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Abstract

Part-based object detection methods have been shown intuitive and effective in detecting general ob-
ject classes. However, their practical power is limited due to the need of part-level labels for supervised
learning and the low learning speed. In this report, we present a new model called Random Attributed
Relational Graph (RARG), by which we show that part matching and model learning can be achieved
by combining variational learning methods with the part-based representations. We also discover an im-
portant mathematical property relating the object detection likelihood ratio and the partition functions of
the Markov Random Field (MRF) in the model. Our approach demonstrates clear benefits over the state
of the art in part-based object detection - 2 to 5 times faster in learning with almost the same detection
accuracy. The improved learning efficiency allows us to extend the single RARG model to a mixture
model for learning and detecting multi-view objects.

Key Words: Attributed Relational Graph, Random structure, Random graph, Random Attributed Re-
lational Graph, Unsupervised learning, Statistical inference, Graphical model



1 Introduction

The learning-based object detection paradigm recognizes objects in images by learning statistical object
models from a corpus of training data. Among many solutions, the part-based approach represents the object
model as a collection of parts with constituent attributes and inter-part relationships. Recently, combination
of advanced machine learning techniques with the part-based model has shown great promise in accurate
detection of a broad class of objects.

Research on statistical part-based models has focused on two fundamental problems: (1) accurate match-
ing between observed parts in the image and the object model and (2) efficient learning of the object model
parameters that characterize the statistical distributions of the part attributes and relations. Most prior work
in this area focuses on the part-matching problem, namely, finding the correspondence between the detected
parts in the image and parts in the object model. For instance, Markov Random Field (MRF)[8][2] formu-
lates the part matching problem as maximum a posteriori (MAP) estimation, where both the image and the
object model are represented as Attributed Relational Graphs (ARG) [6]. Learning of model parameters re-
quires the ground truth of part correspondences, which are hard to obtain given the large number (15-30) of
the parts in a typical image. Another well-known model, called pictorial structure [4], represents an object
model as a star-graph and provides an efficient method for locating parts. The method focuses on finding the
optimal locations of the parts in the image instead of detecting presence/absence of the object. Similar to the
MRF model mentioned above, the main limitation is that learning of model parameters requires the ground
truth of the parts correspondences. Different from the MRF model and the pictorial structure, the constella-
tion model developed in [5][10] computes the object-level detection score by estimating the likelihood ratio.
The formulation enables the parameters to be learned in an unsupervised manner, i.e. part correspondences
need not to be manually labeled. The constellation model represents the inter-part spatial relationships as a
joint Gaussian. In order to achieve translation and rotation invariance, the centroid and the orientation of the
object has to be estimated and calibrated in the part-matching search algorithm. In addition, the algorithm
relies on a state-space search algorithm called A-star to find the optimal part matching without considering
other possible correspondences. The lack of consideration for other possible correspondences may degrade
the detection accuracy and affect the overall learning efficiency in cases when the single maximal-likelihood
correspondence is incorrect. Actually the initial correspondence is very likely to be incorrect when the ran-
domly initialized object model is inaccurate during the initial stage of the learning process. This seems to be
confirmed in the experiment results reported in [5]: 40-100 Expectation-Maximization (E-M) iterations and
36-48 hours are required to learn one object class. Finally, for multi-view object classes, the constellation
of the parts corresponding to different views cannot be modelled as a global joint distribution.

We propose a novel model, called Random Attributed Relational Graph (RARG), as an extension of the
conventional random graph [3]. It is partly inspired by the pictorial structure model and the MRF model
described above. We model an object instance as an ARG, with nodes in the ARG representing the parts in
the object. In order to explicitly represent the statistics of the part appearance and relations, we associate
random variables to the nodes and edges of the graph, resulting in the RARG model. An image containing
the object is an instance generated from the RARG plus some patches generated from the background model,
resulting in an ARG representation. This graph-based representation makes it easier to handle translation
and rotation invariance. And because it represents the part inter-relationship locally by the edges of the
RARG rather than a global constellation, the model can be potentially used to model multi-view object
classes.
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Given the model RARG and the image ARG, we define an Association Graph, each of whose nodes
indicates a one-to-one correspondence between one part in the image and one node in the object model. In
comparison, the pictorial structure and the MRF model do not provide such interpretation based on statisti-
cal generative models. For learning and part matching, we map the parameters of the RARG to a pairwise
binary MRF model defined on the Association Graph. We show that there is an elegant mathematical rela-
tionship between the object detection likelihood ratio and the partition functions of the MRF. This discovery
enables the use of variational inference methods, such as Loopy Belief Propagation or Belief Optimization,
to estimate the part matching probability and learn the parameters by variational E-M, and thereby over-
comes the low-efficiency problem associated with prior approaches such as the A-star algorithm mentioned
above. Finally, our model is able to learn the occlusion statistics of each part through the MRF modelling. In
comparison, how to learn the occlusion statistics is not addressed in the constellation model framework[5].

We compare our proposed RARG model with the constellation model developed in [5], which also pro-
vides a publicly available benchmark data set . Our approach achieves a significant improvement in learning
convergence speed (measured by the number of iteration and the total learning time) with comparable de-
tection accuracy. The learning speed is improved by more than two times if we use a combined scheme of
Gibbs Sampling and Belief Optimization, and more than five times if we use Loopy Belief Propagation. The
improved efficiency is important in practical applications, as it allows us to rapidly deploy the method to
learning general object classes as well as detection of objects with view variations.

We extend the presented RARG model to a Mixture of RARG (MOR) model to capture the structural
and appearance variations of the objects with different views in one object class. Through a semi-supervised
learning scheme, the MOR model is shown to improve the detection performance against the single RARG
model for detecting objects with continuous view variations in a data set consisting of images downloaded
from web. The data set, which is constructed by us, can be used for the public benchmark for multi-view
object detection.

The report is organized as follows: In section 2.1, The Baysian classification framework is established
for the ARG and RARG models. In section 2.2, we describe how to map the RARG parameters to the pa-
rameters of Markov Random Field(MRF), and relate the likelihood ratio for object detection to the partition
functions of the MRFs. In section 2.3, we present the methods for calculating the partition functions. In
section 2.4, the methods for learning RARG are described. Section 2.5 addresses the problem of spatial
relational features and provide solutions to solve it. The RARG model is then extended to a mixture model
in section 3. Finally, we present the experiments and analysis in section 4.

2 The Random Attributed Relational Graph Model

An object instance or image can be represented as an Attributed Relational Graph [6], formally defined as

Definition 1. An Attributed Relational Graph(ARG) is a tripleO = (V, E, Y ), whereV is the vertex set,
E is the edge set, andY is the attribute set that contains attributeyu attached to each nodenu ∈ V , and
attributeyuv attached to each edgeew = (nu, nv) ∈ E.

For an object instance, a node in the ARG corresponds to one part in the object. attributes yu and yuv

represent the appearances of the parts and relations among the parts. For an object model, we use a graph
based representation similar to the ARG but attach random variables to the nodes and edges of the graph,
formally defined as a Random Attributed Relational Graph
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Figure 1: A generative process that generates the part-based representation of an image

Definition 2. A Random Attributed Relational Graph (RARG) is a quadrupleR = (V, E, A, T ), whereV is
the vertex set,E is the edge set,A is a set of random variables consisting ofAi attached to the nodeni ∈ V

with pdffi(.), andAij attached to the edgeek = (ni, nj) ∈ E with pdffij(.). T is a set of binary random
variables, withTi attached to each node (modelling the presense/absence of nodes).

fi(.) is used to capture the statistics of the part appearance. fij(.) is used to capture the statistics of the
part relation. Ti is used to model the part occlusion statistics. ri = p(Ti = 1) is referred to as the presence
probability of the part i in the object model. An ARG hence can be considered as an instance generated
from RARG by multiple steps: first draw samples from {Ti} to determine the topology of the ARG, then
draw samples from Ai and Aij to obtain the attributes of the ARG and thus the appearance of the object
instance. In our current system, both RARG and ARG are fully connected. However, in more general cases,
we can also accommodate edge connection variations by attaching binary random variables Tij to the edges,
where Tij = 1 indicates that there is an edge connecting the node i and node j, Tij = 0 otherwise.

2.1 Bayes Classification under RARG Framework

Conventionally, object detection is formulated as a binary classification problem with two hypotheses: H =
1 indicates that the image contains the target object (e.g. bike), H = 0 otherwise. Let O denote the ARG
representation of the input image. Object detection problem therefore is reduced to the following likelihood
ratio test

p(O|H = 1)
p(O|H = 0)

>
p(H = 0)
p(H = 1)

= λ (1)

Where λ is used to adjust the precision and recall performance. The main problem is thus to compute the
positive likelihood p(O|H = 1) and the negative likelihood p(O|H = 0). p(O|H = 0) is the likelihood
assuming the image is a background image without the target object. Due to the diversity of the background
images, we adopt a simple decomposable i.i.d. model for the background parts. We factorize the negative
likelihood as

p(O|H = 0) =
∏
u

p(yu|H = 0)
∏
uv

p(yuv|H = 0) =
∏
u

f−
B1

(yu)
∏
uv

f−
B2

(yuv) (2)

where f−
B1

(·) and f−
B2

(·) are pdfs to capture the statistics of the appearance and relations of the parts in the
background images, referred to as background pdfs. The minus superscript indicates that the parameters of
the pdfs are learned from the negative data set. To compute the positive likelihood p(O|H = 1), we assume
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Figure 2: ARG, RARG and the Association Graph. Circles in the image are detected parts

that an image is generated by the following generative process (Figure 1): an ARG is first generated from
the RARG, additional patches, whose attributes are sampled from the background pdfs, are independently
added to form the final part-based representation O of the image. In order to compute the positive likelihood,
we further introduce a variable X to denote the correspondences between parts in the ARG O and parts in
the RARG R. Treating X as a hidden variable, we have

p(O|H = 1) =
∑
X

p(O|X, H = 1)p(X|H = 1) (3)

Where X consists of a set of binary variables, with xiu = 1 if the part i in the object model corresponds to the
part u in the image, xiu = 0 otherwise. If we assign each xiu a node, then these nodes form an Association
Graph as shown in Figure 2. The Association Graph can be used to define an undirected graphical model
(Markov Random Field) for computing the positive likelihood in Equation (3). In the rest of the paper, iu

therefore is used to denote the index of the nodes in the Association Graph. A notable difference between
our method and the previous methods [5][8] is that we use a binary random representation for the part
correspondence. Such representation is important as it allows us to prune the MRF by discarding nodes
associated with a pair of dissimilar parts to speed up part matching, and readily apply efficient inference
techniques such as Belief Optimization[9][11].

2.2 Mapping the RARG parameters to the Association Graph MRF

The factorization in Eq. (3) requires computing two components p(X|H = 1) and p(O|X, H = 1). This
section describes how to map the RARG parameters to these two terms as well as construct MRFs to compute
the likelihood ratio.

First, p(X|H = 1), the prior probability of the correspondence, is designed so as to satisfy the one-to-
one part matching constraint, namely,one part in the object model can only be matched to one part in the
image, vice versa. Furthermore, p(X|H = 1) is also used to encode the presence probability ri. To achieve
these, p(X|H = 1) is designed as a binary pairwise MRF with the following Gibbs distribution

p(X|H = 1) =
1
Z

∏
iu,jv

ψiu,jv(xiu, xjv)
∏
iu

φiu(xiu) (4)

Where Z is the normalization constant, a.k.a the partition function. ψiu,jv(xiu, xjv) is the two-node potential
function defined as

ψiu,jv(1, 1) = ε, for i = j or u = v; ψiu,jv(xiu, xjv) = 1, otherwise (5)
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where ε is set to 0 (for Gibbs Sampling) or a small positive number (for Loopy Belief Propagation). There-
fore, if the part matching violates one-to-one constraint, the prior probability would drop to zero (or near
zero). φiu(xiu) is the one-node potential function. Adjusting φiu(xiu) affects the distribution p(X|H = 1),
therefore it is related to the presence probability ri. By designing φiu(xiu) to different values, we will result
in different ri. For any iu, we have two parameters to specify for φiu(.), namely φiu(1) and φiu(0). Yet, it
is not difficult to show that for any iu, different φiu(1) and φiu(0) with the same ratio φiu(1)/φiu(0) would
result in the same distribution p(X|H = 1) (but different partition function Z). Therefore, we can just let
φiu(0) = 1 and φiu(0) = zi. Note here that zi only has the single indice i. meaning the potential function
for the correspondence variable between part i in the model and part u in the image does not depend on the
index u. Such design is for simplicity and the following relationship between zi and ri.

Lemma 1. ri andzi is related by the following equation:

ri = zi
∂lnZ

∂zi

where Z is the partition function defined in Equation (4).

Proof. To simplify the notations, we assume N ≤ M . It is easy to extend to the case when N > M . The
partition function can be calculated by enumerating the admissible matching (matching that does not violate
the one-to-one constraint) as the following

Z(N ; M ; z1, z2, ..., zN ) =
∑
X

∏
iu,jv

ψiu,jv(xiu, xjv)
∏
iu

φiu(xiu) =
∑

admissible X

∏
iu

zi

To calculate the above summation, we first enumerate the matchings where there are i nodes nI1 , nI2 ...nIi in
the RARG being matched to the nodes in ARG, where 1 ≤ i ≤ N ,and I1, I2...Ii is the index of the RARG
node. The corresponding summation is

M(M − 1)(M − 2)...(M − i + 1)zI1zI2 ...zIi =
(

M

i

)
i!zI1zI2 ...zIi

For all matchings where there are i nodes being matched to RARG, the summation becomes
(

M

i

)
i!

∑
1≤I1<I2<...<Ii≤N

zI1zI2 ...zIi =
(

M

i

)
i!Πi(z1, z2, ..., zN )

Where
Πi(z1, z2, ..., zN ) =

∑
1≤I1<I2<...<Ii≤N

zI1zI2 ...zIi

is known as Elementary Symmetric Polynomial. By enumerating the index i from 0 to N , we get

Z(N ; M ; z1, z2, ..., zN ) =
N∑

i=0

(
M

i

)
i!Πi(z1, z2, ..., zN ) (6)
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Likewise, for the presence probability ri, we enumerate all matchings in which the node i in the RARG is
matched to a node in the ARG, yielding

ri =
1
Z

M
N−1∑
j=0

(
M − 1

j

)
j!ziΠj|i(z1, z2, ..., zN )

=
1
Z

zi

N−1∑
j=0

(
M

j

)
j!Πj|i(z1, z2, ..., zN )

= zi
1
Z

∂Z/∂zi = zi∂ln(Z)/∂zi

Where, we have used the short-hand Πj|i(z1, z2, ..., zN ), which is defined as

Πj|i(z1, z2, ..., zN ) =
∑

1≤I1<I2<...Ip,...<Ij≤N ;Ip �=i,∀p∈{1,2,...,j}
zI1zI2 ...zIj

For the pruned MRF, which is the more general case, we can separate the summation into two parts, the
summation of the terms containing zi and the summation of those not

Z(N ; M ; z1, z2, ..., zN ) = V1(z1, z2, ..., zi, ...zN ) + V2(z1, z2, ..., zi−1, zi+1...zN )

Then the presence probability ri is

ri =
V1

Z
=

zi
∂Z
∂zi

Z
= zi

∂ lnZ

∂zi

Where we have used the fact that V1 and Z is the summation of the monomials in the form of zI1zI2 ...zIi ,
which holds the relationship

zI1zI2 ...zIi = zIk

∂

∂zIk

(zI1zI2 ...zIi), ∀Ik ∈ {I1, I2, ..., Ii}

The above lemma leads to a simple formula to learn the presence probability ri (section 2.4). However,
lemma 1 still does not provide a closed-form solution for computing zi given ri. We resort to an approximate
solution, through the following lemma.

Lemma 2. The log partition function satisfy the inequality

lnZ≤
N∑

i=1

ln(1 + Mzi)

and the equality holds whenN/M tends to zero (N and M are the numbers of parts in the object model and
image respectively). For the pruned MRF, the upper bound is changed to

lnZ≤
N∑

i=1

ln(1 + dizi)

wheredi is the number of the nodes in the ARG that could possibly correspond to the nodei in the RARG
after pruning the Association Graph.
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Proof. We have obtained the closed-form of the partition function Z in the proof of Lemma 1, therefore it
is apparent that Z satisfies the following inequality

Z =
N∑

i=0

M(M − 1)...(M − i + 1)Πi(z1, z2, ..., zN ) ≤
N∑

i=0

M iΠi(z1, z2, ..., zN ) (7)

The equality holds when N/M tends to zero. And we have the following relationships

N∑
i=0

Πi(z1, z2, ..., zN ) = 1 + z1 + z2 + ... + zN + z1z2 + ... + zN−1zN + ... =
N∏

i=1

(1 + zi)

and
M iΠi(z1, z2, ..., zN ) = Πi(Mz1, Mz2, ..., MzN )

Therefore, the RHS in equation (7) can be simplified as the following

N∑
i=0

M iΠi(z1, z2, ..., zN ) =
N∑

i=0

Πi(Mz1, Mz2, ..., MzN ) =
N∏

i=1

(1 + Mzi)

The above function in fact is the partition function of the Gibbs distribution if we remove the one-to-one
constraints. Likewise, for the pruned MRF, the partition function is upper-bounded by the partition function
of the Gibbs distribution if we remove the one-to-one constraints, which, by enumerating the matchings, can
be written as

1 + d1z1 + d2z2 + ... + dNzN + d1d2z1z2 + ... =
N∏

i=1

(1 + dizi)

Therefore we have

lnZ≤
N∏

i=1

(1 + dizi)

Since the closed form solution for mapping ri to zi is unavailable, we use the upper bound as an approx-
imation. Consequently, combining lemmas 1 and 2 we can obtain the following relationship for the pruned
MRF. zi = ri/((1 − ri)di).

The next step is to derive the conditional density p(O|X, H = 1). Assuming that yu and yuv are
independent given the correspondence, we have

p(O|X, H = 1) =
∏
uv

p(yuv|x1u, x1v, ..., xNu, xNv, H = 1)
∏
u

p(yu|x1u, ..., xNu, H = 1)

Furthermore, yu and yuv should only depends on the RARG nodes that are matched to u and v. Thus

p(yu|x11 = 0, ..., xiu = 1, ..., xNM = 0, H = 1) = fi(yu)

p(yuv|x11 = 0, ..., xiu = 1, xjv = 1, ..., xNM = 0, H = 1) = fij(yuv) (8)

Also, if there is no node in the RARG matched to u, then yu,yuv should be sampled from the background
pdfs, i.e.

p(yu|x11 = 0, xiu = 0, ..., xNM = 0, H = 1) = f+
B1

(yu)

p(yuv|x11 = 0, xiu = 0, ..., xNM = 0, H = 1) = f+
B2

(yuv) (9)
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where f+
B1

(·) and f+
B2

(·) is the background pdf trained from the positive data set. Note that here we use two
sets of background pdfs to capture the difference of the background statistics in the positive data set and
that in the negative data set.

Combining all these elements together, we would end up with another MRF (to be described in theorem
1). It is important and interesting to note that the likelihood ratio for object detection is actually related to
the partition functions of the MRFs through the following elegant relationship.

Theorem 1. The likelihood ratio is related to the partition functions of MRFs as the following

p(O|H = 1)
p(O|H = 0)

= σ
Z ′

Z
(10)

whereZ is the partition function of the Gibbs distributionp(X|H = 1). Z ′ is the partition function of
the Gibbs distribution of a new MRF, which happens to be the posterior probability of correspondence
p(X|O, H = 1), with the following form

p(X|O, H = 1) =
1
Z ′

∏
iu,jv

ςiu,jv(xiu, xjv)
∏
iu

ηiu(xiu) (11)

where the one-node and two-node potential functions have the following forms

ηiu(1) = zifi(yu)/f+
B1

(yu); ςiu,jv(1, 1) = ψiu,jv(1, 1)fij(yuv)/f+
B2

(yuv) (12)

all other values of the potential functions are set to 1 (e.g.ηiu(xiu = 0) = 1). σ is a correction term

σ =
∏
u

f+
B1

(yu)/f−
B1

(yu)
∏
uv

f+
B2

(yuv)/f−
B2

(yuv)

Proof. We start from the posterior probability p(X|O, H = 1). According to the Bayes rule

p(X|O, H = 1) =
1
C

p(O|X, H = 1)p(X|H = 1)

where C is the normalization term, which happens to be the positive likelihood p(O|H = 1):

C =
∑
X

p(O|X, H = 1)P (X|H = 1) = p(O|H = 1) (13)

Next, let us rewrite the posterior probability p(X|O, H = 1) as the following

p(X|O, H = 1) =

∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

CZ

p(O|X, H = 1)p(X|H = 1)Z∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

(14)

Using the independence assumption

p(O|X, H = 1) =
∏
uv

p(yuv|x1u, x1v, ..., xNu, xNv, H = 1)
∏
u

p(yu|x1u, ..., xNu, H = 1)

and plugging in the parameter mapping equations in Eq.(8) and (9). Comparing the term in Eq.(14) and the
term in the Gibbs distribution in Eq.(11), we note that for any matching X , we have

p(O|X, H = 1)p(X|H = 1)Z∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

=
∏
iu,jv

ςiu,jv(xiu, xjv)
∏
iu

ηiu(xiu)

9



Furthermore, the posterior probability p(X|O, H = 1) and the Gibbs distribution in Eq.(11) have the same
domain. Therefore, the normalization constant should be also equal, i.e.

CZ∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

= Z ′

Therefore the positive likelihood is

p(O|H = 1) = C =
Z ′

Z

∏
u

f+
B1

(yu)
∏
uv

f+
B2

(15)

and the likelihood ratio is

p(O|H = 1)
p(O|H = 0)

=

∏
u f+

B1
(yu)

∏
uv f+

B2∏
u f−

B1
(yu)

∏
uv f−

B2

Z ′

Z
= σ

Z ′

Z
(16)

2.3 Computing the Partition Functions

Theorem 1 reduces the likelihood ratio calculation to the computation of the partition functions. For the
partition function Z, it has a closed form(Eq.(6)) and can be computed in a polynomial time or using the
lemma 2 for approximation. The main difficulty is to compute the partition function Z ′, which involves a
summation over all possible correspondences, whose size is exponential in MN . Fortunately, computing
the partition function of the MRF has been studied in statistical physics and machine learning [9]. It turns
out that, due to its convexity, lnZ ′ can be written as a dual function, a.k.a. variational representation, or in
the form of the Jensen’s inequality [12].

lnZ ′≥
∑

(iu,jv)

q̂(xiu, xjv) ln ςiu,jv(xiu, xjv) +
∑
(iu)

q̂(xiu) ln ηiu(xiu) + H(q̂(X)) (17)

Where q̂(xiu) and q̂(xiu, xjv) are known as one-node and two-node beliefs, which are the approximated
marginal of the Gibbs distribution p(X|O, H = 1). H(q̂(X)) is the approximated entropy, which can be
approximated by Bethe approximation[12], as below

H(q̂(X)) = −
∑
iu,jv

∑
xiu,xjv

q̂(xiu, xjv) ln q̂(xiu, xjv) +
∑
iu

(MN − 2)
∑
xiu

q̂(xiu) ln(q̂(xiu))

Apart from Bethe approximation, it is also possible to use more accurate approximations, such as semidefi-
nite relaxation in [9].

The RHS in the equation (17) serves two purposes, for variational learning and for approximating lnZ ′.
In both cases, we have to calculate the approximated marginal q̂(xiu) and q̂(xiu, xjv). There are two options
to approximate it, optimization-based approach and Monte Carlo method. The former maximizes the lower
bound with respect to the approximated marginal. For example, Loopy Belief Propagation (LBP) is an
approach to maximizing the lower bound through fixed point equations[12]. However, we found that, LBP
message passing often does not converge using the potential functions in Eq.(5). Nonetheless, we found that
if we select the marginal that corresponds to the larger lower bound in Eq.(17) across update iterations, we
can achieve satisfactory inference results and reasonably accurate object models.
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Another methodology, Monte Carlo sampling[1] , approximates the marginal by drawing samples and
summing over the obtained samples. Gibbs Sampling, a type of Monte Carlo method, is used in our system
due to its efficiency. In order to reduce the variances of the approximated two-node beliefs, we propose a
new method to combine the Gibbs Sampling with the Belief Optimization developed in [11], which proves
that there is a closed-form solution (through Bethe approximation) for computing the two-node beliefs given
the one-node beliefs and the two-node potential functions (Lemma 1 in [11]). We refer to this approach as
Gibbs Sampling plus Belief Optimization (GS+BO).

2.4 Learning Random Attributed Relational Graph

We use Gaussian models for all the pdfs associated with the RARG and the background model . Therefore,
we need to learn the corresponding Gaussian parameters µi,Σi,µij ,Σij ;µ+

B1
,Σ+

B1
,µ+

B2
,Σ+

B2
;µ−

B1
,Σ−

B1
,µ−

B2
,Σ−

B2
.

and the presence probability ri.
Learning the RARG is realized by Maximum Likelihood Estimation (MLE). Directly maximizing the

positive likelihood with respect to the parameters is intractable, instead we maximize the lower bound of
the positive likelihood through Eq.(17), resulting in a method known as Variable Expectation-Maximization
(Variational E-M). Variational E-Step: Perform GS+BO scheme or Loopy Belief Propagation to obtain the
one-node and two-node beliefs.

M-Step: Maximize the overall log-likelihood with respect to the parameters

L =
K∑

k=1

ln p(Ok|H = 1) (18)

where K is the number of the positive training instances. Since direct maximization is intractable, we use the
lower bound approximation in Eq.(17), resulting in the following equations for computing the parameters

ξk
iu = q̂(xk

iu = 1), ξk
iu,jv = q̂(xk

iu = 1, xk
jv = 1); ξ̄k
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iu,jv = 1 − ξk
iu,jv
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∑
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∑
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∑
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∑
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∑
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k
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k

∑
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∑
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=
∑

k
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u − µi)(yk
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k

∑
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iu
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=

∑
k

∑
uv ξ̄k

iu,jvy
k
uv∑

k

∑
uv ξ̄k

iu,jv

Σ+
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=

∑
k

∑
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iu,jv(y
k
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k

∑
uv ξ̄k
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(19)

The presence probability ri is derived from Lemma 1 using maximum likelihood estimation.Using the lower
bound approximation in Eq.(17), we have the approximated overall log-likelihood

L ≈
K∑

k=1

∑
iu

q̂(xk
iu = 1)lnzi − KlnZ(N ; M ; z1, z2, ..., zN ) + α (20)

where α is a term independent on the presence probability r1, r2, ..., rN . To minimize the approximated
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Figure 3: Spanning tree approximation, realized by first constructing a weighted graph (having the same
topology as the RARG) with the weight wij = |Σij | in the edge el = (ni, nj), then invoking the conventional
minimum spanning tree(MST) algorithm, such as Kruskal’s algorithm. Here |Σij | is the determinant of
the covariance matrix of fij(.) (the pdf of the relational feature in the RARG) associated with the edge
el = (ni, nj).

likelihood with respect to zi, we compute the derivative of the Eq.(20), and equates it to zero

∂

∂zi

[ K∑
k=1

∑
iu

q̂(xk
iu = 1)lnzi

]
− K

∂

∂zi
ln Z(N ; M ; z1, z2, ..., zN )

=
K∑

k=1

∑
iu

q̂(xk
iu = 1)

1
zi

− K
ri

zi
= 0 (21)

We used Lemma 1 in the last step. Since zi �= 0, the above equation leads to the equation for estimating ri

ri =
1
K

∑
k

∑
u

q̂(xk
iu = 1) (22)

For the background parameters µ−
B1

,Σ−
B1

,µ−
B2

,Σ−
B2

, the maximum likelihood estimation results in the sample
mean and covariance matrix of the part attributes and relations of the images in the negative data set.

2.5 Spanning Tree Approximation for Spatial Relational Features

Our approaches described so far assume the relational features yij are independent. However, this may not
be true in general. For example, if we let yij be coordinate differences, they are no longer independent.
This can be easily seen by considering three edges of a triangle formed by any three parts. The coordinate
difference of the third edge is determined by the other two edges. The independence assumption therefore
is not accurate. To deal with this problem, we prune the fully-connected RARG into a tree by the spanning
tree approximation algorithm, which discards the edges that have high determinant values in their covariance
matrix of the Gaussian functions (Figure 3). This assumes that high determinant values of the covariance
matrix indicate the spatial relation has large variation and thus is less salient.

In our experiments, we actually found a combined use of fully-connected RARG and the pruned span-
ning tree is most beneficial in terms of the learning speed and model accuracy. Specifically, we use a
two-stage procedure: the fully-connected RARG is used to learn an initial model, which then is used to ini-
tialize the model in the 2nd-phase iterative learning process based on the pruned tree model. In the detection
phase, only spanning-tree approximation is used.
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3 Extension to Multi-view Mixture Model

The above described model assumes the training object instances have consistent single views. In order to
capture the characteristic of an object class with view variations. We develop a Mixture of RARG (MOR)
model, which allows the components in the MOR to capture the characteristic of the objects with different
views.

Let Rt denotes the RARG to represent a distinct view t. The object model thereby is represented as
� = {Rt} along with the mixture coefficients p(Rt|�). The positive likelihood then becomes

p(O|H = 1) =
∑
t=1

p(O|Rt)p(Rt|�)

The maximum likelihood learning scheme to learn the mixture coefficients and the Guassian pdf parameters
therefore is similar to that of the Gaussian Mixture Model (GMM), consisting of the following E-M updates

E-step: Compute the assignment probability

ζt
k = p(Rt|Ok,�) =

p(Ok|Rt)p(Rt|�)∑
t p(Ok|Rt)p(Rt|�)

(23)

M-step: Compute the mixture coefficients

p(Rt|�) =
1
N

∑
k

ζt
k (24)

and update the Gaussian parameters for each component t(We omit the index t except for ζt
k for brevity):
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(25)

The above equations are supposed to automatically discover the views of the training object instances
through Eq.(23). However, our experiments show that directly using the E-M updates often results in inac-
curate parameters of RARG components. This is because in the initial stage of learning, the parameters of
each RARG component is often inaccurate, leading to inaccurate assignment probabilities (i.e. inaccurate
view assignment). To overcome this problem, we can use a semi-supervised approach. First, the parameters
of the RARG components are initially learned using view annotation data (view labels associated to the
training images by annotators). Mathematically, this can be realized by fixing the assignment probabilities
using the view labels during the E-M updates. For instance, if an instance k is annotated as view t, then we
let ζt

k = 1. After the initial learning process converges, we use the view update equation in Eq.(23) to con-
tinue the E-M iterations to refine the initially learned parameters. Such a two-stage procedure ensures that
the parameters of a RARG component can be learned from the object instances with the view corresponding
to the correct RARG component in the beginning of the learning process.
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Figure 4: The RARG learned from the ’motorbike’ images.

4 Experiments

We compare the performance of our system with the system using the constellation model presented in [5].
We use the same data set, which consists of four object classes - motorbikes, cars, faces, and airplanes, and
a common background class. Each of the classes and the background class is randomly partitioned into
training and testing sets of equal sizes. All images are resized to have a width of 256 pixels and converted
to gray-scale images. Image patches are detected by Kadir’s Salient Region Detector[7] with the same
parameter across all four classes. Twenty patches with top saliency values are extracted for each image.
Each extracted patch is normalized to the same size of 25 × 25 pixels and converted to a 15-dimensional
PCA coefficient vectors, where PCA parameters are trained from the image patches in the positive data set.
Overall, the feature vector at each node of the ARG is of 18 dimensions: two for spatial coordinates, fifteen
for PCA coefficients, and one for the scale feature, which is an output from the part detector to indicate the
scale of the extracted part. Feature vectors at the edges are the coordinate differences.

To keep the model size consistent with that in [5], we set the number of nodes in RARG to be six, which
gives a good balance between detection accuracy and efficiency. The maximum size of the Association
Graph therefore is 120 (6x20). But for efficiency, the Association Graph is pruned to 40 nodes based on
the pruning criteria described in Section 2.1. In the learning process, we tried both inference schemes, i.e.
GS+BO and LBP. But, in detection we only use GS+BO scheme because it is found to be more accurate. In
LBP learning, relational features are not used because it is empirically found to result in lower performance.
In GS+BO scheme, the sampling number is set to be proportional to the state space dimension, namely
α ·2 · 40 (α is set to 40 empirically). The presence probability ri is computed only after the learning process
converges because during the initial stages of learning, ri is so small that it affects the convergence speed
and final model accuracy. Besides, we also explore different ways of applying the background models in
detection. We found a slight performance improvement by replacing B+ with B− in the detection step(Eq.
(12)). Such an approach is adopted in our final implementation. Figure 4 shows the learned part-based
model for object class ’motorbike’ and the image patches matched to each node. Table 1(next page) lists the
object detection accuracy, measured by equal error rate (definition is in[5]), and the learning efficiency.
The most significant performance impact by our method is the improvement in learning speed - two times

faster than the well-known method [5] if we use GS+BO for learning; five times speedup if we use LBP
learning. Even with the large speedup, our method still achieves very high accuracy, close to those reported
in [5]. The slightly lower performance for the face class may be because we extracted image patches in the
lower resolution images. We found that small parts such as eyes cannot be precisely located in the images
with a width of 256 pixels only. We decided to detect patches from low-resolution images because the
patch detection technique from [7] is slow (about one minute for one original face image). The improved
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Dataset GS+BO LBP Oxford

Motorbikes 91.2% 88.9% 92.5%

Faces 94.7% 92.4% 96.4%

Airplanes 90.5% 90.1% 90.2%

Cars(rear) 92.6%∗ 93.4% 90.3%

Dataset GS+BO LBP Oxford

Motorbikes 23i/18h 28i/6h 24-36h

Faces 16i/8h 20i/4h

Airplanes 16i/16 h 18i/8h 40-100i

Cars(rear) 16i/14h 20i/8h

Table 1: Object detection performance and learning time of different methods (xi/yh means x iterations and
y hours). * Background images are road images the same as [5].

learning speed allows us to rapidly learn object models in new domains or develop more complex models
for challenging cases.

For multi-view object detection, we have built up our own data sets using google and altavista search
engines. The data sets contain two object classes: ’cars’ and ’motorbikes’. Each data set consists of 420
images. The objects in the data sets have continuous view changes, different styles and background clutters.
The variations of the objects in the images roughly reflects the variations of the objects in web images, so
that we can assess the performance of our algorithm for classifying and searching the web images. Before
learning and detection, the images first undergo the same preprocessing procedures as the case of the single
view detection. To save the computation cost, we only use two mixture components in the Mixture of RARG
model. The performances using different learning schemes are listed below.

dataset sing manu auto relax

Cars 74.5% 73.5% 76.2% 76.3%

MotorBikes 80.3% 81.8% 82.4% 83.7%

Table 2: Multi-view object detection performance

The baseline approach is the single RARG detection (’sing’), namely we use one RARG to cover all vari-
ations including view changes. Three different multi-view learning methods are tested against the baseline
approach. In learning based on automatic view discovery (’auto’), Eq.(23) is used to update the assignment
probability (i.e. the view probability) in each E-M iteration. In learning based on manual view assign-
ment(’manu’), update through Eq.(23) is not used in E-M. In stead, the assignment probability is computed
from the view annotation data and fixed throughout the learning procedure. In learning by combining view
annotation and view discovery (’relax’), we first learn each component RARG model using view annotations.
The automatic view discovery is then followed to refine the parameters. The view annotation procedure is
realized by letting annotators inspect the images and assign a view label to each image. Here, because we
only have two components, each image is assigned with either ’side view’ or ’front view’. Although there
are objects with ’rear view’, they are very rare. Besides, we do not distinguish the orientations of the objects
in ’side view’.

From the experiments, it is observed that the ’manu’ mode performs worse than the ’auto’ and ’relax’
mode. This is because the continuous view variations in the data set makes the view annotations inaccurate.
Overall, the ’relax’ model performs best. This is consistent with our theoretical analysis: learning based on
view annotation ensures the component RARGs can be learned correctly, and the following refinement by
automatic view discovery optimizes the parameters of the component RARGs as well as view assignments
which could be inaccurate by manual annotations.
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(a) Cars

(b) Motorbikes

Figure 5: The multi-view objects for learning and testing

5 Conclusions

We have presented a new statistical part-based model, called RARG, for object representation and a new ap-
proach for object detection. We solve the part matching problem through the formulation of an Association
Graph that characterizes the correspondences between parts in an image and nodes in the object model. We
prove an important mathematical property relating the likelihood ratio for object detection and the partition
functions for the MRFs defined over the Association Graph. Such discovery allows us to apply efficient vari-
ational methods such as Gibbs Sampling and Loopy Belief Propagation to achieve significant performance
improvement in terms of learning speed and detection accuracy. We further extend the single RARG model
to a mixture model for multi-view object detection, which improve the detection accuracy achieved by the
single RARG model.
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