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ABSTRACT

We propose a layered dynamic mixture model for asynchronous
multi-modal fusion for unsupervised pattern discovery in video.
The lower layer of the model uses generative temporal structures
such as a hierarchical hidden Markov model to convert the audio-
visual streams into mid-level labels, it also models the correla-
tions in text with probabilistic latent semantic analysis. The up-
per layer fuses the statistical evidence across diverse modalities
with a flexible meta-mixture model that assumes loose temporal
correspondence. Evaluation on a large news database shows that
multi-modal clusters have better correspondence to news topics
than audio-visual clusters alone; novel analysis techniques suggest
that meaningful clusters occur when the prediction of salient fea-
tures by the model concurs with those shown in the story clusters.

1. INTRODUCTION

This paper is concerned with the discovery of meaningful patterns
across multiple modalities in video. Patterns refer to the recurrent
segments with consistent characteristics in temporal sequences.
Unsupervised discovery aims to recover a statistical description
of the structures and segment the data without prior labeling and
training, this is preferred when the meanings are copious yet un-
known a priori. Discovering complex patterns in video is partic-
ularly challenging since they are often defined on several input
modalities, across different levels of semantics, and over a period
of time. Inspecting a news collection on “1998 NBA Finals” for
example, we will find basketball highlights with fast dynamics,
stadium and interview segments, along with words and phrases
identifying the time and the stage of the games.

Prior work addressed unsupervised pattern discovery on one
input stream, such as finding the latent dimensions in text [4] or
mining temporal patterns from audio-visual observations [10]; multi-
modal fusion also appeared in various contexts, such as audio-
visual speech recognition [1] where the audio and video are in
exact sync, and cross-media annotation [3] where different modal-
ities bear the same set of meanings. None of these models readily
handles multi-modal fusion across the asynchronous and seman-
tically diverse audio, visual and text streams, hence we propose a
layered dynamic mixture model to this end. The model first groups
each stream into a sequence of mid-level labels so as to account
for the temporal dependency and noise; it then infers a high-level
label from the mid-level labels in all streams, and addresses the
cross-stream asynchrony by allowing loose correspondence across
different modalities. This layered structure is similar to the lay-
ered HMM for multi-modal user interaction [2], except that the
layered HMM only handles fixed-rate inputs and enforces rigid

correspondences for different modalities. Our use of text informa-
tion resembles those in multimedia annotation [3, 11], except the
correlations in text are explicitly modeled, and the text information
directly influences the composition of the multi-modal clusters as
opposed to just serving as the explanation.

We evaluate this model on TRECVID 2003 broadcast news
videos. Results show that the multi-modal clusters have better cor-
respondence to news topics than audio-visual clusters; on a subset
of topics that bear salient perceptual cues, they have even better
correspondence than text. Manual inspection of the multi-modal
clusters finds a few consistent clusters that capture the salient syn-
tactic units in news broadcast, such as the financial, sports or com-
mercial sections. Furthermore, these clusters tend to appear when
the mixture model is able to predict audio-visual features and words
that are indeed salient in the actual story clusters.

In Section 2 we present the formulation and inference algo-
rithm for the the layered dynamic mixture model; in Section 3 we
discuss the features used and the low-level clustering algorithms
that correspond to observations in each modality; in Section 4 we
show experiments on news videos; Section 5 presents the conclu-
sion and a few extensions.

2. LAYERED DYNAMIC MIXTURE MODEL

The structure of the layered mixture model is shown in Fig. 1(a).
Multi-modal fusion for unsupervised learning differs from those
for supervised learning [8] in that neither labeled ground-truth
nor class separability is available as the computational criteria for
guiding the fusion model. Therefore we use the data likelihood in
generative models as an alternative criterion to optimize the multi-
level dynamic mixture model.

2.1. The layered representation
The layered dynamic mixture representation consists of the low-
level feature streams, the mid-level labels and the high-level fused
clusters, and the two layers of probabilistic models in between.
Aside from enhancing the robustness and reducing parameter tun-
ing [2], introducing layers in unsupervised learning has intuitive
and mathematical advantages. The layers divide the problem into
modeling noise and temporal dependencies in the individual modal-
ities and fusing the modalities of different temporal resolution.
This separation enables the use of different model structures in
the lower layer so as to take advantage of the domain knowledge
in each individual modality. In terms of representation, a layered
model is more flexible and yields better clustering results than one-
level clustering as seen in Section 4.2.

The layered mixture model has a set of different temporal in-
dexes. We can see from Fig. 1(a) that the layered mixture model
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Fig. 1. The layered dynamic mixture model, in the dimensions
of time, various modalities and perceptual levels. Shaded nodes:
observed, clear nodes: hidden; different colors represent nodes in
different modality.

allows different temporal indextm for each input modalitym. The
lower layer models group each input streamxm

t into a mid-level
label streamym

t using generative models tailored to each modality
(Section 3.2), andym

t has the same temporal resolution asxm
t . We

further partition the time axis into a set of non-overlapping loose
temporalbagsτ , and this bag contains a number of continuously
indexed samples in each stream (assume non-empty without loss
of generality ), denote as{tm | tm ∈ τ}. We assign one top layer
nodez to each bag, and with a slight abuse of notation, we also
useτ to index the top-layer nodes, written aszτ .

2.2. The fusion layer
In this work, the temporal bag boundaries lie on syntactically mean-
ingful boundaries in the video, such as scene transition points or
news stories boundaries. For efficiency, we perform clustering in
each layer separately, i.e., the values of mid-level labelsy are taken
as the maximum-likelihood value from the lower-layer model and
considered as “observed” when inferring the high-level nodez.

Denote the set of mid-level labels within each bag asyτ =
∪m{ym

t , tm ∈ τ}. For simplicity, we assume conditional inde-
pendence among the labels inyτ given zτ across both the time
and the modalities, i.e.,

p(yτ , zτ ) = p(zτ )
∏
m

∏
tm∈τ

p(ym
t |zτ ) (1)

Under this assumption, the temporal orders within each bag no
longer influence the value ofzτ ; when each ofym

t takes discrete
values,yτ can be represented by a set of multi-dimensional co-
occurrence countsc(m, τ, y) = #{ym

t = y, tm ∈ τ}. Intuitively,
this is to treat the mid-level labelsym, obtained byde-noising and
de-correlatingxm, as if they were generated by independent multi-
nomial draws conditioned on the high-levelmeaningz.

According to this definition, we rewrite the complete-data log-
likelihood ofy andz in bagτ from Eq. (1), and estimate the model
parameters with the EM algorithm:

l(τ, z)
∧
= log p(yτ , zτ = z)

= log p(z) +
∑

(m,y)

c(m, τ, y) log p(ym|z). (2)

The E-step reads:

p(zτ = z|yτ ) =
exp l(τ, z)∑

z∈Z exp l(τ, z)
(3)

The M-step follows:

p∗(z) =
1

T

T∑
τ=1

p(zτ = z|yτ ) (4)

p∗(ym|z) =

∑T
τ=1 c(m, τ, y)p(zτ = z|yτ )∑

y

∑T
τ=1 c(m, τ, y)p(zτ = z|yτ )

(5)

We can extend this basic fusion model to include a joint infer-
ence from observationsxm

t to the highest levelzτ , to model depen-
dency within each temporal window, or to allow flexible temporal
bags to be learned while performing model inference.

3. PROCESSING MULTI-MODAL INPUT
We now ground the layered dynamic mixture model on video data.
We describe the extraction of multi-modal feature streams and the
choices of generative models used for mid-level grouping. We use
news videos as our test domain, while the discussions can be gen-
eralized to other domains with salient syntactic structures.

News videos are semantically rich and syntactically constrained.
The basic temporal units in news videos areshotsandstories. A
shotrefers to a continuous camera take in both time and space. A
story is defined [6] as a segment of a news broadcast with a co-
herent news focus which contains at least two independent, declar-
ative clauses. Shot boundaries in news can be reliably detected
with over90% accuracy, while state-of-the-art audio-visual story
segmentation has an F1 measure∼ 75% [8].

3.1. Multi-modal features
We extract from each video the following sets of low-level audio-
visual descriptors, visual concepts, and text terms as the base layer
in the hierarchical mixture model:

(1) Color Histogram of an entire frame is obtained by quan-
tizing the HSV color space into fifteen bins: white, black
and gray by taking the extreme areas in brightness and sat-
uration; equal-width overlapping bins on the hue values re-
sembling the six major colors red, yellow, green, cyan, blue
and magenta in high and low saturations, respectively. Yel-
low with low saturation is then excluded to make a linearly
independent 14-dimensional feature vector averaged over a
time window of one second.

(2) Motion intensity consists of the average of motion vector
magnitude and the least-square estimate of horizontal pan
from the MPEG motion vectors, extracted every second.

(3) The audio features contain a four-dimensional vector every
half a second: the meanpitch value; the presence/absence
of silenceandsignificant pause, the latter obtained by thresh-
olding locally normalized pause length and pitch jump val-
ues; six-classaudio categorylabels from a GMM-based
classifier (silence, female, male, music, music+speech, or
other noise) [9].

(4) A visual concept vector contains the confidence scores for
how likely the keyframe of a shot is to contain a set of
visual concepts [7]. The concepts used in this work are
pruned from a lexicon of over a hundred requiring them be-
ing as specific as possible while having reasonable detec-
tion accuracy. They include: five events -people, sport,
weather, cartoon, physical violence; five scenes -studio
setting, non-studio setting, nature-vegetation, nature non-
vegetation, man-made scene; twelve objects -animal, face,
male news person, male news subject, female news person,
female news subject, person, people, crowd, vehicle, text
overlay, graphics.
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Fig. 2. Models for mapping observations to mid-level labels. (a)
Hierarchical HMM; (b) PLSA.

(5) Keyword features can be obtained from either the closed
captions or automatic speech recognition (ASR) transcripts.
Stemming, part-of-speech tagging and rare word pruning
are performed, retaining a 502-token lexicon of frequent
nouns, verbs, adjectives and adverbs from the TRECVID
corpus. The tf-idf score of the words within a news story
are used as the feature vector.

3.2. Unsupervised mid-level grouping
The audio-visual features (1)-(3) are sampled over uniform inter-
vals, (4) over each shot, and the text features are taken for every
story. The audio-visual streams exhibit temporal dependency [10],
while independence between the keywords in adjacent stories can
reasonably be assumed as they are often on different topics. For
the former we use hierarchical hidden Markov model (HHMM)
for unsupervised temporal grouping, as described in our earlier
work [10, 11]; for the latter we use probabilistic latent semantic
analysis (PLSA) [4] to uncover the latent semantic aspects.

The unsupervised temporal grouping algorithm [10] takes a
collection of unlabeled feature streams, learns an HHMM (Fig. 2(a)),
and at the same time associates the most likely label sequences
with the streams. The size of the model and an optimal feature
set are automatically selected using the mutual information and
Bayesian information criteria (BIC), and the resulting HHMM typ-
ically has two to four top-level states. To incorporate news story
boundaries, the HHMM inference algorithm only allows highest-
level state transitions at story boundaries, hence restricting the seg-
ment coming from the same story to stay in the same branch of the
Markov chain hierarchy.

The PLSA model is shown in Fig. 2(b). Observing the words
x grouped in storiesd, the model learns the conditional depen-
dencies between the hidden semantic aspectsy and both observed
variables. The double mixture structure of PLSA provides more
flexibility for capturing word distributions than a simple mixture
model, we have observed that the PLSA distributions more accu-
rately capture sets of semantically related words, rather than being
deluged by the frequent words.

4. EXPERIMENTS

We test the proposed fusion model on TRECVID news corpus [5].
This data set contains 151 half-hour broadcasts ofCNN Head-
line Newsand ABC World News Tonightfrom January to June,
1998. The videos are encoded in MPEG-1 with CIF resolution;
also available are the ASR transcripts produced by LIMSI. We par-
tition the dataset into four quadrants each containing about half of
the videos from one channel.

After feature extraction, one HHMM is learned on each of the
color, motion and audio features; the visual concepts, due to their

diverse nature, yield three HHMMs grouped by the automatic fea-
ture selection algorithm; the words in all stories are clustered into
32 latent dimensions with PLSA. The fusion model then infers a
most-likely high-level hidden state from all the mid-level states in
each story, taking one of 32 possible values. The multi-level clus-
tering algorithm runs in linear-time, and it typically takes less than
three hours on a 2GHz PC for 19 hours of video.

4.1. Inspecting the clusters
We first inspect a story-board layout of each cluster. As seen from
Fig. 3(a), the weather forecast cluster results from the consistent
color layout and similar keywords, while the sports cluster is char-
acterized by the motion dynamics and visual concepts regarding
people or person. Other interesting clusters include: a concentra-
tion of CNN financial news (precision 13/18 stories) with similar
graphics, anchor person and common transitions between them;
seven commercial sections in an eight-story cluster characterized
by audio-visual cues only. These observations suggest that the
multi-modal clusters are formed because of the consistency in ap-
pearance and syntax at the level of general content categories.

We also inspect the distribution of the multi-modal features.
We compare the most likely feature distribution predicted by the
model and those observed in the actual story clusters. An agree-
ment between these two on one feature suggests that this may be a
salient dimension that the model manages to capture. In Fig. 3(b)
we plot the predicted and observed cluster-feature pairs with high
statistical confidence into two color channels by applying sim-
ple cut-off rules for having high confidence. We require: P>0.8
for both the top-level mixture modelp(ym|z) and the emission
probabilitiesp(x|y) of the discrete-valued features, a peak greater
than twice the second-highest mode for the continuous features de-
scribed by a mixture of Gaussians, or the intersection of the top 20
words in the PLSA probabilitiesp(x|y) with those in the text tran-
script. We can see that the sports cluster in Fig. 3(a) shows high
confidence in both the model and the observations for the visual
conceptsanimal and male-news-subject; while the two weather
clusters predict larger amounts of yellow and blue in the color lay-
out and a set of weather-related words. We can also interpret from
the common keywords that some clusters are a mixture of two or
more general categories, e.g., politics and weather in cluster #27.

4.2. News topics
Topicsare the semantic threads in news, defined as “an event or
activity, along with all directly related events and activities” [6].
We compare the multi-modal clusters with the 30 topics present
on the subset of labeled stories covering∼ 15% of the corpus. We
use the TDT evaluation metricdetection cost, a weighted sum of
the precision and recall for each topics:

Cdet(s) = minz{PM (z, s) · P (s) + PFA(z, s)(1− P (s))} (6)

HerePM andPFA are the miss and false alarm probabilities of
clusterz with topics, i.e.,PM = |s∩z̄|/|s| andPFA = |s̄∩z|/|s̄|;
andP (s) is the prior probability of topics. The detection cost is
then divided bymin{p(s), 1 − p(s)} to normalize against trivial
decisions. Note the smaller the value ofC̄det, the better a topic
can be represented by one of the clusters.

We compare the layered fusion structure with a one-level clus-
tering algorithm, the latter is obtained by substituting the observa-
tionsx into the places ofy in Eq.(2-5). The average detection cost
for the former is lower than the latter by 0.240. Furthermore, the
average detection cost of any single modal audio-visual clusters is
higher than the multi-modal clusters by 0.227, where the former
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Fig. 3. Observations in the multi-modal clusters. The models are learned on CNN set A, evaluated on set B.

is taken as the best corresponding model among all audio-visual
HHMMs in Section 3.2, and equivalent to those in [11].

In seven out of the thirty topics, multi-modal clusters have
lower detection costs than using text alone (i.e., the PLSA clus-
ters), these topics include1998 Winter Olympics, NBA finalsand
tornado in Florida among others. The topics of improved per-
formance tend to have rich non-textual cues, for instance the cor-
respondence of cluster #5 in Fig.3(b) to1998 Winter Olympics
can be explained by the prevalence ofmusic-speechin the audio
andmale-news-subjectin the visual concepts. Note the topics be-
ing evaluated are defined and labeled solely with the news tran-
scripts [6], and this may implicitly bias the evaluation towards the
meanings in text. For example, cluster #28 in Fig.3(b) corresponds
to the topicAsian economy crisiswhile a better correspondence
can be obtained with a PLSA cluster containing keywordsdow,
nasdaq, dollar, etc. Comparing the topic correspondence and the
cluster inspection in Section 4.1 suggest that the multimodal clus-
ters seem to be at a different level than the news topics, there-
fore the definition of a new set of ground truth from multimedia is
called for.

5. CONCLUSION

We present dynamic layered mixture model for multi-modal fusion
across asynchronous streams, this model uses a layered structure
that can accommodate the diversity in the input streams and effi-
ciently integrate the statistical evidence from all of them. Mean-
ingful syntactic clusters are obtained on a large news video corpus
using audio, visual and text features. Future work include further
analysis and interpretation of the model, improving the features,
and finding novel applications for multi-modal analysis.
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