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ABSTRACT 

 

Many techniques exist for adapting videos to satisfy heterogeneous resource conditions or user 

preferences. However, selection of the best adaptation operation among various choices usually is 

either ad hoc or inefficient. To provide a systematic solution, we present a conceptual framework 

based on utility function (UF), which models video entity, adaptation, resource, utility, and the 

relations among them. In order to support real-time video adaptation, we present a content-based 

statistical paradigm to facilitate the prediction of UF for real-time transcoding of live videos. 

Instead of modeling the UF through analytical models, as in the conventional rate-distortion 

framework, the proposed approach formulates the prediction as a classification and regression 

problem. Each video clip is classified into one of distinctive categories and then local regression is 

used to accurately predict the utility value. Our extensive experiment results based on MPEG-4 

transcoding demonstrate that the proposed method achieves very promising performance — up to 

89% accuracy in choosing the optimal transcoding operation (in both spatial and temporal 

dimensions) with the highest quality over a diverse range of target bitrates. 

 

Index Terms: video adaptation, universal media access, utility function, content based 

prediction 
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I. INTRODUCTION 

An emerging multimedia framework, in which multimedia content is accessed from 

heterogeneous networks and terminals in a seamless way, is often referred to as universal 

multimedia access (UMA)[1]. In UMA, media content adaptation is considered to be a core 

technology for coping with variations of environment resources and user preferences. Media 

adaptation is a process that transcodes the original encoded media into a new version in order to 

match resource constraint (e.g., bandwidth and resolution) or user preference. Many adaptation 

methods exist for adjusting the bit rate of compressed video streams. For example, requantization 

of transform coefficients [2], frame dropping (FD) [3], DCT coefficients dropping (CD) [7] and 

resolution reduction [5] are commonly used. More discussion involving transcoding for UMA can 

be found in [4]. To address heterogeneous resources and user conditions, some recent developments 

in scalable video coding have been made with greater flexibility and improved video quality [17].  

Nevertheless, most existing adaptation techniques have a common problem – they concentrate 

on optimization of pre-selected adaptation operations, rather than systematically choosing the 

optimal adaptation operation from multiple options. The issue becomes more prominent when the 

number of adaptation dimension increases, including spatial, temporal and SNR. In the literature 

there are a few efforts to address this issue. In [6] a rate-distortion (R-D) optimization method was 

proposed by modeling the Mean Squared Error (MSE) distortions caused by quantization and 

frame skipping. In [10], a dynamic programming scheme was used to achieve optimal rate control 

where frame rate, spatial resolution and quantization step size were jointly considered in modeling 

the distortion. A distortion measurement was used to estimate the video quality in the full resolution, 

while some weights were assigned to address the perceptual effects of spatio-temporal scale 

variation. In [11], variable frame rate coding was realized, where the quantization step size was 
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determined by an analytical distortion model for each frame, and the frame with quantization step 

size exceeding some threshold was skipped. However, all of these approaches rely on the 

availability of some analytical models. Construction of adequate analytical models of R-D 

relationship is known to be nontrivial. It is even more difficult when video undergoes multi-

dimensional adaptation.  

In this paper we present a general framework, called utility-based video adaptation, as a 

systematic solution for the issue of spatio-temporal combined adaptation. Specifically three key 

aspects involved in adaptation problems – adaptation (A), resource (R), and utility (U) are modeled 

and represented using a utility function (UF), which describes the tradeoff relationship between 

resources and utilities along each adaptation dimension. UF plays a key role in choosing the 

optimal adaptation among multiple options that meet resource constraints or user preferences. This 

approach represents a simple extension of conventional R-D framework to allow incorporation of 

diverse types of resources (e.g., complexity and bandwidth) and adaptation operations.  

In the utility-based framework, one key issue is how to generate UF in real time to accommodate 

live videos. For stored videos in on-demand applications, UF can be generated by exhaustive off-

line simulations. Such an approach may require significant computational complexity, which is 

unacceptable for live videos. In this paper we present a novel real-time UF prediction method that 

utilizes the strong correlations between content features and the UF characteristics of a video. The 

prediction method, first described in [21], combines real-time compressed-domain feature 

extraction, pattern discovery, classification, and statistical regression. We formulate the problem as 

a pattern classification and prediction question, taking the automatically extracted content features 

as input and then making predictions about the UF. The only on-line computation required is for 

content feature extraction and pattern classification. Therefore, the proposed approach is fully 

automatic and can be done in real-time. Our extensive MPEG-4 transcoding experiment results 
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show a very promising accuracy (up to 89%) in choosing the optimal operation from several 

competing options.  

The main contributions of our work include the formulation of UF for the joint spatio-temporal 

adaptation and the novel algorithms for predicting the optimal adaptation operation based on the 

content feature extracted from the compressed streams. The rest of this paper is organized as 

follows. The framework of utility-based transcoding is introduced in Section II. In Section III, the 

statistical approach to UF prediction is described, including feature extraction, unsupervised and 

supervised learning methods and statistical local regression. The experiment setup and results are 

presented in Section IV. The conclusion and future work are given in Section V. 

 

II. UTILITY-BASED TRANSCODING 

The UF-based adaptation approach mentioned above fits very well a popular three-tier server-

proxy-client architecture, shown in Figure 1. The adaptation engine deployed in the proxy adapts 

incoming videos to satisfy dynamic resource constraints that are not known a priori. The role of the 

UF is to describe the relationship between required resources and resulting video utilities when the 

video is subject to various adaptation operations in multiple dimensions. For stored videos, UF can 

be generated offline at the server and sent to the adaptation engine. The engine will then select the 

optimal adaptation operation based on the information in the UF. For live videos, UF needs to be 

obtained on the fly through some estimation and update processes. In this paper, we specifically 

propose a content-based prediction method that estimates the UF according to the content features 

and statistical classification tools. Such real-time prediction methods can be implemented at either 

the server or the proxy.  
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A. DEFINITION OF ADAPTATION, RESOURCE, UTILITY AND THEIR RELATIONS 

UF is defined in the Adaptation-Resource-Utility (ARU) space, where relationships among 

diverse types of adaptations, resources (e.g., bandwidth, power, and display) and utilities (e.g., 

objective or subjective quality) are modeled. We use the term “space” in a loose sense here to 

indicate the multiple dimensionalities involved. Figure 2 depicts the notions of ARU involved in a 

video adaptation problem. The entity, e , refers to the basic unit of video data that undergoes the 

adaptation process. Adaptation operators are the methods to reshape the video entities, such as 

requantization and frame dropping. All permissible adaptations for a given video entity constitute 

the adaptation space. Resources are constraints from terminals or networks, including bandwidth, 

display resolution, power, etc. Utility represents the quality of an entity when it is rendered on an 

end device after adaptation, such as PSNR, perceptual quality, or even high-level user satisfaction. 

The mapping relationship among ARU spaces is illustrated in Figure 3. Typically, there exist 

multiple adaptation solutions that satisfy the same resource constraints, while yielding different 

utilities. In Figure 3, the points in the oval shaped region in the adaptation space indicate such a 

constant-resource region. Likewise, different points in the adaptation space (the shaded rectangle) 

may lead to the same utility value. It is such a multi-option situation that makes the adaptation 

problem interesting – we want to choose the optimal one with the highest utility or minimal 

Figure 1. A three-tier adaptation architecture using the utility-based framework. 
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Figure 2. Definition of adaptation, resource, and utility spaces involved in video adaptation 
problems in the utility-based framework. 
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Figure 3. Use of UF to describe relations among adaptation, resource and utility 

 

We are interested in describing the relationship between rate and utility associated with each 

adaptation operation. We represent such relationship by using UF. The right figure in Figure 3 

shows a simple example of UF, in which only one dimension is shown in both resource and utility. 

This is equivalent to the known R-D curve when R is bitrate and D is related to video quality. Each 

point in UF is associated with one specific adaptation operator, which may include combinations of 

multiple operations (such as frame dropping and coefficient dropping).  More detailed discussion 

of the UF function can be found in [12].  

B. FD-CD ADAPTATION 

To illustrate our method of utility based adaptation without losing generality, in this paper we 

consider a specific case involving two types of adaptations — Frame Dropping (FD) and AC DCT 
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Coefficient Dropping (CD) and their combinations (FD-CD). FD adapts the source stream by 

skipping frames, while CD transcodes the source stream by truncating some high frequency DCT 

coefficients. For CD there is more than one choice during coefficient dropping. Therefore in order 

to eliminate the ambiguity and obtain the optimal CD performance, the Lagrange optimization 

method is employed. Typically, suitable rate control techniques are needed to meet specific 

bandwidth constraint after FD-CD adaptation. Due to the space limitation details about the FD-CD 

algorithm and its implementations can be found in [16].  

The advantage of FD-CD adaptation firstly lies in its simplicity allowing real time 

implementation. Also FD can meet a coarse level of the target rate since its processing data unit is a 

frame. CD is able to meet the target rate with a finer granularity by adjusting the amount of dropped 

coefficients. The combination of FD-CD accommodates a wide range of bit rate constraints. 

Furthermore, FD-CD provides adequate flexibility in balancing the trade-off between spatial and 

temporal quality.  

For simplification, we assume the entity undergoing adaptation is a group of pictures (GOP) in 

the MPEG-4 sequence. Namely the same FD-CD operation parameters will be applied to the whole 

GOP.  

 

C. FD-CD REPRESENTATION USING UTILITY FUNCTION 

Using the utility-based adaptation framework, a two-dimensional adaptation space can be 

constituted for FD-CD, in which both FD and CD entail a finite set of adaptation operations. 

Specifically, an FD-CD adaptation method can be expressed as ( ),f c=a , where f  and c  

represent a specific frame dropping method and a coefficient dropping method respectively. For 

instance, =a (all B-frames dropped, 10%) means all of the B frames in a GOP are dropped and 10 

percent of the bits from each remaining frame will be reduced by coefficient dropping. A typical UF 
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is shown in Figure 4. For a specific video clip, given an adaptation operator a , its corresponding 

resource and utility value are denoted as r  and u . In the case of FD-CD, we have coarse discrete 

values of FD (i.e., “no frame dropping”, “drop all B and P frames”, “drop all B frames”, and “drop 

1 B frame only”), and finer discrete values of CD (i.e., drop c% of DCT coefficients”). Thus in 

Figure 4, points with the same FD are connected to a curve, and the adaptation operations between 

two anchor nodes are obtained through linear interpolation. The whole set of the curves define the 

UF, which represents the utility-resource relation associated with the given video in response to the 

available adaptation operations (FD-CD). Given a resource constraint 0r , all of the possible 

operators meeting the same resource constraint, such as Aa  and Ba  in Figure 4 can be found 

from the UF. If an operation is selected using the actual UF, it will achieve the target resource and 

the utility when it is applied to the video. If the operation is selected based on predicted UF, the 

actual resource and utility resulting from the adaptation may be slightly different from the target 

values due to prediction errors. Such utility based adaptation mechanism was also accepted as a part 

of MPEG-21 Digital Item Adaptation (DIA) [19]. More information about the DIA utility-based 

description tool can be found in [22]. 

Adaptation OperatorUtility

Resource

Aa

Ba

u
a

rr0  

Figure 4. Definition and representation of utility function 

 

To obtain a more efficient representation, we further simplify the representation of the UF by 

using the linear approximation of each curve as shown in Figure 4. The approximation is defined by 
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two end nodes of each curve. Therefore the UF can be denoted as: 

 

( ) ( )1 2 1 2 2 1 2 2, ,..., , ,..., , , ,...,UF UF UF UF
n n nf f f r r r u u u= =F  

 

where each curve ( ), 1, 2,...,UF
if i n= in Figure 4 is associated with 2 end points. Such 

approximation representation is very beneficial in reducing the dimensionality of the representation 

and improving the efficiency of the statistical prediction method described later. Our experiment 

demonstrates that such linear approximation provides a very satisfactory result in UF 

prediction (shown in Section IV.B). The ordering of the nodes does not matter, as long as a 

consistent scheme is maintained.  

D. ISSUES IN COMPUTING THE UTILITY FUNCTION 

In practice the generation of the UF is a nontrivial process. It may be done by exhaustive 

computation of all of the adaptation points, each of which requires transcoding of the video, 

decoding the transcoded bit stream, and computing the distortion. This process is very time 

consuming and typically cannot be done efficiently. To avoid exhaustive computation, there 

are two possible solutions: analytical modeling or empirical estimation.  

 
Approximate Analytical Modeling 

In [11], some analytical source models were developed by extending the theoretical R-D 

curves derived from ideal statistical distributions to approximate models using empirical 

data. Certain statistical models (e.g., Gaussian, Laplacian or variations) were assumed for 

video signals and parameters of the models were computed and updated from input video.  

Given the approximate R-D information, some recent methods have been developed to 

automatically adjust the frame rate and quantization step size under low-bit-rate conditions 

[10]. However, such analytical models may not be valid in general due to several reasons. 
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First, the adopted signal models like Gaussian or Laplacian may not be valid for realistic 

signals. Second, the R-D relationship is greatly affected by the specific coding algorithm, 

which has become increasingly complex in recent video coding technologies. Simple 

statistical signal models may not be valid for such complex coding methods. Lastly, it is 

difficult to extend the analytical models in order to take into account different coding 

structures, utilities (e.g., subjective measures), and resources (e.g., power).  

Empirical Estimation and Content-Based Prediction 

Another approach to R-D estimation is based on empirical learning – namely, learning 

from the training data. Such an approach does not use explicit statistical models for the 

video signals to derive the R-D curves. Instead, collection of training video clips are used 

to generate samples of video content features and the resulting UFs, represented by some 

efficient schemes described in the previous section. Machine learning techniques are then 

applied to develop mapping functions from the content features to the UFs. We refer to the 

aforementioned approach as content-based utility function prediction. 

The above prediction methods explore the potential correlation between content features 

and the R-D characteristics of a video. Such correlation has been observed in our 

experimental observations (Section IV). Here for video content, we refer to low-level 

features such as motion, spatial complexity, and characteristics of the coded stream (e.g., 

number of inter-frame coded macroblocks, motion vector statistics, etc.). Such features can 

be efficiently computed from the compressed streams. In our prior work [8], we have 

explored such an approach in which visual features from the video objects are used to 

predict the subjective quality of the objects after undergoing MPEG-4 transcoding. 

However, the work in [8] did not explore systematic representations of the UFs for FD-CD 

adaptation and did not address issues related to prediction of the optimal spatio-temporal 
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adaptation operation. 

 
III. UTILITY FUNCTION PREDICTION 

A. PROBLEM DESCRIPTION 

The issue of UF prediction can be formalized as follows: given the content feature CFF  

of one video clip, develop a suitable mapping from the content feature space into the UF 

space, i.e.,   

( )CFUF G FF =                              (1) 

where ( )UF
N

UFUFUF fff ,...,, 21=F  is a N-dimension UF row vector and UF
if  is ith component 

of UFF , and similarly ( )CF
M

CFCFCF fff ,...,, 21=F  is the M-dimension content feature row 

vector and CF
jf  is thj  component of  CFF . Equation (1) is a typical multivariate 

regression problem. For each UF
if  in UFF , we want to find a mapping gi, such that 

( ) ( )
( )N

CF
M

CFCF
i

CF
i

UF
i

gggG
fffggf

,...,,
,...,,

11

21

=
== F                         (2)  

By using Taylor expansion, this mapping can be written as:  

( ) ( ) ( ) 2
0 0 0 0 .UF CF CF CF CF CF CF

i i if g O = + ∇ ⋅ − + − 
 

F g F F F F F              (3) 

where ( )⋅  is the dot product of two vectors, and ( )CF
i 0Fg∇  is the M-dimension partial 

differential row vector. By keeping the components in (3) up to first order and ignore the 

higher orders, this mapping can be considered as a classic linear regression problem. Based 

on Equation (3), we can derive the following:  
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( )
( )

1 2
1 2

1 2

0 0 0

0

, ,..., 1

( )

( ), 1,2,...,

T T T
UF UF UF UF CF N

N
N

CF CF CF
i i i

T T CF
i i

f f f
c c c

c g

i N

 ∇ ∇ ⋅⋅⋅ ∇ = =    ⋅ ⋅ ⋅  

= − ∇ ⋅

∇ = ∇ =

g g gF F

F g F F

g g F

          (4) 

By applying the standard Least Mean Square Error (LSE) method, the optimal estimation 

of ig , indicated as ˆig , can be found to be: 

( ) ( )
1

ˆ
T TCF CF CF UF

i i

−
 =  
 

g F F F F% % % %                     (5) 

where CFF%  is the set of observed content feature vectors in the training data with each 

row corresponding to a training sample, and UF
iF% is the corresponding thi  component of 

observed UF. Moreover, the Taylor expansion works only in a small neighbor of the center 

CF
0F . Thus the first-order approximation is effective if the content feature space can be 

divided into some small areas, and the regression procedure is applied for each area 

separately. Specifically, this can be done by forming K such subareas Sk, k=1,2…K, and 

conducting the above approximate estimation method for points within each subarea. 

Therefore, the problem can be modeled as a K-segment piecewise linear regression 

problem and the parameters ( ic and ig ) can be obtained for each subset. In forming the 

partitions of the space, we can consider clustering in the CF space, clustering in the UF 

space, or a hybrid one that partition the CF space subject to some compactness constraints 

of corresponding UF values. In this work, in order to apply the local regression method 

discussed above we chose clustering in the CF space, plus combinations of classification 

techniques mapping content features to the CF clusters. Our experiment results presented 

later indeed confirm the superiority of this choice. 

Figure 5 shows the overall architecture of the proposed framework. The top diagram 

shows the procedures of extracting content features, classifying the video to one of the UF 
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classes, and local regression for predicting the UF. In the bottom diagram, an offline 

mechanism is shown to illustrate the use of a training pool in developing the UF clusters, 

the classifier for mapping future clips, and the local regression method for each cluster. 

Each training clip is associated with the content features and the actual UFs that are 

obtained in advance through exhaustive computation of all the adaptation operations. 

Details of each component mentioned above will be described in the following subsections. 
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Online Prediction
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Decision Learning

CF
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Figure 5. Overall architecture of the proposed framework. 

 
B. CONTENT FEATURE EXTRACTION 

We adopt the content features based on the set adopted in our prior work [8] with minor 

modification. Three groups of features are considered: motion intensity, AC DCT energy, 

and quantization parameters. The first two groups of features embody the spatial texture 

complexity and temporal motion intensity information. The third group also indirectly 

reflects the scene complexity subject to the specific rate control algorithm used. They are 

extracted directly from the encoded stream or the stream metadata without decoding the 

video to the pixel domain. Our experimental results show that the performance of 

prediction can be improved if we also include the PSNR information from the metadata 

associated with the original encoded stream. 
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Content features are extracted from each local video segment that is one second long. 

The length of the local segment is currently empirically determined, to keep an adequate 

balance between efficiency and accuracy. Note to ensure the video content in each segment 

is more or less consistent, we avoid shot boundaries within a segment by running automatic 

shot boundary detection and keeping the shot boundaries aligned with the segment 

boundaries. Although the shot boundary detection tool is not perfect, performance of the 

existing detection tools is quite high (precision up to 97% and recall up to 98% in [20]).  

Specifically, the following features are used in our system:  

 
1) Average motion intensity approximated by computing motion vector magnitude; 
2) Motion variance within the adaptation unit; 
3) Average percentage of macroblocks which have non-zero motion vector; 
4) Average I frame AC DCT coefficient energy; 
5) Average P frame AC DCT coefficient energy; 
6) Average quantization step size; 
7) Average PSNR if available in the stream metadata. 
 

The average values are computed over the frames in the one-second segment. To further 

improve efficiency, we only process the I and P frames. The AC DCT energy of I and P 

frames are kept separate because our statistical feature analysis (Principal Component 

Analysis) shows they have distinctive contributions to the final performance. This is 

reasonable considering the DCT energy in the I frame is more related to the texture 

complexity due to the use of intra-frame coding, while the DCT energy in the P frames is 

mainly related to motion compensation residues because of the use of inter-frame coding.  

  

C. UNSUPERVISED CLUSTERING 

The purpose of unsupervised clustering is to partition the content feature space into 
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separate subspaces so that the local regression technique described in Section III can be 

applied in each local area. We adopt the K-Harmonic Mean (KHM) [13] clustering method, 

which in principle is related to the popular K-mean method. The main improvement of 

KHM over K-mean is by using the pth-order harmonic distance, rather than the Euclidian 

distance. It was shown in [13] that KHM outperform K-mean in reducing the sensitivity to 

initialization and avoiding local optimal points. 

Note the above clustering process is performed in the CF space, instead of the UF space. 

As shown in Figure 6, clusters formed in the CF space will ensure points in the same 

cluster have similar CF values. This is important for keeping a subarea of small variation of 

CF values and thus the first-order approximation by Taylor expansion described in Section 

III.A remains valid. Although the alternative of doing clustering in the UF space can 

achieve compact data sets with similar UF values. The corresponding values in the CF 

space may be spread over a large range, and thus violate the assumption of proximity of the 

local regression method mentioned above. We will present performance comparison of 

these competing options later. 

 

(a) 

UF Space CF Space UF Space CF Space 

(b) 

 

Figure 6. Difference between CF clustering and UF clustering. Shaded points show a 
cluster formed in one space and the corresponding values in the other space. 

 

Another general problem of unsupervised clustering is determining the number of cluster, 
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K. A K  value that is too large will lose generality and result in overfitting, while a K  

value that is too small will result in significant bias. In our experiment, we determine the 

number of cluster through empirical trials and find 16=K  yields satisfactory performance. 

We expect the adequate choice of K depends on the characteristics of the video content and 

dynamic variations of the video over time. It is conceivable to propose some prediction 

schemes to determine the cluster number based on computable content features. Study of 

such methods and analysis of the effect on the UF prediction performance is beyond the 

scope of the current work.  

 

D. SUPERVISED CLASSIFICATION BY SVM 

The purpose of classification is to categorize an incoming video clip into one of the 

classes and then apply the corresponding regression model to predict the UF. Note if the 

classes are formed by clustering in the CF space, the same clustering method can be used 

for such a classification purpose. But if the clusters are formed in the UF space, the 

corresponding points in the CF space may not be compact and therefore we need a separate 

process for classification. 

We employ Support Vector Machine (SVM) for the classification task. Basic SVM 

classifiers are for two-class discrimination. There are several ways to extend a binary 

classifier to support multiple-class separation, such as classifiers for one against others [15], 

or ones that fuse a set of two-class classifiers by methods like the Max Wins algorithm in 

[9]. We adopt the directed acyclic graph SVM (DAGSVM) algorithm presented in [14] 

with minor modification to resolve the ambiguous region issue. In DAGSVM, the multiple-

class classifier is constructed by using a Decision Directed Acyclic Graph. The classifier 

starts with separation between two most distinguishable classes using a regular two-class 
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SVM. The negative class is excluded and the same two-class discrimination procedure is 

repeated for the remaining classes. It has been known to be a fast multi-class classifier with 

satisfactory performance [14]. 

IV. EXPERIMENT RESULTS 

A. EXPERIMENT SETUP 

In our experiment, we selected video from three movies to form the training and testing 

pool. The details of the video pool are summarized in Table 1. There were totally 2066 clips, 

each of which was one second long. The clips were carefully selected to cover a wide range 

of content features. Every clip was extracted from within a shot and thus no abrupt 

transitions like shot changes occured within a clip. The proposed algorithm was tested 

using a standard cross validation procedure in which training and testing was done with 

random partitions of the pool (70% for training and 30% for testing) over multiple runs. 

First, we need to compute UFs and extract content features for each set of training clips. 

In computing UFs, we defined an adaptation space of FD-CD similar to that described in 

Section II.C (see Figure 4). Based on the given GOP structure ( )3,15 == MN , we adopt 

four FD operators:  “no frame dropped”, “the first B frame dropped in each sub GOP”, 

“all B frames dropped”, and “all B and P frames dropped”. In the CD dimension, we 

adopted six CD levels: from 0% to 50% with 10% increment. As a result, there were totally 

24 anchor nodes and four operation curves in each UF. Further details of the 

implementation are described in [16].  

 
Table 1: Summary of data set 

Video source 
1. A Beautiful Mind (736 clips) 
2. Crouch Tiger Hidden Dragon (589 clips) 
3. Taxi II (741 clips) 

Clip length 1 second (2 GOPs) 
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Image format 352 x 240 pixels 

Video 

compression 
MPEG-4 with 30 fps and TM5 rate control 

GOP structure GOP size N=15, sub-GOP size M=3 

 

Evaluation of the proposed prediction method can be based on various performance 

metrics. For example, errors in predicting the UF can be defined based on the 2L  metric as 

follows  

                  
2

1

1 ˆ
L

UF UF
l l

l

D
L =

= −∑ F F      (6) 

where UF
lF  is the actual UF and ˆ UF

lF  is the predicted one. L is the number of the test clips. 

Alternatively, the utility ranking of permissible operators at fixed bitrates can be evaluated, 

comparing results using the predicted UF verse the ground truth UF.  

Table 2 is the specification of the algorithms employed in the experiment. 

Table 2: Algorithm specification 

Unsupervised Clustering 
K-Harmonic Mean (KHM) using p-th order harmonic 
distance. 5.0=p , Number of clusters K=16 

Classification 
DAGSVM multiple-class classification:  
C=100, kernel=RBF with 5.0=γ  

Linear Regression Trained by LSE algorithm. See Equation (5).  

 
B. PERFORMANCE 

Figure 7 shows the prediction errors from four methods: our proposed method (Content 

Feature Clustering based Regression, CFCR); our proposed method but without local 

regression (Content Feature Clustering based Classification, CFCC), an alternative 

approach using clustering in the UF space instead of the CF space (UF-Clustering based 

Classification, UFCC), which is adopted in [8], and UF-Clustering based Regression 

(UFCR). The prediction error is measured by the L2 distance between the true UF and the 

predicted UF (see Equation 6). The experiments were run for 10 times and the average 
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performance was computed. The proposed method (CFCR) achieves the best result. That is 

to say when classification is combined with regression, clustering in the CF space is the 

best. This validates our decision in adopting the CF-space clustering method. However, it is 

interesting to note that without regression, techniques using clustering alone (UFCC and 

CFCC) favors clustering in the UF space. This is consistent with the UF-space clustering 

techniques used in our prior work [8]. Note in the pure clustering approach, the 

representative UF of each cluster as used as the predicted UF for all the points mapped to 

the same cluster.  
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Figure 7. Comparison of the prediction performance in terms of prediction error. 

 

Figure 8 shows comparison between some predicted UFs and the corresponding ground 

truth. The predicted UFs indeed match the true values very well. Typically, the prediction of 

the utility value (y axis) is not as good as the prediction of the resource value (x axis). 

However, the ranking of utility values among different transcoding options are quite 

consistent. Such ranking information provides the most important input to our adaptation 

system for selecting the optimal transcoding option meeting a given target resource 

constraint. 
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Figure 8. Matching predicted UF to the ground truths. 

  

In addition, we also measured the accuracy in selecting the optimal operator given 

various target bit rates. Five typical bandwidths were used as the test target rates: 1.2 M, 

1.0 M, 800 K, 480 K and 320 K bps. The original input video rate before transcoding was 

1.5 Mbps. Our proposed method (CFCR) was compared with two alternatives: CFCC and 

the most frequent adaptation method. The latter did not take into account content features 

in each video, and simply selected the operation that achieves the highest quality for the 

most number of video clips in the training pool. Figure 9 shows our method outperforms the 

other two and exhibits significantly higher accuracy (up to 89%).  

From both the above evaluation criteria, the results are quite encouraging – the proposed 

content-based prediction method achieves very good accuracy in predicting the UF values 

as well as the ranking among competing adaptation operations.  
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Figure 9. Performance in terms of prediction accuracy in choosing the optimal operator. 

 

Besides prediction performance, computational complexity is another important factor 

for a real time application scenario. Because the MPEG-4 codec we used was not a real-

time implementation, we were not able to provide the real time benchmark data. However, 

all of the computation processes in our system are light-weight. As shown in Figure 5 the 

main costs in our system include feature extraction and online prediction. The online 

prediction process, including classification and regression, can be implemented efficiently. 

Specifically, SVM classification only needs to calculate the kernel function and dot product 

between the content features and a sparse set of support vectors; linear regression involves 

only a multiplication between the model matrix and content feature vector. For feature 

extraction, partial bit stream decoding is necessary in order to obtain the content features, 

plus some minor extra calculation such as computing averages. The combination of all 

these computation steps is still much lighter than the complexity of a regular decoder 

(because the most complex component, motion compensation, is not needed). Considering 

video decoders can be implemented on most platforms with a real-time performance, it is 

reasonable to conjecture that our system can be implemented in a real-time fashion as well.  
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V. CONCLUSIONS AND FUTURE WORK 

In this paper we present a utility-based video adaptation framework as a systematic 

methodology to meet diverse resource conditions and user preferences in UMA 

environments. The framework explicitly models the major concepts involved in adaptation 

processes – adaptation, resource, and utility using a UF. In order to address the 

computational complexity issue in UF generation and support the real time adaptation 

scenario, we further propose a general content-based UF prediction approach using 

automatic content feature extraction, and regression over clustering and classification. Our 

experiment results using MPEG-4 FD-CD transcoding demonstrate very promising 

prediction accuracy over diverse types of video content. 

The proposed content-based utility prediction framework is general and can be expanded 

to handle heterogeneous scenarios where various resources, adaptations, or utilities are 

employed. Recently we have successfully expanded our framework to scalable video 

coding and subjective evaluation utility case with satisfactory results [18]. Future work will 

include extensions that consider multiple utilities and resources at the same time. An 

example scenario is to find the balance between bandwidth demand and power 

consumption in selecting appropriate adaptation for handheld devices.  
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