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ABSTRACT
The increasing photorealism for computer graphics has made
computer graphics a convincing form of image forgery. There-
fore, classifying photographic images and photorealistic com-
puter graphics has become an important problem for image
forgery detection. In this paper, we propose a new geometry-
based image model, motivated by the physical image gener-
ation process, to tackle the above-mentioned problem. The
proposed model reveals certain physical differences between
the two image categories, such as the gamma correction
in photographic images and the sharp structures in com-
puter graphics. For the problem of image forgery detection,
we propose two levels of image authenticity definition, i.e.,
imaging-process authenticity and scene authenticity, and an-
alyze our technique against these definitions. Such definition
is important for making the concept of image authenticity
computable. Apart from offering physical insights, our tech-
nique with a classification accuracy of 83.5% outperforms
those in the prior work, i.e., wavelet features at 80.3% and
cartoon features at 71.0%. We also consider a recaptur-
ing attack scenario and propose a counter-attack measure.
In addition, we constructed a publicly available benchmark
dataset with images of diverse content and computer graph-
ics of high photorealism.

Categories and Subject Descriptors: I.4.10 [Image Pro-
cessing and Computer Vision]: Image Representation – Sta-
tistical ; K.4.4 [Computers and Society]: Electronic Com-
merce – Security

General Terms: Experimentation, Security.

Keywords: Natural image statistics, computer graphics,
fractal, differential geometry, image forensics, steganalysis,
image authentication.

1. INTRODUCTION
Today, the level of photorealism achievable by the state-of-

the-art computer graphics is so convincing that we feel like
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we are watching real-life events even for a movie produced by
computer graphics effects. Hence, detecting photorealistic
computer graphics and separating them from photographic
images (e.g. images captured by cameras) has become an
important issue in several applications such as criminal in-
vestigation, journalistic reporting, and intelligence analysis.

Despite the fact that classification of photographic images
and computer graphics has been applied for improving the
image and video retrieval performance [5, 13], classification
of photographic images (PIM) and photorealistic computer
graphics (PRCG) is a new problem. The work in [7] takes
advantage of the wavelet-based natural image statistics, and
extract the first four order statistics of the in-subband coef-
ficients and those of the cross-subband coefficient prediction
errors as features for classifying PIM and PRCG. Promis-
ing results, with a PIM detection rate of 67% at a 1% false
alarm rate, have been achieved. However, due to the lack of
a physical model for PIM and PRCG, the results have not
led to an insight into the question: How PIM are actually
different from PRCG?

In this paper, we propose a new geometry-based image
model which is inspired by the physical generation process
of PIM and PRCG. Mandelbrot [8] introduced the idea of
fractal as a geometric description of a mathematical object
with a fractional dimension to generalize the classical geom-
etry which is limited to integer dimensions. He also pointed
out that, unlike the ideal fractal which is a mathematical
concept, the geometry of real-world objects are often best
characterized by having different dimensions over different
range of scales. This insight inspires our image descrip-
tion scheme: at the finest scale, we describe the intensity
function of an image as a fractal, while at an intermedi-
ate scale as a 2D (dimensional) topological surface, which
is best described in the language of differential geometry.
Additionally, we also model the local geometry of the im-
age intensity function in a “non-parametric” manner by the
local image patch. We will show that the geometry-based
approach captures the characteristics of the physical image
generation process of PIM, such as the gamma correction
used in cameras, and those of PRCG, such as the simplified
3D object model. We are thereby able to at least partially
explain the actual differences between PIM and PRCG.

In the process of developing this work, we collected 800
personal PIM (personal), 800 PIM from Google Image Search
(Google), 800 PRCG from various 3D artist websites (CG),
and 800 photographed screen display of the PRCG (recap-
tured CG), for our experiments. We only focus on highly
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Figure 1: Examples from our image sets. Note the
photorealism of all images.

photorealistic computer graphics and exclude those that are
trivially detectable. Figure 1 shows some examples of our
image sets. Note that, there could be artificial objects in the
PIM, and conversely, nature scenes in the PRCG. For the
benefit of the research community, we will release the im-
ages as an open dataset, which will eventually contain the
personal PIM acquired by the authors and the URL of other
images, due to the copyright issue.

Our main contribution in this paper is the proposed geometry-
based image description scheme that uncovers the physical
differences between PIM and PRCG. Other contributions in-
clude the proposal of a two-level definition of image authen-
ticity making image authenticity computable, the creation
of an open dataset, and our effective classification scheme
for PIM and PRCG. In Section 2, we give the two-level def-
inition of image authenticity. In Section 3, we explore the
differences between the physical image generation process of
PIM and PRCG. Then, we describe in detail the local patch
statistics, the linear Gaussian scale-space, the fractal geom-
etry, the differential geometry, the dataset, and the feature
extraction process by rigid-body moments in the subsequent
sections. Finally, we present our classification results and a
discussion in Section 10, followed by the conclusions.

2. DEFINITION OF AUTHENTICITY
It may not be obvious that image authenticity is a non-

absolute idea. For example, computer graphics, being syn-
thetic images, are generally accepted to be inauthentic, but
what about photographs of the computer graphics? In this
case, the line of authenticity becomes vague; while the pho-
tographed computer graphics is actually a photograph, its
content may still violate the physics of a real scene, such as
having a misplaced shadow or inconsistent lighting. There-
fore, we herein propose two levels of definition for image au-
thenticity: the imaging-process authenticity and the scene
authenticity. Images acquired by image acquisition devices
such as cameras and scanners are considered to be imaging-
process-authentic. Of course, we can further consider an
image to be camera-authentic or scanner-authentic. The
quality of imaging-process authenticity will be shown in this
paper to be the main difference between PIM and PRCG.
Secondly, an image of a real world scene that is a result of the
physical light transport (i.e., a snapshot of the physical light
field) is considered to be scene-authentic. With these defi-
nitions, an image can be camera-authentic but may not be
scene-authentic, just as the case of the recaptured computer
graphics, and vice-versa. Therefore, the final definition of
image authenticity would be application-specific and can be
obtained by combining or subdividing the two-level authen-
ticity definitions. In this paper, we will evaluate our results
with respect to these two definitions of image authenticity.

3. IMAGE GENERATION PROCESS
In general, the image intensity function I : (x, y) ⊂ R

2 �→
R arises from a complex interaction of the object geometry,
the surface reflectance properties, the illumination and the
camera view point. In addition, as photographic or scanned
images are captured by an image acquisition device such as
a camera or a scanner, they also bear the characteristics
of the device. For example, a digital photographic image
in general has undergone the optical lens transformation,
the gamma correction, the white-balancing and the color-
processing while being tinted with the quantization noise
and the sensor fixed pattern noise [16].

However, PRCG is produced by a graphics rendering pipeline
[1], a different process than the that of the PIM. In general,
a graphics rendering pipeline can be divided into three con-
ceptual stages: application, geometry and rasterizer. At the
application stage, mainly implemented in software, the de-
veloper designs/composes the objects/scene to be rendered.
The objects are represented by the rendering primitives such
as points, lines and triangles. The geometry stage, mainly
implemented in hardware, consists of rendering operations
on the rendering primitives. The rasterizer stage is respon-
sible for converting the rendered primitives into pixels which
can be displayed on a screen. During this conversion, the
camera effect, such as the depth-of-field (DoF) effect or the
gamma correction, may or may not be simulated. The main
differences between the PIM and PRCG image generation
processes are below:

1. Object Model Difference: The surface of real-world
objects, except for man-made objects, are rarely smooth
or of simple geometry. Mandelbrot [8] has showed
the abundance of fractals in nature and also related
the formation of fractal surfaces to basic physical pro-
cesses such as erosion, aggregation and fluid turbu-
lence. However, the computer graphics 3D objects
are often represented by the polygonal models. Al-
though the polygonal models can be arbitararily fine-
grained, it comes with a higher cost of memory and
computational load. Furthermore, such a polygonal
model is not a natural representation for fractal sur-
faces [11]. A coarse-grained polygonal model may be
used at the perceptually insignificant area for saving
computational resources.

2. Light Transport Difference [1]: The physical light
field captured by a camera is a result of the physical
light transport from the illumination source, reflected
to the image acquisition device by an object. The
precise modelling of this physical light transport in-
volves an 8D function of the object’s reflectance prop-
erty, hence its simulation requires substantial compu-
tational resources. Therefore, a simplified model based
on the assumption of isotropy, spectral independence
and parametric representation is often used.

3. Acquisition Difference: PIM carry the characteris-
tics of the imaging process, while PRCG may undergo
different types of post-processing after the rasterizer
stage. There is no standard set of post-processing tech-
niques, but a few possible ones are the simulation of
the camera effect, such as the depth of field, gamma
correction, addition of noise, and retouching.

To exploit these differences between PIM and PRCG, we
propose the two-scale image description framework, inspired
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Figure 2: The geometry-based image description
framework.

by Mandelbrot [8], in Figure 2. At the finest scale, the im-
age intensity function is related to the fine-grained details
of a 3D object’s surface properties. The finest-scale geome-
try can be characterized by the local fractal dimension (Sec-
tion 6) and also by the “non-parametric” local patches (Sec-
tion 4). At an intermediate scale, when the fine-grained de-
tails give way to a smoother and differentiable structure, the
geometry can be best described in the language of differen-
tial geometry, where we compute the surface gradient (Sub-
section 7.1), the second fundamental form (Subsection 7.2)
and the Beltrami flow vectors (Subsection 7.3).

The transition of an image to an intermediate scale is
done in the linear Gaussian scale-space (Section 5), which
is infinitely differentiable (in order for the “differential” ge-
ometry to be well defined).

4. LOCAL PATCH STATISTICS
Natural image statistics [15] represents the statistical reg-

ularities inherent in natural images (defined as images com-
monly encountered by human). Natural image statistics can
be applied as an image prior for applications such as image
compression, image recognition and image restoration. The
important image statistics are the power law of the natural-
image power spectrum, the wavelet high-kurtotic marginal
distribution, and the higher-order cross-subband correlation
of the wavelets coefficients. The wavelet features proposed
in [7] are derived from these wavelet-based natural image
statistics.

In addition to the transform-domain image statistics, an
image-space natural image statistic is proposed [6]: The au-
thors studied the high-dimensional distribution of 3×3 high-
contrast local patches which mainly correspond to the edge
structures. They found that the distribution is highly struc-
tured and concentrates on a 2D manifold in an 8D Euclidean
space. By using this method, they managed to uncover the
statistical difference between the optical (camera) images
and the range (laser scan) images. Just like the PIM and
the PRCG, these two groups of images correspond to two
distinct physical image generation processes. There is fur-
ther evidence that local patches can actually capture im-
age styles. Painting, line drawing, computer graphics, pho-
tographs and even images of different resolutions can be con-
sidered as having different styles. The local patch model has
been successfully applied to demonstrate image style trans-
lation [12], super-resolution [3], and other applications. This
motivates us to employ local patch statistics.

Now, we describe the procedure for extracting the local
patch statistic features. We extract (see Figure 3(a) & (b))
the grayscale patch and the joint-spatial-color patch inde-
pendently at the edge points in two types of image regions:
the high contrast region, and the low but non-zero contrast
region. The two regions are obtained by thresholding the
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Figure 3: The grayscale patch (a) and the joint-
spatial-color patch (b) are sampled at the edge
points in an image. (c) Point masses on a sphere.

D-norm defined below. Note that the joint-spatial-color
patch is approximately oriented to the image gradient di-
rection which is the direction of maximum intensity vari-
ation. Each sampled patch, represented as a vector x =
[x1, x2, . . . , x9], is mean-subtracted and contrast-normalized
as in Equation (1):

y =
x − x

‖x − x‖D
(1)

where x = 1
9

�9
i=1 xi and ‖ · ‖D is called D-norm. D-norm

is defined as ‖x‖D =
��

i∼j(xi − xj)2 with xi and xj rep-

resenting the patch elements and i ∼ j denoting the 4-
connected neighbors relationship of two pixels in a patch.
The D-norm can also be expressed as the square root of
a quadratic form ‖x‖D =

√
xT Dx where D is symmetric

semi-positive definite matrix [6].
As the patch x is contrast-normalized by the D-norm, the

normalized patch is constrained by a quadratic relationship,
yT Dy = 1. At this juncture, the data points are living on
the surface of an ellipsoid in 9D Euclidean space. To facil-
itate the handling of the data points in a high-dimensional
space, we change the elliptic constraint into a spherical con-
straint by a linear transformation v = My. M is a 8×9
matrix and v is constrained by vT v = ‖v‖2 = 1; hence, v is
located on 7-sphere in a 8D Euclidean space, as illustrated
in Figure 3(c) in a 3D example. In this process, v is reduced
from 9D to 8D by taking advantage of the fact that y is zero-
mean. For the each of the four patch types (grayscale/low-
contrast, grayscale/high-contrast, joint-spatial-color/low-contrast,
and joint-spatial-color/high-contrast), we extract 3000 patches
and separately construct a distribution on a 7-sphere in the
8D Euclidean space.

5. LINEAR GAUSSIAN SCALE-SPACE
In this section, we will give a brief introduction of the

linear Gaussian scale-space in which we compute the local
fractal dimension and the differential geometry quantities.
The linear Gaussian scale-space L : Ω ⊆ R

2 × R+ �→ R of a
2D image I : Ω ⊆ R

2 �→ R is given by:

L(x, y; t) =

��
Ω

I(ξ, η)φ(x−ξ, y−η; t)dξdη = φ(x, y; t)∗I(x, y)

where L(x, y; 0) = I(x, y), t is a non-negative real number
called the scale parameter, ∗ is the convolution operator and
φ : R

2 �→ R is the Gaussian kernel function:

φ(x, y; t) =
1

2πt
e−

x2+y2
2t (2)

Even though an image, I(x, y) may not be differentiable ini-
tially, the corresponding linear scale-space, L(x, y; t), t >



0 is infinitely differentiable with respect to (x, y) as long
as I(x, y) is bounded. As differential geometry quantities
are the composition of derivative terms, the differentiabil-
ity property ensures that the computed differential geome-
try quantities are well-defined. The partial derivative of a
scale-space can be obtained by convolving the original im-
age, I(x, y), with the partial derivatives of the Gaussian ker-
nel function φ(x, y; t):

Lxnym(x, y; t) = ∂xn∂ym(φ(x, y; t) ∗ I(x, y)) (3)

= (∂xn∂ymφ(x, y; t)) ∗ I(x, y) (4)

where ∂xn∂ym is a shorthand for
∂n+m

∂xn ∂ym
.

6. FRACTAL GEOMETRY
The Object Model Difference mentioned in Section 3

implies that the 3D computer graphic model’s surface prop-
erties deviate from the real-world object’s surface properties,
which are associated with the physical formation process
such as erosion. This deviation will directly result in a devi-
ation of the local fractal dimension measured from the image
intensity function, under certain assumptions [11]. Based on
this, we conjecture that the deviation of the surface property
would result in a different distribution for the local fractal
dimension of PRCG.

In this section, we briefly introduce fractal geometry and
the techniques for computing fractal dimension. A fractal
is defined as a set of mathematical objects with a fractal
dimension (technically known as the Hausdorff Besicovitch
dimension) strictly greater than the topological dimension
of the object but not greater than the dimension of the
Eculidean space where the object lives. For example, a frac-
tal coastline lives on a 2D surface, and, being a line, has
a topological dimension of one, then its fractal dimension
would be 1 < D ≤ 2.

For a real world object, to directly estimate the fractal di-
mension from the mathematical definition of the Hausdorff
Besicovitch dimension is difficult. A fractal is self-similar
across scales, so fractal dimension is often estimated as a
factor of self-similarity. A commonly used random frac-
tal model for images is called fractional Brownian motion
(fBm) [8, 11]. With the fBm model, one method for estimat-
ing the fractal dimension is by measuring the self-similarity
factor of a quadratic differential invariant in scale-space. We
select this estimation technique in order to keep our ap-
proach consistent in the sense that both the fractal geometry
and the differential geometry quantities are computed in the
linear scale-space. We herein describe the estimation pro-
cedure. We first compute the L1-norm of the second-order
quadratic differential invariant:

‖I(2)(t)‖ =
�

all (x, y)

|I(2)(x, y; t)| where I(2) = L2
xx+2L2

xy+L2
yy

(5)
at multiple scales from t = 22 to t = 28 with an exponential
increment. Then, we perform a least square linear regres-
sion on the log ‖I(2)(t)‖-log t plot and measure the slope of
the line. With the estimated slope, the fractal dimension is
obtained by D = 1

2
−slope. Figure 4 shows two examples

of fractal dimension estimation using the log ‖I(2)(t)‖-log t
plot. Note that a higher fractal dimension for the tree im-
age block indicates a perceptually rougher image function.
For feature extraction, we compute the fractal dimension for
each of the non-overlapping 64×64-pixel local blocks, inde-
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Figure 4: Log-log plot for estimating the fractal di-
mension of a 64×64-pixel block from the tree (Left)
and road (Right) region

pendently for the R, G and B color channels of an image. As
a result, each local block produces a 3D fractal dimension
vector across the color channels. For each image, we obtain
a distribution of data points in the 3D space.

7. DIFFERENTIAL GEOMETRY
This section introduces three differential geometry quanti-

ties: the surface gradient, the second fundamental form and
the Beltrami flow vector, computed at the scale t = 1 (em-
pirically found to produce good classification performance).
We also show the differerences in these features for PIM and
PRCG.

When computing the differential geometry quantities, we
consider a single channel or a joint-RGB color intensity func-
tion as a graph defined below:

FI : (x, y) ⊂ R
2 �→ (x, y, I(x, y)) ⊂ R

3 (6)

FRGB : (x, y) ⊂ R
2 �→ (x, y, IR(x, y), IG(x, y), IB(x, y)) ⊂ R

5

(7)
The graphs are submanifolds embedded in a Euclidean space,
which naturally induces a Riemannian metric on each sub-
manifold. A metric tensor, g, contains information for com-
puting the distance between two points joined by a curve on
a submanifold. Imagine that the measurement is carried out
by an ant living on the surface without knowing the ambient
space. We can measure distances on a submanifold, so we
can also measure the area/volume and the angle between
two tangent vectors at a point. Therefore, a metric tensor
is an important element for describing the geometry of a
manifold. The elements of the metric tensor for the graph
of a single channel intensity function as in Equation (6) are
computed as:

g =

� 〈FIx, FIx〉 〈FIx, FIy〉
〈FIy, FIx〉 〈FIy , FIy〉

�
=

�
1 + I2

x IxIy

IxIy 1 + I2
y

�
(8)

where 〈·, ·〉 is the inner product and Ix, Iy are the derivatives
of I .

From the invariant theory, the differential geometry quan-
tities we compute are invariant to rotations and translations
of the image intensity function I(x, y) on the (x, y) plane.
In addition, the computation of these quantities does not
depend on the choice of coordinate systems.

7.1 Gradient on Surface
The Acquisition Difference, as mentioned in Section 3,

can detect PRCG that have not undergone gamma correc-
tion as PIM generally do. One reason for missing gamma
correction is that popular rendering platforms such as Sili-
con Graphics use hardware for gamma correction to enhance
the contrast of the displayed images, therefore gamma cor-
rection on the images is not necessary. Additionally, gamma
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Figure 5: A typical concave camera transfer func-
tion. M is the image irradiance function

correction may be performed using the post-processing soft-
ware such as Adobe Photoshop where the transformation
is mainly subjected to the user’s taste. In this section, we
will show that the surface gradient of the image intensity
function can be used to distinguish PIM and PRCG.

The image intensity function captured by cameras, unless
specifically set, has mostly been transformed by a transfer
function, for the purpose of display gamma correction as well
as for dynamic range compression. The transfer function
transforms the image irradiance from the real-world scene to
the intensity data I(x, y), which is the output of the sensing
process. The typical concave shape of a camera transfer
function is shown in Figure 5.

One main characteristic of the camera transfer function
in Figure 5 is that the irradiance of low values are stretched
and those of high values are compressed. Let the image
intensity function be I(x, y) = f(M(x, y)) where f : R �→ R

is the camera transfer function and M : (x, y) ⊂ R
2 �→ R is

the image irradiance function. By the chain rule, we have:

Ix =
∂I

∂x
=

df

dM

∂M

∂x
, Iy =

∂I

∂y
=

df

dM

∂M

∂y
(9)

Note that the modulation factor, df
dM

is the derivative of the
camera transfer function, which is larger (smaller) than 1
when M is small (large). Therefore, the Euclidean gradient
|∇I | =

�
I2

x + I2
y of a transformed image is higher (lower)

at the low (high) intensity than before the transformation.
Namely, the modulation term df

dM
in Equation (9) reveals

a key difference between PIM and PRCG, when PRCG im-
ages are not subjected to such modulation on their gradient
values. If the PRCG intensity functions have not undergone
such transformation, it can be distinguished from PIM by
the gradient distribution.

The analysis above assumes that the image irradiance
function M is continuous. There is a non-trivial issue in-
volved in its implementation, when it comes to discrete-
sampled images. Consider approximating the gradient at
two neighboring pixels at locations x and x + ∆x, Equa-
tion (9) becomes:

∆Ix

∆x
=

∆(f ◦ M)x

∆Mx

∆Mx

∆x
(10)

where ∆Ix = I(x+∆x, y)− I(x, y), similarly for ∆(f ◦M)x

and ∆Mx. Note that, the modulation factor in this case be-
comes the slope of the chord on the camera transfer function
connecting M(x+∆x) to M(x). One consequence is that the
modulation will only be similar to the continuous case, when
M(x+∆x)−M(x) is small, because when M(x+∆x)−M(x)
is large, the slope of the chord is approaching 1 and modula-
tion effect is weak. In other words, due to the discrete repre-
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Figure 6: (a) The relative strength of the modula-
tion effect for different magnitude of the image irra-
diance gradient (b) The tail-compressing function,
S(x; 1)

sentation, the modulation effect shown in Equation (10) will
arise only at points having low gradient values. This idea is
illustrated in Figure 6(a). With this property, if we are to
compare the distributions of the gradient of PIM with that
of PRCG, we should place more weight on the low gradient
region than on the high gradient region. Figure 6(a) shows
a sample distribution of gradient values of an image, which
typically contains long tail. To emphasize the low-gradient
region, we employ a tail-compressing transform, S:

S(|∇I |; α) =

�
|∇I |2

α−2 + |∇I |2 = |grad(αI)| (11)

where |∇I | =
�

I2
x + I2

y

Figure 6(b) shows that the S transform is almost linear
for the small values and it compresses the high values. The
width of the linear range can be controlled by the constant,
α. Interestingly, Equation (11) is the surface gradient of the
scaled image intensity function |grad(αI)| computed from
the Riemannian metric of the graph for the single channel
intensity function.

Figure 7 shows the distribution of the mean of surface
gradient |grad(αI)|, α = 0.25 (selected such that the linear
range of the S transform covers the low and the interme-
diate of the Euclidean gradient), for three intensity ranges,
i.e., [0, 1

3
), [ 1

3
, 2

3
) and [ 2

3
, 1], of the blue color channel (the

same holds for the red and green channels). These distri-
butions are computed empirically from our actual dataset
of PIM and PRCG. Notice that for the low intensity re-
gion, the mean of surface gradient for the PIM is higher
than that of the PRCG and the opposite is observed for
the high intensity region, while the distributions of the two
are completely overlapped at the medium intensity range.
This perfectly matches our prediction about the effect of
the transfer function as described earlier in Equation (9).

The skewness statistic, which is highly overlapping as
shown in Figure 7, is not used as classification features. For
feature extraction, we compute the surface gradient and ob-
tain (|gradαIR|, |gradαIG|, |gradαIB|), α = 0.25 for the
three color channels at every pixel of an image. As gamma
correction in PIM modulates the gradient differently at dif-
ferent intensity values, we combine the intensity values (IR,
IG, IB) with the above surface gradient vector to form a 6D
feature vector at every pixel.

7.2 The Second Fundamental Form
Referring to the Object Model Difference as men-

tioned in Section 3, the accuracy of the 3D polygonal model
of computer graphics is dependent on the granularity of the
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Figure 8: (a) Illustration of the polygon effect. (b)
Unusually sharp structure in computer graphics,
note the pillar marked by the red ellipse.

polygonal representation. A coarse-grained polygonal model
can result in observable sharp structures, such as sharp edges
and sharp corners, in the image intensity function of com-
puter graphics. Figure 8(a) gives an intuitive illustration
of this point; when a concave line is approximated by a
polygonal line, the curvature at the junctures of the poly-
gon segments is always greater than that of the concave line.
Figure 8(b) shows an example of the sharp edge structure
in the magnified view of a PRCG image. This structural
difference between PIM and PRCG can be observed from
the local quadratic geometry computed on the image in-
tensity function. Quadratic geometry can be considered as
a second-order approximation of the 3D shape at a point.
The typical shapes of quadratic geometry are shown in Fig-
ure 9(a). In differential geometry, the quadratic geometry
at each point (x, y) of an image intensity function (repre-
sented as a graph as in Equation (6)) is called the second
fundamental form, defined as:

Πp(v) = vT Av (12)

where v are the tangent vectors at the location (x, y), A is
a symmetric matrix given by:

A =

� 〈FIxx, n〉 〈FIxy, n〉
〈FIxy, n〉 〈FIyy, n〉

�
=

1�
1 + I2

x + I2
y

�
Ixx Ixy

Ixy Iyy

�
(13)

where n is the unit normal vector at (x, y). The matrix A
determines the local quadratic geometry and can be char-
acterized by its first and the second eigenvalues, γ1 and γ2,
where γ1 > γ2. In a 2D plot of the first and the second
eigenvalues, every point represents a local quadratic geom-
etry shape, as shown in Figure 9(b) (The meaning of the
circles, ellipses and so on is given in Figure 9(a)). Note
that, large eigenvalues correspond to the ‘sharp’ structures
such as sharp ellipses or sharp circles. Given an image, the
presence of the large eigenvalues can be measured by the
skewness of the distribution of the eigenvalues in each im-
age (Skewness may not be the best measure, but it serves
our purpose); the larger the skewness is, the more large val-
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Figure 9: (a) The typical shapes of the quadratic
geometry (b) The shapes of the quadratic geometry
in a 2D eigenvalue plot. Colors are for visual aid
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Figure 10: Distribution of the skewness of the 1st
and 2nd eigenvalues of the second fundamental form
for the blue color channel

ues are there. We compute the skewness of the eigenvalues
separately for the images in our dataset and the distribu-
tion of the skewness is shown in Figure 10. We can see that
the CG image set tends to have a larger skewness, while
the shape of the distributions for the two photographic sets
(Google and Personal) are quite consistent. This observa-
tion indicates that PRCG has more sharp structures than
PIM.

The skewness statistic, which is highly overlapping as
shown in Figure 10, is not used as classification features.
For feature extraction, we compute the two eigenvalues of
the quadratic form for the three color channels indepen-
dently. As the geometry of the edge region and the non-
edge regions are different in terms of the generative process,
(e.g., low-gradient region is mainly due to smooth surface
while high-gradient region is mainly due to texture, occlu-
sion, change of the surface reflectance property or shadow),
we therefore try to capture the correlation between gradient
and the local quadratic geometry by constructing a 9D joint
distribution of (|∇IR|, |∇IG|, |∇IB |, γ1

R, γ1
G, γ1

B, γ2
R, γ2

G,
γ2

B), where γ1 and γ2 are the first and second eigenvalues
and |∇I | =

�
I2

x + I2
y is the Euclidean gradient.

7.3 The Beltrami Flow
In Section 3, we discussed the Light Transport Differ-

ence in PIM and PRCG. The object reflectance property
function in PRCG is often simplified such that its response
to different color channels or spectral components are in-
dependent. This assumption is not true for the real-world
objects in general, therefore this simplification may result in
a deviation of the cross-color-channels relationship of PRCG
with respect to that of PIM. Such joint-color-channel cor-
relation has been exploited by techniques in image restora-
tion to improve the subjective image quality. Therefore, we
consider the Beltrami flow [14], which is an effective joint-
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Figure 11: Comparing the joint distribution of the
Beltrami flow components of a computer graphics
image and that of its recaptured counterpart, the
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color-channel image restoration technique. Beltrami flow is
based on the idea of minimizing the surface area, which has
been employed for restoring degraded or noisy images where
artifacts or noise are considered singularities on the image
intensity function. Minimization of the surface area reduces
the magnitude of the singularity.

For a joint-RGB image intensity function (as in Equa-
tion (7)), the R, G and B component of the Beltrami flow
vector at every point (x, y) are given by,

�gIi =
1

|g|
�
∂x

��
|g| (gxx∂xIi + gxy∂yIi)

		
+

1

|g|
�
∂y

��
|g| (gyx∂xIi + gyy∂yIi)

		
(14)

where i = R, G, B, while gxx, gxy, gyx, gyy and |g| are:

g−1 =

�
gxx gxy

gyx gyy

�
=

�
1 +
�

j(∂xIj)
2

�
j ∂xIj∂yIj�

j ∂yIj∂xIj 1 +
�

j(∂yIj)
2

�−1

|g| = 1+
�

j

|∇Ij |2+
1

2

�
j,k

|∇Ij×∇Ik|2, j, k = R, G, B (15)

Note that, the vector cross-product terms in Equation (15)
capture the correlation of the gradients in the R, G and B
color channels. We can visualize the 3D joint distribution
of the Beltrami flow vectors from the 2D plots of �gIR-
�gIG and �gIR-�gIB . For the 2D plots of �gIR-�gIG

and �gIR-�gIB, we notice that the distribution of the PIM
is more aligned to the y = x line of the plots, while the
PRCG tends to have misaligned points or outliers. This ob-
servation can be seen in Figure 11, showing the 2D plots of
a PRCG together with those of its recaptured counterpart.
We visually inspected 100 CG images and 100 Google im-
ages, and noticed that about 20% of the CG images have
this misalignment as compared to less than 5% of the Google
images. Such misalignment could be due to the spectral in-
dependence assumption for the surface reflectance function.

For feature extraction, we follow the same strategy as the
second fundamental form and try to capture the correlation
between the Euclidean gradient and the Beltrami flow vec-
tor. As such, we construct a 6D joint distribution (|∇IR|,
|∇IG|, |∇IB |, �gIR, �gIG, �gIB).

7.4 Normalization of Differential Geometry
Features

When we compute the differential geometry quantities, we
are essentially computing the derivatives of various orders in

scale-space at a fixed scale, t = T . We like to make sure that
the geometry quantities are as invariant as possible when we
resize an image or when the given image has been smoothed
beforehand (introducing a scale uncertainty). To under-
stand the effect of these operations on the scale-space com-
putation, consider a simple example. For f1(x) = cos(ωx),
the scale-space first derivative (the conclusion can be easily
generalized to the higher-order derivatives) is given by:

L1x(x; t) = −ωe−
ω2t
2 sin(ωx) (16)

Let’s resize f1(x) by a factor s and obtain fs(x) = cos(sωx);
the corresponding scale-space first derivative would be:

Lsx(x; t) = −sωe−
s2ω2t

2 sin(sωx) (17)

As f1(x) = fs(
x
s
), we compare L1x(x;T ) in Equation (16)

with Lsx(x
s
; T ) = −sωe−

s2ω2T
2 sin(ωx) in order to under-

stand the effect of image resizing and prior smoothing. The
difference between the two terms is from the preceding fac-
tor s and the exponential factor decreasing with t. The
exponential is content dependent because it is a function of
ω. This general observation is applicable to the differen-
tial geometry quantities, being a composition of scale-space
derivatives. If we compute a differential geometry quantity
at every pixel of an image and obtain the distribution of
this quantity for each image, the combined effect of the two
factors will manifest itself in the standard deviation of the
distribution. Therefore, we propose a simple divisive nor-
malization scheme, that divides the differential geometry
quantity of an image by its standard deviation. To prove
such normalization is effective, we compute the Kullback-
Leibler (KL) distance [2] between the distribution of the
scale-space first derivative of an image and that of the half-
sized version of the same image. Indeed, we find that the KL
distance is reduced to about one-third after normalization.

8. DATASET COLLECTION
To ensure that our experimental dataset exemplifies the

problem of image forgery detection, our dataset collection
effort adheres to the following principles: (1) Images of di-
verse but natural-scene-only content: we exclude the PRCG
of fantasy or abstract category and this restriction ensures a
content mataching between the PIM and the PRCG image
sets, (2) Computer graphics of high photorealism: we sub-
jectively filter the computer graphics from the web to ensure
a high photorealism, (3) Images of reliable ground truth: we
specifically collect a set of PIM from the personal collections
which are known to be authentic. As a comparison, a very
different approach in terms of the dataset is adopted in [7],
where a very large number of online images, i.e., 32,000 PIM
and 4,800 PRCG, are used and there is no mention of the
selection criteria. Adhering to the above principles, we col-
lected the below-described four image sets (see Figure 1). A
detailed description of the dataset can be found in [10].

1. 800 PRCG (CG): These images are categorized by con-
tent into architecture, game, nature, object and life,
see Figure 12(a). The PRCG are mainly collected from
various 3D artists (more than 100) and about 40 3D-
graphics websites, such as www.softimage.com, www.

3ddart.org, www.3d-ring.com and so on. The render-
ing software used are such as 3ds MAX, softimage-xsi,
Maya, Terragen and so on. The geometry modelling
tools used include AutoCAD, Rhinoceros, softimage-
3D and so on. High-end rendering techniques used
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Figure 12: (a) Subcategories within CG and (b) Subcategories within personal image set, the number is the
image count. (c) Examples of the test image sets in Table 1

include global illumination with ray tracing or radios-
ity, simulation of the camera depth-of-field effect, soft-
shadow, caustics effect and so on.

2. 800 PIM images (personal): 400 of them are from
the personal collection of Philip Greenspun, they are
mainly travel images with content such as indoor, out-
door, people, objects, building and so on. The other
400 are acquired by the authors using the professional
single-len-reflex (SLR) Canon 10D and Nikon D70. It
has content diversity in terms of indoor or outdoor
scenes, natural or artificial objects, and lighting condi-
tions of day time, dusk or night time. See Figure 12(b).

3. 800 PIM from Google Image Search (Google): These
images are the search results based on keywords that
matches the computer graphics categories. The key-
words are such as architecture, people, scenery, indoor,
forest, statue and so on.

4. 800 photographed PRCG (recaptured CG): These are
the photograph of the screen display of the mentioned
800 computer graphics. Computer graphics are dis-
played on a 17-inch (gamma linearized) LCD monitor
screen with a display resolution of 1280×1024 and pho-
tographed by a Canon G3 digital camera. The acqui-
sition is conducted in a dark room in order to reduce
the reflections from the ambient scene.

The rationale of collecting two different sets of PIM is the
following: Google has a diverse image content and involves
more types of cameras, photographer styles and lighting con-
ditions but the ground truth may not be reliable, whereas
personal is reliable but it is limited in camera and photogra-
pher style factors. On the other hand, based on the two-level
definitions of image authenticity introduced in Section 2, we
should be able to restore the imaging-process authenticity of
the PRCG by recapturing them using a camera. Therefore,
we produce the recaptured CG image set for evaluating how
much the scene authenticity can be captured by the features.

Different image sets have different average resolution. To
prevent the classifier from learning the resulting content-
scale difference, we resize the personal and recaptured CG
sets, such that the mean of the averaged dimension, 1

2
(height

+ width) of the image sets matches that of the Google and
the CG sets, at about 650 pixels.

9. DESCRIPTION OF JOINT DISTRIBUTION
BY RIGID BODY MOMENTS

So far, we have described several distributions of features
such as local patches (8D) and the differential geometry
quantities computed for every pixel in an image. Here we

propose to extract the statistics of these distributions in or-
der to reduce the dimensionality and develop a classification
model for distinguishing PIM and PRCG. There are many
ways to describe this high-dimensional distribution. One
way, as directly follows from [6], is to uniformly quantize the
surface of the sphere into 17520 bins (or other suitable bin
count) to form a 1D histogram. This method needs a large
number of image patches in order to have a stable histogram
if the distribution is relatively spread out. In the other ex-
treme, a non-parametric density estimation method, such as
the Parzen kernel based method, can be used but the compu-
tation cost would be intensive when it comes to computing
the distance between two estimated density functions. Be-
sides that, Gaussian mixture model (GMM) clustering can
also be used, but the standard GMM algorithm does not
take advantage of the (non-Euclidean) spherical data space.

Due to the above considerations and the concern about
the computational cost, we develop a framework based on
the rigid body moments, which is capable in handling a
high-dimensional distribution and is especially suitable for
a spherical distribution. Let’s first describe the process of
computing the rotational rigid-body moments for the lo-
cal patch distribution in the form of a discrete set of point
masses on a 7-sphere [9]. For a distribution of N discrete
masses, mi, i = 1, ..., N , respectively located at vi = [vi1...viM ],
the element of the inertia matrix is given by (18),

Ijk =

N�
i

mi(‖vi‖2δjk − vijvik) j, k = 1, . . . , M (18)

where the Kronecker delta δij is defined as 0 when i �= j, 1
when i = j. In a three-dimensional Euclidean space of x-y-z
Cartesian coordinates, the inertia matrix would be:

I =

N�
i

mi



� y2

i + x2
i −xiyi −xizi

−xiyi z2
i + x2

i −yizi

−xizi −yizi x2
i + y2

i

�
 (19)

Notice that the inertia matrix is symmetric. The diago-
nal and the off-diagonal components are respectively called
the moments of inertia and the products of inertia. For an
n-dimensional space, the inertia matrix has n moments of
inertia and 1

2
n(n − 1) unique products of inertia.

For the distribution on the 7-sphere, the mass of the data
points is 1

N
. We extract only the moment of inertia, as the

number of the unique products of inertia is large. From an-
other perspective, we can consider the elements of the iner-
tia matrix as the second-order statistics of the distribution,
and therefore it does not capture the complete information
of distribution. Besides the moments of inertia, we also com-
pute the center of mass (a form of the first-order statistics)
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as well as the mean and the variance of the distance of the
data points from the center of mass.

However, for the distribution of the fractal dimension, the
surface gradient, the second fundamental form and the Bel-
trami flow vector, the data points are not restricted to a unit
sphere. In this case, the inertia quantities can be affected by
two factors: the distribution of points in the spherical and
the radial direction. We decouple and model the two effects
separately: we model the distribution of the unit-length data
vectors using the center of mass as well as the moments and
products of inertia, and model the magnitude of the data
vectors using the first four moment of the distribution, i.e.,
mean, variance, skewness and kurtosis.

Figure 13 shows the feature distribution of the four local
patch types, after having been linearly projected to a 2D
space by Fisher discriminant analysis. The ellipses in the
figure depict the mean and the covariance of a single-class
feature distribution. We observe that the joint-spatial-color
patch provides a better discrimination between the PIM and
PRCG. Figure 14 shows the same 2D linear projection of
the fractal, the surface gradient, the 2nd fundamental form
and the Beltrami flow vector feature distribution. Notice
that fractal dimension feature is the weakest discriminant
for PIM and PRCG and differential geometry features are
strong discriminant features.

10. EXPERIMENTS AND DISCUSSIONS
We evaluate the capability of our geometry-based fea-

tures (henceforth the geometry feature) by classification ex-
periments on our image sets. We compare the 192D ge-
ometry feature against the 216D wavelet feature [7] and
the 108D feature obtained from modelling the characteris-
tics of the general (i.e., including both photorealistic and
non-photorealistic) computer graphics [5] (henceforth the
cartoon feature). For a fair comparison, we compute the
wavelet feature on the entire image (for a better perfor-

mance), rather than just on the central 256×256-pixel re-
gion of an image, as described in [7]. The cartoon feature
consists of the average color saturation, the ratio of image
pixels with brightness greater than a threshold, the Hue-
Saturation-Value (HSV) color histogram, the edge orienta-
tion and strength histogram, the compression ratio and the
pattern spectrum.

The classification experiment is based on the Support Vec-
tor Machine (SVM) classifier of the LIBSVM [4] implemen-
tation. We use the Radial Basis Function (RBF) kernel for
the SVM and model selection (for the regularization and the
kernel parameters) is done by a grid search [4] in the joint
parameter space. The classification performance we report
hereon is based on a five-fold cross-validation procedure. We
train a classifier of the PIM (Google+personal) versus the
PRCG (CG), based on the geometry, wavelet and cartoon
features respectively. The receiver operating characteristics
(ROC) curve of the classifiers are shown in Figure 15(a).
The results show that the geometry features outperform the
wavelet features while the conventional cartoon features do
the poorest. The overall classification accuracy is 83.5%
for the geometry feature, 80.3% for the wavelet feature and
71.0% for the cartoon feature (These numbers are different
with 99% statistical significance).

To understand the strengths and the weaknesses of each
approach on different images, we further test the classifier
with images of the interesting and subjectively confusing
categories. Results are shown in Table 1. Example images
of the test sets are shown in Figure 12(c). The test accuracy
reported is based on the classifier trained with the entire test
category held out (i.e., no image of the test category is in
the training set). We specifically conduct this experiment
in order to study whether a good classifier can be learnt
from images of different content categories. Notice that the
geometry feature classifier outperforms that of the wavelet
feature in three out of the five categories. The poor perfor-
mance (for both wavelet and geometry features) on test set
C indicates that the nature-scene PRCG have unique char-
acteristics which cannot be learnt from the non-nature-scene
ones. This could be due to the fact that nature-scene PRCG
are mainly generated by the specialized rendering software
such as Terragen and the nature-scene content often occupy
the entire image. In contrast, PRCG with living objects
(test set D) have a background which bears the characteris-
tics which can be learnt from other PRCG. The results for
the PIM of artificial objects (e.g., wax figures and decorative
fruit) of test set B indicates that the artificiality of the real-
world objects does not affect the classifiers. For test set E,
the camera DoF effect is a global effect and our classifiers
are based on local features, therefore simulating the DoF
effect on PRCG does not prevent correct classifications.

In Table 1, almost all of the recaptured CG (test set A)
are classified as PIM, for both sets of feature. This indicates
that the features could only capture the imaging-process au-
thenticity but not the scene authenticity. If we consider
recapturing computer graphics as a form of attack to our
computer graphic detector, it would be very effective. How-
ever, we can form a counter-attack measure by incorporating
the recaptured CG into the computer graphics category dur-
ing the classifier learning process. By so doing, the resulting
classifiers have a ROC curve as shown in Figure 15(b). Note
that the classifier is trained by having a pair of the computer
graphics and its recaptured counterpart either entirely in



Table 1: Classifier Test Accuracy
Set Test images (count) Wavelets Geometry
A recaptured CG (800) 97.2% 96.6%
B photos of artificial objects (142) 94.0% 96.2%
C CG of nature scenes (181) 57.5% 49.2%
D CG of living objects (50) 64.0% 74.0%
E CG with DOF simulation (21) 85.7% 90.5%
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Figure 15: Receiver operating characteristic (ROC)
curve for two classification experiments

the training set or the test set, it is to prevent the classifier
from overfitting to the content similarity of the pairs. Re-
sults in Figure 15(b) shows that this strategy renders the
recapturing attack ineffective, and enables us to go beyond
the imaging-process authenticity.

We analyze the computational complexity of the features
by performing feature extraction on 100 images in Matlab
7.0. Their per-image feature-extraction time in seconds are
9.3s (wavelet), 5.2s (surface gradient), 8.7s (2nd fundamen-
tal form), 6.5s (Beltrami flow vector), 3.0s (local patch),
128.1s (fractal). Except for the fractal feature, the other
features are quite computationally efficient.

11. CONCLUSIONS
We have proposed a new approach for PIM and PRCG

classification in the context of image forgery detection. The
new approach arises from asking a fundamental question of
how we should describe images such that PIM and PRCG
can be better distinguished. We adopt a geometry-based im-
age description by means of the fractal geometry at the finest
scale and the differential geometry at the intermediate scale.
Additionally, we sample local patches of the image intensity
function to form a patch distribution. The geometry-based
approach enables us to uncover distinctive physical charac-
teristics of the PIM and PRCG, such as the gamma cor-
rection of PIM and the sharp structures in PRCG, which
has not been possible by using any of the previous tech-
niques. We extract the geometry features using the method
of rigid body moments, which can capture the character-
istics of a high-dimensional joint distribution. The SVM
classifier based on the geometry feature outperforms those
in prior work. We also analyze the characteristics of recap-
tured computer graphics and demonstrate that we can make
the recapturing attack ineffective. Furthermore, we identify
a subset of PRCG with nature scenes, which remains chal-
lenging to classify and demands more focused research.

The experiment on recaptured computer graphics indi-
cates the difficulty in capturing the characteristic of scene
authenticity. To achieve this, we propose two methods:
First, we can capture the characteristics of the forgery tech-

niques, just as we do by incorporating the recaptured com-
puter graphics into the learning of the classifier. The second
method, as a future work, is to consider a more fundamental
modelling of the 3D scene authenticity using the computer
graphics rendering and computer vision techniques. Final
future work is to identify the local computer graphic regions
within an augmented reality image.
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