% 0.14% 4.37% 
Complexity Saving 67.68% 59.27% 39.25% 20.04% 4.28% Stefan 
Quality Degradation (dB) 0.78 0.60 0.35 0.05 -0.09 
Complexity control error 195.8% 47.92% 1.37% 5.24% 11.59% 
Complexity Saving 47.92% 47.92% 47.91% 33.27% 22.18% Mobile 
Quality Degradation (dB) 0.63 0.63 0.63 0.31 0.13 

 
 
 



5. Conclusions and Future Work 
 
We introduce a novel complexity adaptive motion estimation and mode decision method 
(called CAMED) to improve the emerging hybrid video encoding system like H.264 so 
that the computational resource required at the decoder can be greatly reduced while the 
video quality is maintained with very little degradation. Such results are very useful for 
the increasingly popular handheld devices in many mobile applications.  
 
We first analyze the decoding complexity behavior and identify the most critical 
components, i.e., the motion vector and the block mode that affect the cost of the 
interpolation process in motion compensation. We develop simple but practical cost 
functions to estimate the required computation for each motion vector and block mode. 
Then we extend the conventional rate-distortion optimization framework based on the 
Lagrange multiplier method to explicitly handle the computational complexity. In 
addition, for complexity control, we propose an effective logarithmic-linear model to 
predict the relationship between the target complexity and the Lagrange multiplier. The 
joint rate-distortion-complexity framework together with the complexity control 
algorithm provides an effective solution for optimizing the tradeoff between video quality 
and resources, including both bit rate and computational complexity. The proposed 
system can be easily embedded into existing video coding systems and will work with 
any standard compatible decoder. 
 
Our extensive experiments using H.264 codec over different video sequences, different 
bit rates, and different complexity levels demonstrate the power of the proposed system. 
Up to 60% of the interpolation complexity can be saved at the decoder without incurring 
noticeable quality loss (within 0.2 dB). Even for challenging video clips such as Mobile, 
33% of the complexity can be reduced with quality difference less than 0.3dB. The 
proposed complexity control scheme can reliably meet the target complexity requirement 
for a wide range of video content.  
 
The proposed system has great potential in realizing an efficient low-power video 
decoder product. There are several interesting topics that will benefit further 
investigation. First, in practice, many video encoder implementations utilize some fast 
motion estimation procedures to reduce the power consumption on the encoder side. An 
interesting topic is to study how the proposed technique will affect the video quality and 
computational complexity when such fast encoder implementations are applied. Secondly, 
the computational complexity may not provide a reliable estimate about the final power 
consumption of the entire decoder system. There are other factors involved, such as chip-
level issues, hardware architecture, memory access, etc. Although the interpolation 
procedure has been identified to be the most significant one in the decoder, it will be 
important to conduct a more extensive study of the impact on the real power 
consumption. Using the limited models available in the literature, we conjecture the 
actual power consumption saving by our current method may be in the range between 
10% and 30%. Thirdly, several components of the proposed framework, such as the 
complexity modeling, are not fully optimized and present interesting opportunities for 
further improvement. 
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