
 Motion Estimation and Mode Decision for
Low-Complexity H.264 Decoder

Yong Wang and Shih-Fu Chang

{ywang, sfchang}@ee.columbia.edu
Department of Electrical Engineering

Columbia University

Summary

Emerging video coding standards like H.264 achieves significant advances in improving
video quality, reducing bandwidth, but at the cost of greatly increased computational
complexity at both the encoder and the decoder. Playing encoded videos produced by
such compression standards requires major computational resources and thus power on
various handheld devices that are getting increasingly popular in mobile applications.
Among the components in the decoding system, the interpolation procedure used in the
motion compensation component consumes the largest computation (about 50%) due to
the use of sub-pixel motion vectors. One way to reduce this major cost is to change the
coding algorithm so that the generated compressed bit streams incur less interpolation
operations. In this work, we propose a novel Complexity Adaptive Motion Estimation
and mode Decision (CAMED) system to optimize the selection of the motion vectors and
motion compensation block modes in order to significantly reduce the computational cost
while keeping the video quality virtually unchanged. We accomplish this goal by (1)
applying a rigorous methodology to extend the conventional rate-distortion optimization
framework to include the computation term, (2) developing a complexity model that can
reliably determine the appropriate parameter (i.e., Lagrange multiplier) needed for
optimizing the rate-distortion-complexity tradeoff relationships, and (3) a complexity-
control algorithm to meet any specified target complexity level while keeping the
complexity as consistent as possible throughout the video sequence. Our method can be
applied to any existing H.264 encoder system and is compatible with any standard-
compliant decoder. Our extensive experiments with different video contents, bit rates,
and complexity levels show very promising results in reducing the number of
interpolation by up to 60% while keeping the video quality almost intact (quality
difference less than 0.2dB). Since the interpolation operation constitutes the largest
computational cost component at the decoder, our results have great potential for
reducing the power consumption in any practical video decoding systems using the latest
video coding standard such as MPEG-4, H.264 and Motion Compensated Embedded
Zero Block Coding (MC-EZBC).

Innovation Claims:

1. An improved H.264 video encoder that generates video bit streams that have high

quality but require much less computation (power) in any standard compatible
decoder.

2. A joint rate-distortion-complexity (R-D-C) optimization framework and associated
algorithms that allow for optimization of the tradeoff among video quality, bit rate,
and computational complexity (described in Section 3.1)

3. Methods for estimating the computational complexity and hardware power
consumption associated with each coding options using different motion vector type
and block mode (described in Section 3.2)

4. A novel complexity control method that can achieve arbitrary target complexity
levels by monitoring the complexity consumption status and effectively predicting the
appropriate control parameter to be used in the R-D-C optimization procedure
(described in Section 3.3)

Description

1. Introduction

Most of today’s video coding systems encode the video bit streams to achieve the best
video quality (e.g., the minimal signal distortion) while satisfying certain bitrate
constraints. Specifically the following optimization problem formulation is often adopted.

min ()

. ., ()
P

T

D

s t R R≤

P

P
 (1)

where P represents the control variables (CV) which eventually determine the final video
quality and bit rate. Typical CVs include quantization parameter (QP), motion vector,
motion estimation block mode, etc. D is the distortion introduced by the encoding
process. R is the bit rate of the encoded video and TR is the target bit rate. The solution
of the above problem aims at finding the optimal control variables for each coding unit in
order to minimize the average distortion while satisfying the bit rate constraint. Though
in practice, some comprised choices may be made for the control variables due to the
resource limitations (e.g., memory and computational complexity), Equation (1) does not
explicitly models the required complexity in video encoding or decoding. As a matter of
fact, many recent advances in the coding efficiency are accomplished by using
increasingly complex computational modules, such as sophisticated processes for motion
estimation.

On the contrary, many media application devices such as mobile handheld devices are
getting smaller and lighter. The computational resources available on the handheld
devices become relatively scarce, given the increasing functionalities and complexity of
applications running on the devices. Therefore, recently in the literature there is growing
interest in complexity (power) aware video coding solutions. ARMS and National
Semiconductor develop a systematic approach called PowerWise technology, which can
efficiently reduce the power consumption of mobile multimedia applications through
adaptive voltage scaling (AVS) [9]. Zhou et al implements an H.264 decoder based on
Intel’s single-instruction-multiple-data (SIMD) architecture that reduces the decoding
complexity and improved the H.264 decoding speed by up to three times [8]. In [14] Ray
and Radha propose a method to reduce the decoding complexity by selectively replacing
the I-B-P Group of Pictures (GOP) structure with one using I-P only. Lengwehasatit and
Ortega develop a method to reduce the decoding complexity by optimizing the Inverse
DCT implementation [15]. He et al optimizes the power-rate-distortion performance by
constraining the sum of absolute difference (SAD) operations during the motion
estimation process at the encoder [16]. In addition, power aware joint source channel
coding is also an active topic for mobile wireless video communication [10][11][12].
Unlike the conventional paradigm using complex encoding and light decoding, Girod et
al proposes the distributed video coding system, which transfers the motion estimation
process from the encoder to the decoder so that the encoding complexity can be greatly
reduced [17].

In our work, we focus on an important aspect of the complexity minimization problem –
how to develop an encoding algorithm that achieves both high video quality and low
decoding complexity while satisfying the bit rate constraint. Our goal is to reduce the
complexity requirement of emerging video codecs like H.264 on the resource-limited
devices like handheld devices. Our work is different from the rest in that we modify the
video encoding algorithm to minimize the required complexity at the decoder, not the
encoder. Our approach does not require any change in the existing decoder
implementations. Our method modifies the non-normative parts of the H.264 encoding
algorithm to generate bit streams that can be decoded by standard-compliant decoders. In
other words, we develop novel H.264 encoding algorithms that generate low-decoding-
complexity and high-quality bit streams. Other techniques for the decoder power
minimization, such as those in [8][9][14][15], are complementary and can be combined
with our solution.

Specifically, when considering the decoder’s complexity during video encoding, we
reformulate the optimization problem as follows.

min ()

. ., ()
()

P

T

T

D

s t R R
 C C

≤
≤

P

P
P

 (2)

where C is the computational complexity at the decoder. Compared with the problem
defined in Equation (1), a constraint on computational complexity is explicitly added.
The solution for in Equation (2) needs to determine the best control variables, P, for each
coding unit. Similar to the case for Equation (1), the control variables include
quantization parameter, block mode of the motion compensation process, and the
associated motion vectors.

Among the control variables, the motion vectors have the largest impact on the decoding
complexity. Motion vectors can be of integer or fractional values corresponding to a
displacement distance of integral pixels or fractional pixels. When a motion vector is of a
sub-pixel value, multi-tap filtering is required to compute interpolation to form a
reference block that is needed in the motion compensation process in the decoder. Such
interpolation filtering involves huge computational cost and typically significantly
increases the overall decoding complexity. Fig. 1 shows the breakdown of the complexity
of a typical H.264 decoder implementation [3]. It is clear that the interpolation
component constitutes about 50% of the decoding complexity. Although for mobile
multimedia applications there are other power consuming components like wireless
communication, display, and memory access, the decoding process is typically a
significant one. Therefore improving the cost associated with the interpolation process is
important for achieving a low-power decoding system, either in hardware or software.

Fig. 1: Computational complexity distribution in decoding the Foreman video sequence
of the QCIF resolution

In this work, we extend the conventional rate-distortion framework based on the
Lagrange optimization method to incorporate the computational complexity. To estimate
the complexity associated with different types of motion vectors, we develop models to
approximate the implementation cost involved in the interpolation filtering process. In
addition, we extend the rate control algorithm to handle the joint rate-complexity control
issue so that both the targets of rate and complexity can be met. Our optimization method
intelligently selects the block mode and motion vector type of each coding unit to achieve
the highest video quality. When tested over a diverse set of video sequences over
different bit rates, our solution achieves very significant complexity reduction (up to
60%) of the most complex component, interpolation filtering, while keeping the video
quality almost intact (degradation within 0.2dB). When incorporated into the practical
system, our solution has great potential in reducing the overall power consumption.

The rest of this paper is organized as follows. Section 2 includes reviews of principle
components of a typical hybrid video coding system such as H.264. It describes the basic
concepts of motion estimation, motion compensation, and their implication on the
computational complexity. The rate-distortion optimization framework based on the
Lagrange optimization method is reviewed. It also explains the process used to control
the rate over frames to meet the overall target. In Section 3, we present the proposed
CAMED method for generating low-complexity bit streams. Section 4 includes the
experiment results. Conclusions and future work are described in Section 5.

2. Review of Typical Hybrid Video Coding Systems

Fig. 2 illustrates the system diagram for a typical hybrid motion compensation and block-
transform video coding system. The darker box shows the decoding procedure, which is
also simulated in the encoder system for rate control purpose. The basic decoding unit is
a macroblock (MB). For each MB, the encoded bit stream first undergoes entropy
decoding to obtain the syntax bits (not shown in the figure), motion vector V , and
quantized coefficients ()Td t , where t is the time index of the image frame. Typical
entropy codecs include variable length coding (VLC) and adaptive arithmetical coding
(AAC). Inverse quantization is then employed to obtain the transform coefficient ()Td t ,
which is further fed to an inverse transform module to reconstruct the pixel value or

prediction error ()d t , depending on whether intro- or inter-coded mode is utilized during
encoding. For inter-coding mode, motion compensation is applied to generate the
reference image ()RP t using motion vector V and previously decoded and buffered
reference image (1)P t − . We use motion compensation to refer to the process of
compensating the image displacement due to motion across frames. When the motion
vector is of a sub-pixel value, interpolation is needed to compute the reference image.
Lastly, by combining the prediction error ()d t and the reference image ()RP t the decoded
image of the current frame is output.

The computational complexity of each component varies. Some are relatively constant
and independent of the encoded data while others heavily depend on the coding results.
For example, the components of inverse quantization and inverse transform have nearly
fixed computational cost per coding unit while the motion compensation component has
variable complexity depending on the block mode and the type of motion vector.
Furthermore, as shown in Fig. 1, the decoder complexity is dominated by the
interpolation filtering process used in motion compensation if the motion vectors are sub-
pixel. Other parts of the decoding system, like entropy decoding and inverse transform,
do not incur significant computational cost when compared to the interpolation process.

Note motion estimation is usually the most computationally complex process since it
involves searching over a large range of possible reference locations, each of which may
require interpolation filtering. Recognizing this, many fast motion estimation algorithms
such as those proposed in [18][19] have been developed to reduce the motion estimation
complexity during encoding. Other work proposes scalable methods for motion
estimation [20] to control the coding complexity. Nevertheless these methods all focused
on the encoding complexity reduction instead of the decoding complexity.

Video Encoder

Video Decoder

)(tdT)(tdT)(td

)1(−tP

vv

)(tPR

Transform Quantization Entropy
Encoding

Motion Estimation
& Mode Decision

Pre-decoded
Frame Buffer

++
-

Input
Frames

Encoded
Bitstream

Inverse
Transform

Inverse
Quantization

Entropy
Decoding

Motion
Compensation

+ +

+
Decoded
Frame

Entropy
Encoding

Bit Strem
Combining

Entropy
Decoding

)(tP

vv

Fig. 2: Conceptual diagram for typical video coding systems

2.1 Sub-pixel interpolation

Motion estimation is one of the most important components, and also the most
computationally complex part in any video coding systems. Motion estimation can be
illustrated using Fig. 3. The basic idea is to search for an optimal block with similar
values in previous coded frames as the reference signal for the block in current frame so
that the encoding cost can be minimized. The optimal reference signal position is
indicated by the displacement vector, called motion vector (denoted as V in Fig. 3).
Motion estimation applies the basic idea of inter-frame predictive coding. Sometimes,
multiple reference signals are used to form motion estimation, like the case for bi-
directional inter-frame prediction. Motion vectors are entropy encoded in a differential
and predictive manner [1]. Compared to motion estimation, motion compensation is the
procedure by which the decoder extracts a reference signal from the location indicated by
the motion vector. In reconstructing the reference signal, interpolation is a widely
adopted technique to improve the compensation precision when the motion vector has a
sub-pixel value. The effectiveness of the sub-pixel motion compensation has been
verified in H.263 and subsequent coding standards, at the cost of increasing complexity
(up to 50% referring to Fig. 1). Therefore reducing the motion compensation complexity
becomes the most important target for improvement.

Frame t

Frame t-1

V

Current
Block

Reference
Block

Fig. 3: Motion compensation between current and the reference frames

H.264 uses up to quarter pixel precision during interpolation [1][2]. Fig. 4 illustrates the
details of this procedure, where gray blocks with capital letters indicate the integer
locations and the white blocks with lowercase letters the sub pixels. All half-pixel
locations undergo 6-tap FIR filtering horizontally and vertically, whenever any one
applies. All quarter-pixel locations undergo 2-tap average filtering using integer and half
pixels. For example, the following formulae are used to calculate sub pixel b and e:

()()5 20 20 5 16 / 32b E F G H I J= − + + − − +

()1 / 2e b h= + +

The amount of filtering operations varies depending on the exact location of the pixel.
Table 1 lists the possible interpolation operations and the associated complexity. It is

clear that different interpolation methods have quite different computing complexities.
Some up-to-date video codecs may even have more complex interpolation. For example,
in the recent 3D scalable video coding standard like MC-EZBC, an 8-tap floating filtering
process is used to achieve high interpolation accuracy.

Given the information about the interpolation cost associated with each type of motion
vectors, the basic idea of reducing the decoder complexity is to select motion vectors that
involve less interpolation complexity while keeping the video quality high. Our empirical
analysis of some H.264 statistical data shows that depending on the video content, 40% to
80% of motion vectors are located on sub pixels with different interpolation complexities.
Therefore the principal approach to complexity reduction is to change motion vectors
from high complexity sub pixel positions into the ones with low complexity, or even to
integer-pixel positions.

G a b c H
d e f g
h i j k m
n p q r

FE

C D

I J

M NLK P Q

cc dd ee ff

s

bb

R Sgg

Fig. 4: Notations for sub-pixel locations in H.264

 Table 1. Sub pixel locations and their interpolation complexities

Sub Pixel Type Points Interpolation
(0, 0) G No

(0, 1/2), (1/2, 0) b, h 1 6-tap
(0, 1/4), (1/4, 0), (0, 3/4), (3/4, 0) a, c, d, n 1 6-tap + 1 2-tap

(1/4, 1/4), (1/4, 3/4), (3/4, 1/4), (3/4, 3/4) e, g, p, r 2 6-tap + 1 2-tap
(1/2), (1/2) j 7 6-tap

(1/2, 1/4), (1/4, 1/2), (3/4, 1/2), (1/2, 3/4) i, f, k, q 7 6-tap + 1 Bilinear

2.2 Block mode

In order to further reduce the temporal redundancy and improve the efficiency of motion
estimation, H.264 defines a diverse set of block mode options. Besides the conventional
modes of {intra, forward, backward, bi-directional}, two new important modes are
introduced: variable block size and SKIP/DIRECT.

Firstly, unlike earlier coding standards using a fixed block size (usually 16x16 or 8x8)
during motion estimation, H.264 allows to partition an MB into into several blocks with
variable block size, ranging from 16 pixels to 4 pixels in each dimension. The possible
modes of different block sizes are shown in Fig. 5. An MB can comprise up to 16 blocks.

Each block with reduced size can have its individual motion vectors to estimate the local
motion at a finer granularity. Though such finer block sizes incur overhead such as extra
computation for searching and extra bits for coding the motion vectors, they allow more
accurate prediction in the motion compensation process and consequently the residual
errors can be considerably reduced, which are usually favorable for the final rate-
distortion performance.

Mode 1 Mode 2 Mode 3 Mode 4

Mode 4 Mode 5 Mode 6 Mode 7

16 x 16

8 x 8

Fig. 5: Modes of variable block sizes in H.264

Secondly, the SKIP/DIRECT mode is utilized for the P/B frame in H.264 motion
compensation to further increase the coding efficiency. The basic idea is to use the
spatial/temporal neighbor motion vectors to predict the motion vector of the current
block, without sending extra bits to encode the current motion vector. Fig. 6 (a) illustrates
the SKIP mode, where the motion vectors of blocks A, B, C and D (if available) may be
used to estimate the motion vector of MB E. In Fig. 6 (b) the motion vector of the current
block in a B frame is interpolated from the motion vector of the co-located block from the
adjacent frames, assuming a constant global motion. Details regarding the SKIP/DIRECT
mode can be found in [1][4]. In our mode decision algorithm to be described later, both
the variable-size block mode and the SKIP/DIRECT mode are considered during the
search process.

 (a) SKIP (b) DIRECCT

Fig. 6: the SKIP/DIRECT mode for the P/B frame in H.264

The selection of block mode has direct impact on the decoder computational complexity,
because it determines what kind of motion vectors is recorded in the bit stream. Optimal

selection of the block mode and the associated motion vectors is the main problem
addressed in our work, where a systematic solution is derived.

2.3 Motion vector searching and block mode selection

As introduced in Section 1, conventional video coding systems encode the video bit
stream by solving the optimization problem defined in Equation (1). The main control
variables P involved in this procedure include motion vector V , block mode M and
quantization parameter QP . There is complex interaction between the choices of these
variables and thus finding the optimal solution is difficult. In practice, compromised
approaches are taken and approximate solutions are developed. For example, typically
QP is determined through some empirical models and updated throughout the video
sequence by some rate control algorithms. Given QP , the other variables, motion vector
and block mode, are decided by applying some rate-distortion optimization process. An
excellent survey of these procedures is described in [5]. We present a brief summary in
the following.

Specifically, for each block B with a block mode M, the motion vector associated with
the block is selected through a rate-distortion joint cost function [5]:

() { }* ,

sup{ } sup{ }
, arg min (,) arg min (,) (,)R D

DFD MOTION MOTIONMOTIONB M J B M D B M R B Mλ
∈ ∈

= = +
V V V V

V V V V (3)

where *V is the optimal motion vector, sup{ }V defines the search space, whose
dimensions include the prediction direction, the reference frame list and the search range.

MOTIONR is the estimated bit rate to record the motion vector. DFDD represents the
prediction error between the current block and the reference block. Usually the sum of
absolute difference (SAD) is adopted because the search space of motion vector is much
larger than that of mode and SAD has lighter computation cost compared with the sum of
squared difference (SSD). , ()R D

MOTIONJ V is the rate-distortion joint cost comprising of
MOTIONR and DFDD . MOTIONλ is the Lagrange multiplier to control the weight of the bit rate

cost, relative to the signal distortion caused by the prediction error.

In a similar manner the block mode M for an MB is decided by the following.

() { }* ,

sup{ } sup{ }
, arg min (,) arg min (,) (,)R D

REC MODE RECMODE
M M M M

M MB QP J M MB QP D M MB QP R M MB QPλ
∈ ∈

= = + (4)

where *M is the optimal block mode, and sup{ }M is the set of block mode options (such
as INTRA, SKIP, DIRECT, FORWARD, BACKWARD, BIDIRECTION, etc). A full list
of block mode options in H.264 can be found in [4]. RECD is the SSD between the current
MB and the reconstructed one through motion compensation. RECR is the estimated bit
rate associated with mode M. , ()R D

MODEJ M is the joint cost comprising of rate MR and

distortion MD , and MODEλ is the Lagrange multiplier. The motion vectors associated with
the optimal block mode ()* *,B MV will be the final coded data recorded in the bit stream.

The Lagrange multipliers used in the above two cost functions determine the relative
weights between signal quality and bit rate. To simply the search process, an empirically
derived relationship as the following is typically used in practice. The square root
relationship is partly due to the fact that SAD is used in modeling DFDD while SSD is used
for RECD .

MOTION MODEλ λ= (5)

2.4 Rate control

Rate control (RC) is the procedure of adjusting CVs so that the target rate requirement
can be achieved while optimizing the overall video quality. Given a target bit rate, we can
compute the average allocated bit rate for each basic coding unit. Then we can use the
Lagrange optimization method to find the optimal set of control variables. However,
searching over the entire variable space is very complex. In practice, most
implementations use empirical models to restrict the search space. For example, a popular
method, called rate-quantization modeling, maps the target bit rate to the quantization
parameter, from which the Lagrange multipliers are decided. In addition, since coding of
a data unit may not result in a bit rate that exactly matches the target, a separate process,
called buffer management, is used to monitor the available bit rate budget for the
remaining data units and thus update the allocated recourse. We briefly review these
processes in the following.

Rate-Quantization (RQ) model describes the relationship between QP and the bit rate. A
widely adopted quadratic RQ model is [6]:

 ()2
2

1
1

−− ⋅+⋅= QPPQPPDR (6)

where D is the source complexity of the video signal, and usually measured using the
motion estimation prediction errors (such as SAD), and 1 2{ }P , P are model parameters.
Some systems use 2 0P = for simplicity. A typical RQ modeling procedure involves two
major steps: model estimation and QP prediction. Fig. 7 shows a conceptual illustration
of these procedures. Firstly several basic coding units are coded using some preset QP
values. The coding units may include a certain number of MBs or one whole frame. The
resulting rate-quantization-distortion (R-Q-D) points are collected, as indicated by the
gray circles in Fig. 7. The model in Equation (6) is then estimated based on the
observations. The estimated model is indicated by the multiple curves shown in Fig. 7.
The estimated model can then be used to determine the QP value for the next coding unit
based on the target bit rate tR and source complexity tD for the new unit. The former is
decided by the buffer management process to be described below, and the latter is
predicted using previous observations of the source complexity. Usually the source

complexity is assumed to vary gradually and can be estimated using some simple
relationship such as a linear model. Once coding of the new unit is completed, new
observations of the R-Q-D points are collected and used to update the estimation of the
RQ model in a sliding window manner. Namely, the oldest R-Q-D point is purged and
the latest point is added to update the model.

Rate

QP

Increased D

Observed R-Q-D Point

Predicted R-Q-D Point

QPt

Rt

Fig. 7: Rate-Quantization model estimation and QP prediction in the rate control process

The buffer management employs a virtual buffer to simulate the behavior of the data
buffer on the decoder side. It is an important component in rate control in order to adjust
the target bit rate for each coding unit and avoid the problem of buffer overflow or
underflow. For example, given a target bit rate for the video sequence, the average bit
rate allocation for each Group of Pictures (GOP) can be computed, and the allocated bit
rate, tR , for a new frame to be coded (such as P frame) can be determined by monitoring
the actual number of bits spent on the previous frames.

In H.264, given the target rate and QP for the coding unit, the following empirical
relationship is often used to determine the Lagrange multiplier needed in the rate-
distortion tradeoff optimization.

12
30.85 2

QP

MODEλ
−

= × (7)

The validity of such a model is justified by empirical simulations, though some analytical
explanations have been offered in the literature such as [5]. Such an empirical model is
very useful in simplify the search process in the Lagrange optimization method, while
practical implementations have often shown satisfactory performance. Other parameters
like MOTIONλ can also be found according to Equation (5).

3. Complexity adaptive motion estimation and mode dcecision

We propose a new system for Complexity-Adaptive Motion Estimation and mode
Decision (CAMED). Given defined metrics for signal distortion and computational
complexity, the CAMED method explores the tradeoff between video quality and
resource consumption (both bit rate and computational complexity) to approximate the
optimal motion vectors and block mode used in the motion compensation process in the
decoder. The CAMED system consists of several components: the rate-distortion-

complexity (R-D-C) joint optimization framework, the complexity cost function, and the
complexity control algorithm. The R-D-C framework extends the previously discussed
Lagrange optimization framework to incorporate the complexity term. The complexity
cost function provides quantitative measurements of the required computation for each
motion vector type. The complexity control algorithm is used to control the complexity
over different coding units to meet the overall target complexity. We discuss each of
them in the following.

3.1 The Rate-Distortion-Complexity optimization frameowrk

Our proposed CAMED system basically tries to solve the problem defined in Equation
(2), with an explicit Lagrange term to model the complexity cost. Therefore, the motion
vectors are selected through a rate-distortion-complexity joint cost function:

{ }* , , ,

sup{ } sup{ }
(,) arg min (,) arg min (,) (,)R D C R D

C MOTION MOTIONMOTION MOTIONB M J B M J B M C B Mγ
∈ ∈

= = +
V V V V

V V V V (8)

where MOTIONC is the complexity cost function associated with the selected motion vector
(,)B MV , MOTIONγ is the Lagrange multiplier for the complexity term, , ()R D

MOTIONJ V is the
rate-distortion joint cost function defined in Equation (3), and , , ()R D C

MOTIONJ V is the rate-
distortion-complexity joint cost function.

Similar to the earlier case described in Equation (4), the block mode search process is
guided by the following.

() { }* , , ,

sup{ } sup{ }
, arg min (,) arg min (,) ()R D C R D

C MODE MODEMODE MODE
M M M M

M MB QP J M MB QP J M MB QP C M MBγ
∈ ∈

= = + (9)

where MODEC is the complexity cost function associated with the block mode, MODEγ is
the Lagrange multiplier, , ()R D

MODEJ V is the rate-distortion joint cost function defined in (4),
and , , ()R D C

MODEJ V is the rate-distortion-complexity joint cost function.

Now consider two extreme cases. When 0MODEγ = , the solutions of Equations (8) and
(9) are identical with the ones in Equations (3) and (4), namely no consideration was
given to the complexity constraint and many motion vectors may be of sub-pixel values
in order to minimize the distortion. When MODEγ = ∞ , all motion vectors are forced to
integer pixel locations in order to minimize the complexity involved in interpolation for
sub-pixel locations. Clearly there is a tradeoff between these two extremes to balance the
performance in terms of quality and complexity.

For simplification, we can adopt restrictions like that described in Equation (5) to limit
the search space. For example, in our experiments to be described later, we use the
following relationship to link MODEγ and MOTIONγ .

MOTION MODEγ γ= (10)

3.2 Complexity cost function

In the joint cost function described above, we need a quantitative model to estimate the
complexity associated with each candidate motion vector and block mode. As discussed
in Section 2.1, the computational complexity is heavily influenced by the type of the
motion vector (integer, half-pixel, or quarter-pixel) and the interpolation filters used in
the motion compensation process. If we just focus on the interpolation filtering cost,
quantitative estimates of such complexities can be approximated by the number of
filtering operations needed in interpolation, such as those listed in Table 1. For example,
using the same 6-tap filter and 2-tap filter implementations, the complexity of each
motion vector type is as follows.

() ()VV PBB cNc ⋅= (11)

6

6 2

6 2

6

6 2

0

()
2

7
7

P

V is integer MV
e V is subpixel b,h

e e V is subpixel a,c,d,n
c

e e V is subpixel e,g,p,r
e V is subpixel j

e e V is subpixel i,f,k,q

⎧
⎪
⎪
⎪ +⎪= ⎨ +⎪
⎪
⎪

+⎪⎩

V (12)

where ()Bc V is the computational cost for the current coding block, V is the motion
vector, ()Pc V is the computational complexity required for calculating a reference pixel,

BN is the number of pixels in the current coding block, and 6 2{ , }e e are the estimated
complexities for 6-tap and 2-tap interpolation respectively. Our experiment later will
show that a simplified model ignoring the 2-tap interpolation will mostly result in the
same selection of the motion vectors. With such simplification, the above model becomes
the following with a common factor 6e removed.

0
1

()
2
7

P

integer MV
subpixel a,b,c,d,h & n

c
subpixel e,g,p,r
subpixel i,j,f,k,q

⎧
⎪
⎪= ⎨
⎪
⎪⎩

V (13)

The estimated cost of interpolation can be derived from the specific software or hardware
implementations. For example, each interpolation operation can be divided into a number
of basic operators such as addition, shifts, and/or multiplications. In this case, 6 2{ , }e e can
be modeled with more details such as the following.

() () , 2,6i j j
j

e N o P o iρ= =∑ (14)

where jo is the basic operator involved in the interpolation implementation, ()jN o is the

required number of operator jo , ()jP o is the power consumption of operator jo , and 1ρ ≥
is the adjustment factor to consider additional power cost such as memory access. For
instance, Fig. 8 shows a hardware implementation of interpolation that was introduced in
[7]. Its estimated complexity is

()6 6 2add shifte P Pρ= + (15)

where ,add shiftP P are the power consumption for the addition operator and the 2-bit shift
operator respectively.

Fig. 8: A hardware implementation for the interpolation unit

Each block may be associated with multiple reference blocks, each of which needs a
motion vector. For example, for bi-directional prediction, each block may need two
motion vectors for forward and backward prediction respectively. Thus, the
computational cost for a block B with the block mode M is calculated as:

() ()(), , ,MOTION B j
j

C B M c M B=∑V V (16)

where the summation is over each reference block.

Each MB may consist of several smaller blocks, depending on the block mode, M. The
overall computational cost associated with a MB and a block mode can be calculated as:

() ()(), ,MODE B i j
i j

C M MB c B MB=∑∑ V (17)

where i is the index of the individual blocks contained in the MB, and j is the index for
multiple motion vectors associated with a single block. Equation (16) and (17) are
generic and applicable to all inter-coded block modes, including foreword/backward/bi-
directional motion compensation and SKIP/DIRECT.

3.3 Complexity control

Complexity control, analogous to the rate control process described in Section 2.3, is a
process to allocate the complexity resource among the coding units and to determine
parameters like Lagrange multiplier MODEγ to be used in the optimization procedure. In
Section 2.3, the allocated bit rate is mapped to the quantization parameter, which in term
is used to find the Lagrange multiplier MODEλ . In this section, we describe two
components of the complexity control algorithm – the complexity modeling and the
buffer management. The former is used to characterize the relationship between the target
complexity and the Lagrange multiplier MODEγ . The latter is for monitoring the
complexity usage and updating the available computational resource for each new data
unit.

3.3.1 Complexity modeling

In complexity control a feasible modeling of complexity and control parameter (MODEγ in
our case) is necessary. So far there is very little knowledge regarding the statistical
properties of the computational complexity in H.264. Therefore, similar to the practical
solutions used in most rate control algorithms, we resort to empirical observations from
experimental simulations.

One of the objectives is to find the relationship between the target complexity and the
optimization control parameter, MODEγ . Fig. 9 shows some simulations results revealing
such relationship. The details of the experiment will be described later in this paper. The
results indicate there is an approximately linear relationship between the complexity
value and log of the Lagrange multiplier. It is also clear the type of the frame (B or P)
influences greatly the relationship.

10
0

10
1

10
2

10
30

5

10

15

20

25

30

35

40
Mobile, 600kbps

Lagrange multiplier

C
om

pe
lx

ity
 (1

K
 In

te
rp

ol
at

io
ns

) B Frames

P Frames

Fig. 9: Relationship between Lagrange multiplier and the resulting complexity (top: B
frames, bottom: P frames)

A reasonable model based on the above observations is as follows.

() ()()1 0lnMODE MODEC D K Kγ γ= + (18)

where C is the complexity, D is a factor measuring the video source complexity similar
to that used in Equation (6) for rate control. 1 0,K K are the model parameters that needed
to be learned during the coding procedure. Due to different coding mechanism, P and B
frames will have distinguished model parameters and need to be handled separately.

Though lacking a theoretical explanation, the above model is driven by the empirical
simulation observations. The linear dependence of the computational complexity on the
signal source complexity is also intuitive – the more complex the signal source is, the
higher accuracy is needed in estimating the motion vector and thus there is a larger gain
in using sub-pixel motion vectors, resulting in an increased computational cost. Fig. 10
shows the approximate linear relationship between the computational complexity and the
mean prediction error (measured in mean absolute difference, MAD) from our simulation
(details to be described in later sections). Like the previous case of rate control, the MAD
measure can be considered as approximate estimation of the signal source complexity.

0 10 20 30 40 505

6

7

8

M
AD

0 10 20 30 40 50
0

5

10

15

20

C
om

pl
ex

ity

P Frame Index (Mobile, 600kbps, Lambda=5
Fig. 10: The relationship between the computational complexity and the signal source

complexity

Using the above model, the Lagrange multiplier ()MODE tγ for the current coding unit t can
be determined by the following.

() () ()
()
0

1
expMODE

C t K D t
t

K D t
γ

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (19)

where C(t) is the allocated computational budget and ()D t is the predicted complexity
measurement for unit t . In practice, in order to avoid large quality fluctuation, the
change rate of ()MODE tγ is bounded by some thresholds.

3.3.2 Buffer Management

Complexity buffer is a virtual buffer to simulate the complexity usage status on the
decoder side. It is analogous to the rate buffer used in the rate control to update the
estimation of available resource and avoid issues of buffer overflow or underflow.
Denote GOPC the remaining complexity budget in one GOP, PN , BN the remaining
numbers of P, B frames respectively, and η the complexity ratio between P and B, which
is updated along the video coding. The target complexity levels for P, B frame ,P BC C
are calculated by solving the following equations:

B

P

C
C

η= (20)

P P B B GOPN C N C C+ = (21)

Once ,P BC C are available, ()MODE tγ is determined using the model described in the
previous subsection. The formulations in Equation (20) and (21) assume the basic coding
unit as one frame. It can be easily extended to smaller units for a finer granularity.

4. Experiment Results

4.1 Experiment environment

Table 2 lists the experiment environment used in our simulation. Four standard test video
sequences were chosen and they had distinguished characteristics in motion intensity and
texture complexity, two crucial factors influencing the motion estimation performance.
H.264 reference codec of version JM82 was used. We use equation (13) to calculate the
complexity cost function.

 Table 2. Experiment Environment

Sequence Information
Sequence Name Akiyo, Foreman, Mobile, Stefan
Image Format CIF (352 288× pixels)
Video Format 30 frame per second, GOP size = 15, sub GOP size = 3
IBP structure IBBPBBPBBP…

Simulation Parameters
Bit rate 100, 200, 400, 600, 800, 1000, 1500 Kbps

MODEγ values From 0 to 500 (Lambda in the figure)
H.264 Configuration (selected)

Profile Main
Search Range 32
Inter Search Block Mode All On
Use Fast Motion Estimation Off
Frame / Slice Mode Frame Mode
Direct Mode Type Temporal
Basic Rate Control Unit 11 Macroblocks
S-P Frame No

0 500 1000 1500
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Akiyo PSNR

Bandwidth (kbps)

P
S

N
R

(d
B

)

H.264
Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500

0

10

20

30

40

50

60

70
Akiyo Complexity

Bandwidth (kbps)

R
em

ai
ni

ng
 C

om
pl

ex
ity

(%
)

Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Foreman PSNR

Bandwidth (kbps)

P
S

N
R

(d
B

)

H.264
Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500

0

10

20

30

40

50

60

70

80
Foreman Complexity

Bandwidth (kbps)

R
em

ai
ni

ng
 C

om
pl

ex
ity

(%
)

Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Mobile PSNR

Bandwidth (kbps)

P
S

N
R

(d
B

)

H.264
Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500

20

30

40

50

60

70

80

90

100
Mobile Complexity

Bandwidth (kbps)

R
em

ai
ni

ng
 C

om
pl

ex
ity

(%
)

Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Stefan PSNR

Bandwidth (kbps)

P
S

N
R

(d
B

)

H.264
Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

0 500 1000 1500

10

20

30

40

50

60

70

80

90
Stefan Complexity

Bandwidth (kbps)

R
em

ai
ni

ng
 C

om
pl

ex
ity

(%
)

Lamda=5
Lamda=20
Lamda=50
Lamda=200
Lamda=500

Fig. 11: Performance of rate-distortion and rate-complexity using the proposed CAMED

system

4.2 Rate-distortion-complexity performance in CAMED

Fig. 11 lists the rate-distortion performance together with rate-complexity results by
different MODEγ values. The latter is measured in terms of the ratio of the remaining
complexity when applying the proposed CAMED method to the original complexity
when using the H.264 JM82 codec (i.e., 0MODEγ =). Note the complexity includes only
the computation required for reconstructing the reference signals in the decoder, which is
the most demanding component in the decoding process.

Several important findings are in order. Firstly, adjusting MODEγ is an efficient way to
control the computational complexity. Up to 95% of the interpolation cost can be
removed within a relatively small range of MODEγ (see Foreman at 1000kbps with

MODEγ =500). Secondly, the video quality is well maintained when reducing the
complexity. If we use 0.5dB as the perceptual quality difference threshold, up to 60% of
the computational cost can be saved without visible impairment (see Stefan at 1000kbps
with MODEγ =50 and PSNR drop of 0.197dB). Fig. 12 further shows the frame-to-frame
quality and complexity over the entire video sequence Stefan. In fact, for all sequences,
30~50% cost saving can be obtained within 0.1dB quality loss. According to the
benchmark provided in [3], this can be translated into an overall decoding complexity
saving up to 30%.

0 50 100 150 200 250 300
0

10

20

30

40
Stefan, CIF, 30fps, 1000kbps

C
om

pe
lx

ity
(K

 in
te

rp
ol

at
io

ns
)

H.264
Lambda=50

0 50 100 150 200 250 300
25

30

35

40

Frame ID

PS
N

R
(d

B)

H.264
Labmda=50

Fig. 12: Frame-to-frame video quality and computational complexity comparison. The

video quality is well maintained though the complexity is greatly reduced.

The reason of the above excellent performance probably can be attributed to the
statistical characteristic of video signals. Without theoretical explanation, our intuitive
conjecture is that not every sub-pixel motion vector is equally important in predicting the
reference signal required in the motion compensation process. Moving less critical ones

from the sub-pixel resolution to the integer resolution will not dramatically increase the
prediction error, but will help significantly in reducing the computational cost at the
decoder. Fig. 13 shows one example comparing the motion vector distribution with and
without applying the proposed CAMED method. It is obvious that many motion vectors
shift to the locations with lower interpolation complexities (integer or half-pixel
locations).

Fig. 13: Subpixel motion vector distribution with and without the proposed CAMED

method

4.3 Complexity Control

During complexity control, the basic operations are to adjust MODEγ and manage the
complexity buffer. First of all, the complexity model presented in Equation (18) need to
be verified. Fig. 9 illustrates the relationship between Lagrange multiplier and resulting
complexity for the sequence Mobile at 600kbps. Each curve is for one P or B frame. The
linear relationship between the complexity and logarithmic MODEγ is evident, especially
for P frames. B frames usually have larger complexity because of bi-directional
prediction. For the same frame type, we hypothesize the variation is caused by different
content complexity in each frame. Like the empirical approach used in the conventional
rate control process, we use MAD as an approximate measure of the frame content
complexity. Fig. 14 compares the frame-to-frame evolution of computational complexity
with some major coding parameters for the P frames in the Mobile sequence at 600kbps
with 5MODEγ = . Compared to other options (such as quantization parameter), MAD
appears to demonstrate the closest correlation with the computational though some
variance is still noticeable. Study of improved measures capturing the statistical
properties of the computational complexity is an interesting topic for future research.

0 10 20 30 40 50 60
0

20

40
Complexity & Corresponding Parameters

B
it

ra
te

 (k
bi

ts
)

0 10 20 30 40 50 60
30

35

40

Q
P

0 10 20 30 40 50 60
0

10

20
C

om
pl

ex
ity

(K
)

0 10 20 30 40 50 60
4

6

8

M
A

D

P Frame ID (Mobile, 600kbps, Lambda = 5)
Fig. 14: Relationship between computational complexity and major coding parameters

Table 3 lists the main parameters used in the complexity control experiment. Some
parameters may be further fine-tuned in order to find better tradeoff between quality
fluctuation and control efficiency. We leave such potential improvement in future studies.

Table 3: Parameters used in complexity control
Basic control unit One frame
Frame complexity prediction window size 6
Frame complexity prediction model Linear

MODEγ prediction window size 6

MODEγ prediction model Equation (19)

MODEγ range [0 3000]

Maximum C
Mλ change magnitude 80

Initial ratio of B/P frame complexity 1.6
Initial C

Mλ value 10
Target complexity per GOP (amount of
interpolations, defined in Equation (13)) 50K ~ 250K

Fig. 15 shows the detailed complexity control results for the sequence Foreman at
1000kbps with different target complexity levels. The complexity of the baseline H.264
JM82 result is also shown for comparison. The results are very promising. Though in all
cases the initial MODEγ is set to the same value 10, it can be adaptively adjusted and the
target complexity level is consistently accomplished, except for the case aggressively
reducing the complexity from about 250K to 50K (80% reduction). The latter aggressive
case will not be achievable without sacrificing greatly the video quality. For other cases,
some fluctuation can still be seen at the end of the sequence starting from 14th GOP,
where the sequence contains rapid camera panning. Our complexity control method
cannot completely smooth this huge complexity increase because we bound the
maximum magnitude and the maximum change rate of the MODEγ parameter in order to
avoid excessive quality loss and quality fluctuation. In other words, we try to maintain
some consistence in video quality throughout the entire video sequence as well.

0 5 10 15 20
0

50

100

150

200

250

300

350

400
Foreman, 1000kbps

GOP Index

C
om

pl
ex

ity
 (K

 in
te

rp
ol

at
io

n)

JM82
50K
100K
150K
200K

Fig. 15: Complexity control performance

Table 4 summarizes the complexity control performance at 1000kbps. Complexity
control error is calculated as the difference between the actual resulting complexity and
the target complexity, normalized by the target complexity. Complexity Saving is the
percentage of the original computational cost that has been removed. Quality Degradation
is the quality difference (in PSNR) between the bit stream generated using original H.264
and the one using our complexity control method. These results confirm that large
savings of the computational complexity (30% to 60%) can be achieved with small
quality degradation (0.3dB). Improvements from different video clips are different
depending on the type of the content and the complexity of the signal. The most
challenging case is the Mobile sequence, which has a steady camera motion (slowly
panning left) and thus the SKIP/DIRECT mode is frequently used. It is difficult for the
proposed CAMED method to change the motion vector to the integer one without
incurring significant increase of bit rate. This is partly because that the SKIP/DIRECT
mode is already a very efficient coding mode – very few bits are needed in coding the
mode information and changing the mode will not improve much the prediction accuracy
due to the motion in the video content. However, even for such a challenging case, our
proposed CAMED method can still achieve about 33% complexity saving in order to
keep the video quality more or less intact.

Table 4: Complexity control performance (at 1000kbps)
Target Complexity 50K 100K 150K 200K 250K

Complexity control error 19.78% 2.81% 0.09% 0.2% 1.4%
Complexity Saving 76.78% 60.15% 41.80% 22.63% 4.45% Foreman
Quality Degradation (dB) 0.60 0.28 0.13 0.06 0.02
Complexity control error 61.43% 1.73% 1.16% 0.14% 4.37%
Complexity Saving 67.68% 59.27% 39.25% 20.04% 4.28% Stefan
Quality Degradation (dB) 0.78 0.60 0.35 0.05 -0.09
Complexity control error 195.8% 47.92% 1.37% 5.24% 11.59%
Complexity Saving 47.92% 47.92% 47.91% 33.27% 22.18% Mobile
Quality Degradation (dB) 0.63 0.63 0.63 0.31 0.13

5. Conclusions and Future Work

We introduce a novel complexity adaptive motion estimation and mode decision method
(called CAMED) to improve the emerging hybrid video encoding system like H.264 so
that the computational resource required at the decoder can be greatly reduced while the
video quality is maintained with very little degradation. Such results are very useful for
the increasingly popular handheld devices in many mobile applications.

We first analyze the decoding complexity behavior and identify the most critical
components, i.e., the motion vector and the block mode that affect the cost of the
interpolation process in motion compensation. We develop simple but practical cost
functions to estimate the required computation for each motion vector and block mode.
Then we extend the conventional rate-distortion optimization framework based on the
Lagrange multiplier method to explicitly handle the computational complexity. In
addition, for complexity control, we propose an effective logarithmic-linear model to
predict the relationship between the target complexity and the Lagrange multiplier. The
joint rate-distortion-complexity framework together with the complexity control
algorithm provides an effective solution for optimizing the tradeoff between video quality
and resources, including both bit rate and computational complexity. The proposed
system can be easily embedded into existing video coding systems and will work with
any standard compatible decoder.

Our extensive experiments using H.264 codec over different video sequences, different
bit rates, and different complexity levels demonstrate the power of the proposed system.
Up to 60% of the interpolation complexity can be saved at the decoder without incurring
noticeable quality loss (within 0.2 dB). Even for challenging video clips such as Mobile,
33% of the complexity can be reduced with quality difference less than 0.3dB. The
proposed complexity control scheme can reliably meet the target complexity requirement
for a wide range of video content.

The proposed system has great potential in realizing an efficient low-power video
decoder product. There are several interesting topics that will benefit further
investigation. First, in practice, many video encoder implementations utilize some fast
motion estimation procedures to reduce the power consumption on the encoder side. An
interesting topic is to study how the proposed technique will affect the video quality and
computational complexity when such fast encoder implementations are applied. Secondly,
the computational complexity may not provide a reliable estimate about the final power
consumption of the entire decoder system. There are other factors involved, such as chip-
level issues, hardware architecture, memory access, etc. Although the interpolation
procedure has been identified to be the most significant one in the decoder, it will be
important to conduct a more extensive study of the impact on the real power
consumption. Using the limited models available in the literature, we conjecture the
actual power consumption saving by our current method may be in the range between
10% and 30%. Thirdly, several components of the proposed framework, such as the
complexity modeling, are not fully optimized and present interesting opportunities for
further improvement.

Reference:

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, "Overview of the H.264/AVC Video Coding

Standard," IEEE Trans. Circuits Syst. Video Technol., vol 13, pp.560-576. Jul. 2003.
[2] T. Wedi; H.G. Musmann, Motion- and aliasing-compensated prediction for hybrid video

codingPage(s): IEEE Trans. Circuits Syst. Video Technol., vol 13, pp.577- 586. Jul. 2003.
[3] V. Lappalainen, A. Hallapuro, and T.D. Hämäläinen, “Complexity of OptimizedH.26L Video Decoder

Implementation,” IEEE Trans. Circuits Syst. Video Technol., vol 13, pp. 717-725. Jul. 2003
[4] A. M. Tourapis, F. Wu, S. Li, "Direct mode coding for bi-predictive pictures in the JVT

standard", ISCAS2003, vol. 2, 700-703, Thailand, 2003.
[5] G. J. Sullivan and T. Wiegand, Rate-Distortion Optimization for Video Compression IEEE Signal

Processing Magazine, Vol. 15, Num. 6, pp. 74-90, Nov. 1998
[6] T. Chiang and Y.-Q. Zhang, "A New Rate Control Scheme Using Quadratic Rate Distortion Model,"

IEEE Trans. Circuits Syst. Video Technol., Vol. 7, pp. 246-250, Feb. 1997
[7] T.-C. Chen, Y.-C. Huang and L.-G. Chen, “Full Utilized and Resuable Architecture for Fractional

Motion Estimation of H.264/AVC”, ICASSP2004, Montreal, Canada, May 17-21, 2004
[8] X. Zhou, E. Li, and Y.-K. Chen, “Implementation of H.264 Decoder on General-Purpose Processors

with Media Instructions”, in Proc. of SPIE Visual Communications and Image Processing, Jan. 2003
[9] National’s PowerWise™ technology. http://www.national.com/appinfo/power/powerwise.html
[10] Y. Eisenberg, C. E. Luna, T. N. Pappas, R. Berry, A.K. Katsaggelos, Joint source coding and

transmission power management for energy efficient wireless video communications,
CirSysVideo(12), No. 6, June 2002, pp. 411-424.

[11] Q. Zhang, W. Zhu, Zu Ji, and Y. Zhang, "A Power-Optimized Joint Source Channel Coding for
Scalable Video Streaming over Wireless Channel", IEEE International Symposium on Circuits and
Systems (ISCAS) 2001, May, 2001, Sydney, Australia.

[12] X. Lu, E. Erkip, Y. Wang and D. Goodman, "Power efficient multimedia communication over wireless
channels", IEEE Journal on Selected Areas on Communications, Special Issue on Recent Advances in
Wireless Multimedia, Vol. 21, No. 10, pp. 1738-1751, Dec., 2003

[13] H. Kim and Y. Altunbasak, “Low-complexity macroblock mode selection for the H.264/AVC
encoders,” IEEE Int. Conf. on Image Processing, Suntec City, Singapore, October 2004

[14] A. Ray and H. Radha, "Complexity-Distortion Analysis of H.264/JVT Decoder on Mobile Devices,"
Picture Coding Symposium (PCS), December 2004

[15] K. Lengwehasatit and A. Ortega, " Rate Complexity Distortion Optimization for Quadtree-Based DCT
Coding ",ICIP 2000, Vancouver,BC, Canada, September 2000.

[16] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, "Power-Rate-Distortion Analysis for Wireless Video
Communication under Energy Constraints," IEEE Transactions on Circuits and Systems for Video
Technology, Special Issue on Integrated Multimedia Platforms, 2004.

[17] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero , "Distributed video coding," Proc. of the
IEEE, Special Issue on Video Coding and Delivery, 2005.

[18] A. M. Tourapis. “Enhanced Predictive Zonal Search for Single and Multiple Frame Motion
Estimation,” Proceedings of Visual Communications and Image Processing 2002 (VCIP-2002), San
Jose, CA, Jan 2002, pp. 1069-79.

[19] H.-Y. Cheong, A. M. Tourapis, "Fast Motion Estimation within the H.264 codec," in proceedings of
ICME-2003, Baltimore, MD, July 6-9, 2003

[20] M. Schaar, H. Radha, Adaptive motion-compensation fine- granular-scalability (AMC-FGS) for
wireless video, IEEE Trans. on CSVT, vol. 12, no. 6, 360-371, 2002.

