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Abstract. Recent research in video analysis has shown a promising di-
rection, in which mid-level features (e.g., people, anchor, indoor) are
abstracted from low-level features (e.g., color, texture, motion, etc.) and
used for discriminative classification of semantic labels. However, in most
systems, such mid-level features are selected manually. In this paper, we
propose an information-theoretic framework, visual cue cluster construc-
tion (VC3), to automatically discover adequate mid-level features. The
problem is posed as mutual information maximization, through which
optimal cue clusters are discovered to preserve the highest information
about the semantic labels. We extend the Information Bottleneck frame-
work to high-dimensional continuous features and further propose a pro-
jection method to map each video into probabilistic memberships over
all the cue clusters. The biggest advantage of the proposed approach is
to remove the dependence on the manual process in choosing the mid-
level features and the huge labor cost involved in annotating the training
corpus for training the detector of each mid-level feature. The proposed
VC3 framework is general and effective, leading to exciting potential in
solving other problems of semantic video analysis. When tested in news
video story segmentation, the proposed approach achieves promising per-
formance gain over representations derived from conventional clustering
techniques and even the mid-level features selected manually.

1 Introduction

In the research of video retrieval and analysis, a new interesting direction is to
introduce “mid-level” features that can help bridge the gap between low-level
features and semantic concepts. Examples of such mid-level features include lo-
cation (indoor), people (male), production (anchor), etc., and some promising
performance due to such mid-level representations have been shown in recent
work of news segmentation and retrieval [1, 2]. It is conjectured that mid-level
features are able to abstract the cues from the raw features, typically with much
higher dimensions, and provide improved power in discriminating video content
of different semantic classes. However, selection of the mid-level features is typi-
cally manually done relying on expert knowledge of the application domain. Once



the mid-level features are chosen, additional extensive manual efforts are needed
to annotate training data for learning the detector of each mid-level feature.

Our goal is to automate the selection process of the mid-level features given
defined semantic class labels. Given a collection of data, each consisting of low-
level features and associated semantic labels, we want to discover the mid-level
features automatically. There is still a need for labeling the semantic label of each
data sample, but the large cost associated with annotating the training corpus
for each manually chosen mid-level feature is no longer necessary. In addition,
dimensionality of the mid-level features will be much lower than that of the
low-level features.

Discovery of compact representations of low-level features can be achieved
by conventional clustering methods, such as K-means and its variants. However,
conventional methods aim at clusters that have high similarities in the low-level
feature space but often do not have strong correlation with the semantic labels.
Some clustering techniques, such as LVQ [3], take into account the available class
labels to influence the construction of the clusters and the associated cluster
centers. However, the objective of preserving the maximum information about
the semantic class labels was not optimized.

Recently, a promising theoretic framework, called Information Bottleneck
(IB), has been developed and applied to show significant performance gain in text
categorization [4, 5]. The idea is to use the information-theoretic optimization
methodology to discover “cue word clusters” which can be used to represent each
document at a mid level, from which each document can be classified to distinct
categories. The cue clusters are the optimal mid-level clusters that preserve the
most of the mutual information between the clusters and the class labels.

In this paper, we propose new algorithms to extend the IB framework to the
visual domain, specifically video. Starting with the raw features such as color,
texture, and motion of each shot, our goal is to discover the cue clusters that have
the highest mutual information about the final class labels, such as video story
boundary or semantic concepts. Our work addresses several unique challenges.
First, the raw visual features are continuous (unlike the word counts in the text
domain) and of high dimensions. We propose a method to approximate the joint
probability of features and labels using kernel density estimation. Second, we
propose an efficient sequential method to construct the optimal clusters and
a merging method to determine the adequate number of clusters. Finally, we
develop a rigorous analytic framework to project new video data to the visual
cue clusters. The probabilities of such projections over the cue clusters are then
used for the final discriminative classification of the semantic labels.

Our work is significantly different from [6] which uses the IB principle for
image clustering. In [6], 3 CIE-Lab colors and 2 horizontal and vertical positions
are used as the input raw features. The dimension is much lower than that in
this paper. The distribution in the raw feature space was first fit by a Gaussian
Mixture Model (GMM), whose estimated parameters were then used for the
IB clustering. In contrast, we do not assume specific parametric models in our



approach, making our results more generalizable. Most importantly, preservation
of mutual information about the semantic labels was not addressed in [6].

We test the proposed framework and methods in story segmentation of
news video using the corpus from TRECVID 2004 [7]. The results demonstrate
that when combined with SVM, projecting videos to probabilistic memberships
among the visual cue clusters is more effective than other representations such
as K-means or even the manually selected mid-level features. An earlier un-
optimized implementation was submitted to TRECVID 2004 story segmentation
evaluation and achieved a performance very close to the top.

The main idea of the IB principle and its extension to high-dimensional con-
tinuous random variables are introduced in Section 2. The discriminative model
and the feature selection based on the induced VC3 clusters are presented in Sec-
tion 3. In Section 4, evaluation of the proposed techniques in news video story
segmentation is described. We present conclusions and future work in Section 5.

2 The Information Bottleneck Principle

The variable X represents (feature) objects and Y is the variable of interest or
auxiliary labels associated with X. X might be documents or low-level feature
vectors; Y might be document types in document categorization or sematic class
labels. In this context, we want the mapping from x ∈ X to cluster c ∈ C
to preserve as much information about Y as possible. As in the compression
model, the framework passes the information that X provides about Y through
a “bottleneck” formed by the compact summaries in C. On the other hand, C
is to catch the consistent semantics of object X. The semantic is defined by the
conditional distribution over the auxiliary label Y .

Such goal can be formulated by the IB principle, which states that among all
the possible clusterings of the objects into a fixed number of clusters, the desired
clustering is the one that minimizes the loss of mutual information (MI) between
the features X and the auxiliary labels Y . Assume that we have joint probability
p(x, y) between these two random variables. According to the IB principle, we
seek a clustering representation C such that, given a constrain on the clustering
quality I(X;C), the information loss I(X,Y ) − I(C;Y ) is minimized.

2.1 Mutual Information

For discrete-valued random variables X and Y , the MI between them is I(X;Y ) =∑
y

∑
x p(x, y) log p(x,y)

p(x)p(y) . We usually use MI to measure the dependence be-
tween variables. In the VC3 framework, we represent the continuous D-dimensional
features with random variable X ∈ RD; the auxiliary label is a discrete-valued
random variable Y representing the target labels. We have feature observations
with corresponding labels in the training set S = {xi, yi}i=1..N . Since X is con-
tinuous, the MI is defined as I(X;Y ) =

∑
y

∫
x

p(x, y) log p(x,y)
p(x)p(y)dx. However,

based on S, the practical estimation of MI from the previous equation is dif-
ficult. To address this problem, the histogram approach is frequently used but
only works between two scalars. An alternative approach is to model X through



GMM which is limited to low-dimensional features due to the sparsity of data
in high-dimensional spaces.

We approximate the continuous MI with Eq. 1 for efficiency. The summariza-
tion is only over the observed data xi assuming that p(x, y) = 0 if x /∈ S. Similar
assumptions are used in other work (e.g., the approximation of Kullback-Leibler
divergence in [6]). According to our experiments, the approximation is satisfac-
tory in measuring the MI between the continuous feature variable X and the
discrete auxiliary variable Y .

I(X;Y ) ∼=
∑

i

∑

y

p(xi, y) log
p(xi, y)

p(xi)p(y)
(1)

2.2 Kernel Density Estimation

To approximate the joint probability p(x, y) based on the limited observations S,
we adopt the kernel density estimation (KDE) [8]. The method does not impose
any assumption on the data and is a good method to provide statistical modeling
among sparse or high-dimensional data.

The joint probability p(x, y) between the feature space X and the auxiliary
label Y is calculated as follows:

p(x, y) =
1

Z(x, y)

∑

xi∈S

Kσ(x − xi) · p̄(y|xi), (2)

where Z(x, y) is a normalization factor to ensure
∑

x,y p(x, y) = 1, Kσ (Eq.
3) is the kernel function over the continuous random variable X. p̄(y|xi) is an
un-smoothed conditional probability of the auxiliary labels as observing feature
vector xi. We assume that Y is binary in this experiment and p̄(y|xi) is either 0
or 1. Note that Y can extend to multinomial cases in other applications.

From our observation, p̄(y|xi) is usually sparse. Eq. 2 approximates the joint
probability p(x, y) by taking into account the labels of the observed features
but weighted and smoothed with the Gaussian kernel, which measures the non-
linear kernel distance from the feature x to each observation xi. Intuitively,
nearby features in the kernel space will contribute more to Eq. 2.

Gaussian kernel Kσ for D-dimensional features is defined as:

Kσ(xr − xi) =
D∏

j=1

exp
−||x(j)

r − x
(j)
i ||

σj
, (3)

where σ = [σ1, .., σj , .., σD] is the bandwidth for kernel density estimation. We
can control the width of the bandwidth to embed prior knowledge about the
adopted features; for example, we might emphasize more on color features and
less on the texture features by changing the corresponding σj .



2.3 Sequential IB Clustering

We adopt the sequential IB (sIB) [4] clustering algorithm to find clusters under
the IB principle. It is observed that sIB converge faster and is less sensitive to
local optima comparing with other IB clustering approaches [4].

The algorithm starts from an initial partition C of the objects in X. The
cluster cardinality |C| and the joint probability p(x, y) are required in advance.
At each step of the algorithm, one object x ∈ X is drawn out of its current
cluster c(x) into a new singleton cluster. Using a greedy merging criterion, x is
assigned or merged into c∗ so that c∗ = argminc dF ({x}, c). The merging cost,
the information loss due to merging of the two clusters, represented as dF (ci, cj),
is defined as (cf. [5] for more details):

dF (ci, cj) = (p(ci) + p(cj)) · DJS [p(y|ci), p(y|cj)], (4)

where DJS is actually Jensen-Shannon (JS) divergence and p(ci) and p(cj) are
cluster prior probabilities. JS divergence is non-negative and equals zero if and
only if both its arguments are the same and usually relates to the likelihood mea-
sure that two samples, independently drawn from two unknown distributions,
are actually from the same distribution.

The sIB algorithm stops as the number of new assignments, among all ob-
jects X, to new clusters are less than a threshold, which means that so far the
clustering results are “stable.” Meanwhile, multiple random initialization is used
to run sIB multiple times and select the results that has the highest cluster MI
I(C;Y ), namely the least information loss I(X;Y ) − I(C;Y ).

2.4 Number of Clusters

To learn the optimal number of clusters in the clustering algorithm is still an
open issue. G-means is one of the options but limited to low-dimensional data due
to its Gaussian assumption. IB proposes a natural way to determine the number
of clusters by discovering the break point of MI loss along the agglomerative IB
(aIB) clustering algorithm [5, 6]. The algorithm is a hard clustering approach and
starts with the trivial clustering where each cluster consists of a single item. To
minimize the overall information loss, a greedy bottom-up process is applied to
merge clusters that minimize the criterion in Eq. 4, which states the information
loss after merging clusters ci and cj . The algorithm ends with a single cluster
with all items. Along the merging steps, there is a gradual increase in information
loss. We can determine the “adequate” number of the clusters by inspecting the
point where a significant information loss occurs.

3 Discriminative Model

3.1 Feature Projection

We use VC3 to provide a new representation of discriminative features by trans-
forming the raw visual features into the (soft) membership probabilities over



those induced cue clusters which have different conditional probability p(y|c)
over the auxiliary label Y .

Each key frame with raw feature vector xr is projected to the induced clusters
and represented in visual cue feature xc, the vector of membership probabilities
over those K induced visual cue clusters;

xc = [x1
c , ..., x

j
c, ..., x

K
c ], (5)

xj
c = p̂(cj |xr) =

J(cj |xr)∑K
k=1 J(ck|xr)

, and (6)

J(cj |xr) = p(cj) · p̂(xr|cj) = p(cj) · 1
|cj |

∑

xi∈cj

Kσ(xr − xi). (7)

J(cj |xr) is proportional to the (soft) posterior probability p̂(cj |xr) depicting the
possibility that the raw feature xr belongs to cluster cj , hence, can be represented
by the product of the cluster prior p(cj) and the cluster likelihood p̂(xr|cj); the
latter is also estimated with KDE based on the visual features within the cluster
cj . The visual cue features xc is later used as the input feature for discriminative
classification. With this feature projection, we represent the raw feature xr with
the membership probabilities towards those visual cue clusters. Each cluster has
its own semantic defined by the auxiliary label Y since all the visual features
clustered into the same cluster have similar condition probability over Y .

3.2 Support Vector Machines

SVM has been shown to be a powerful technique for discriminative learning [9]. It
focuses on structural risk minimization by maximizing the decision margin. We
applied SVM using the Radial Basis Function (RBF) as the kernel, K(xi, xj) =
exp(−γ ‖ xi − xj ‖2), γ > 0.

In the training process, it is crucial to find the right parameters C (tradeoff
on non-separable samples) and γ in RBF. We apply five fold cross validation with
a grid search by varying (C, γ) on the training set to find the best parameters
achieving the highest accuracy.

3.3 Feature Selection

After sIB clustering, the cluster MI between the induced feature clusters C and
auxiliary label Y is measured with I(C;Y ) =

∑
c I(c) and can be decomposed

into summation of the MI contribution of each cluster c, defined in Eq. 8. We
further utilize this property to select the most significant clusters with the highest
I(c), on the other hand, to remove less significant or unstable clusters.

I(c) ≡ p(c)
∑

y

p(y|c) log
p(c, y)

p(c)p(y)
(8)



4 Experiments

4.1 Broadcast News Story Segmentation

We tested the proposed VC3 approach on the story segmentation task in TRECVID
[7]. A news story is defined as a segment of news broadcast with a coherent news
focus which contains at least two independent declarative clauses. Story bound-
ary detection is an interesting and challenging problem since there are no simple
fixed rules of productions or features [10].

To solve this problem, researchers try different ways to manually enumerate
the important production cues, and then train the specific classifiers to classify
them. For example, in [1], 17 domain-specific detectors are manually selected and
trained. In [11], a large set of manually picked features are fused using statistical
methods like maximum entropy.

4.2 Approach: Discriminative Classification

We train a SVM classifier to classify a candidate point as a story boundary
or non-boundary. The major features for the discriminative model is the vi-
sual cue features represented in the membership probabilities (Section 3.1) to-
wards the induced visual cue clusters. Applying the VC3 framework, the contin-
uous random variable X now represents the concatenated raw visual features of
144-dimensional color autocorrelogram, 9-dimensional color moments, and 48-
dimensional Gabor textures for each key frame (See explanations in [7]). The
label Y is binary, “story” and “non-story.”

The number of visual cue clusters is determined by observing the break point
of accumulated MI loss as described in Section 2.4 and is 60 both for ABC and
CNN videos. To induce the visual cue clusters, 15 videos for each channel are
used; 30 videos, with key frames represented in the cue cluster features, for each
channel are reserved for SVM training; the validation set is composed of 22 CNN
and 22 ABC videos. They are all from TRECVID 2004 development set.

4.3 Results and Discussions

We present the boundary detection performance in terms of the precision and
recall (PR) curve and Average Precision (AP) which averages the (interpolated)
precisions at certain recalls. For a M + 1 point AP, AP = 1

M+1

∑M
i=0 P (ri);

ri = i/M indicates the designated recall sample; P (ri) = maxri≤r P (r) is the
interpolated precision, where {r, P (r)} are those available recall-precision pairs
from the classification results. Intuitively, AP can characterize the PR curve in a
scalar. A better classifier, with a PR curve staying upper-right corner of the PR
plane, will have higher AP, and vice versa. In this experiment, we set M = 20.

Fig. 1(a) and 1(b) show the discriminative classification of story boundaries
on ABC and CNN videos in PR curves and APs. All boundary detection use
SVM but on different feature configurations. The VC3 approach on both video
sets (ABC/CNN-VC3-60) performs better that those with raw visual features
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Fig. 1. (a): PR curves of story boundary detection on ABC videos with feature config-
urations via VC3 (ABC-VC3-60), K-means (ABC-KMS-60), raw visual features (ABC-
RAW-201), and LDA (ABC-LDA-60); (b) the same as (a) but on CNN videos. The
corresponding AP of each PR curve is shown as well.

(ABC/CNN-RAW-201). The performance gap is significant in CNN due to the
diversity of the channel’s production effects. Those semantic representations from
mid-level cue clusters benefit the boundary classification results.

With VC3, we transform 201-dimensional raw visual features into 60-dimensional
semantic representations. To show the effectiveness of this approach, we com-
pare that with the feature reduction via Linear Discriminative Analysis (LDA),
which usually refers to a discriminative feature transform that is optimal when
the data within each class is Gaussian [12]. LDA features (ABC-LDA-60) per-
form almost the same with VC3 in ABC and even better than those raw visual
features, but not in CNN videos. It is understandable because diversity of CNN
breaks the Gaussian assumption of LDA.

Comparing with the K-means1 approach (ABC/CNN-KMS-60), which clus-
ters features considering only Euclidean distance in the feature space, the VC3 dis-
criminative features (ABC/CNN-VC3-60) perform better in both channels. The
reason is that VC3 clustering takes into account the auxiliary (target) label
rather than by feature similarity only, which is what K-means is restricted to.

Even with the same cluster number, the cluster MI I(C;Y ) through VC3 is
larger than that through K-means; e.g., I(C;Y ) is 0.0212 for VC3 and 0.0193 for
K-means in ABC, and 0.0108 and 0.0084 respectively in CNN. The difference
between K-means and VC3 MI in CNN videos is more significant than that
in ABC videos. It might explain why CNN VC3 has more performance gain

1 For fair comparison, “soft” membership probability of Eq. 6 is used to derive features
towards those K-means clusters and significantly outperforms the common “hard”
membership.
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Fig. 2. Relation of preserved MI and AP of top N visual clusters; (a) normalized AP
vs. MI of the top N selected visual cue clusters in ABC. (b) AP vs. MI in CNN.

over the K-means approach. In ABC, since positive data mostly form compact
clusters in the feature space (e.g., boundaries are highly correlated with anchors,
etc.), the VC3 does not differ a lot from other approaches.

4.4 Feature Selection

In feature selection among those induced visual cue clusters, the accumulated
MI between the top N visual cue clusters (x-axis),

∑N
i=1 I(ci), and detection AP,

are shown in Fig. 2. The MI curves and classification performance (AP) are all
normalized by dividing the corresponding values with all (60) cue clusters. The
results show that preserved MI of the selected cue clusters is a good indicator
of the classification performance. It also allows us to determine the required
number of clusters by applying a lower threshold to the cumulative MI. As seen
in Fig. 2(b), CNN videos need more cue clusters to reach the same AP.

4.5 VC3 vs. Prior Work

Evaluated on the same CNN validation set, the VC3 approach described in this
paper, with automatically induced visual features only, has AP=0.697. When
augmented with speech prosody features, the performance improves to 0.805
AP and outperforms our previous work [10], which fuses detectors of anchors,
commercials, and prosody-related features through SVM (AP=0.740) on the
same data set. More discussions regarding multi-modality fusion and their per-
formance breakdowns in different (visual) story types can be seen in [7].

5 Conclusion and Future Work

We have proposed an information-theoretic VC3 framework, based on the In-
formation Bottleneck principle, to associate continuous high-dimensional visual



features with discrete target labels. We utilize VC3 to provide new representation
for discriminative classification, feature selection, and prune “non-informative”
visual feature clusters. The proposed techniques are general and effective, achiev-
ing close to the best performance in TRECVID 2004 story segmentation. Most
importantly, the framework avoids the manual procedures to select features and
greatly reduces the amount of annotation in the training data.

Some extensions of VC3 to induce audio cue clusters, support multi-modal
news tracking and search are under investigation. Other theoretic properties
such as automatic bandwidth selection for KDE and performance optimization
are also being studied.
Acknowledgments

We thank Dan Ellis and Lyndon Kennedy of Columbia University for useful
discussions and V. France of [12] for his kind support of LDA implementation.
This material is based upon work funded in whole by the U.S. Government.
Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
U.S. Government.
References

1. Chaisorn, L., Chua, T.S., , Koh, C.K., Zhao, Y., Xu, H., Feng, H., Tian, Q.: A
two-level multi-modal approach for story segmentation of large news video corpus.
In: TRECVID Workshop, Washington DC (2003)

2. Amir, A., Berg, M., Chang, S.F., Iyengar, G., Lin, C.Y., Natsev, A., Neti, C.,
Nock, H., Naphade, M., Hsu, W., Smith, J.R., Tseng, B., Wu, Y., Zhang, D.: IBM
research trecvid 2003 video retrieval system. In: TRECVID 2003 Workshop. (2003)

3. Kohonen, T.: Self-Organizing Maps. third edn. Springer, Berlin (2001)
4. Slonim, N., Friedman, N., Tishby, N.: Unsupervised document classification using

sequential information maximization. In: 25th ACM intermational Conference on
Research and Development of Information Retireval. (2002)

5. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Neural Infor-
mation Processing Systems (NIPS). (1999)

6. Gordon, S., Greenspan, H., Goldberger, J.: Applying the information bottleneck
principle to unsupervised clustering of discrete and continuous image representa-
tions. In: International Conference on Computer Vision. (2003)

7. Hsu, W., Kennedy, L., Chang, S.F., Franz, M., Smith, J.: Columbia-IBM news
video story segmentation in trecvid 2004. (Technical Report ADVENT #207-
2005-3)

8. Scott, D.W.: Multivariate Density Estimation : Theory, Practice, and Visualiza-
tion. Wiley-Interscience (1992)

9. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
10. Hsu, W., Chang, S.F.: Generative, discriminative, and ensemble learning on multi-

modal perceptual fusion toward news video story segmentation. In: IEEE Interna-
tional Conference on Multimedia and Expo (ICME), Taipei, Taiwan (2004)

11. Hsu, W., Chang, S.F., Huang, C.W., Kennedy, L., Lin, C.Y., Iyengar, G.: Discovery
and fusion of salient multi-modal features towards news story segmentation. In:
IS&T/SPIE Electronic Imaging, San Jose, CA (2004)

12. France, V., Hlavac, V.: Statistical pattern recognition toolbox for matlab. Technical
report, Czech Technical University (2004)


