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ABSTRACT
We develop a framework for the automatic discovery of query
classes for query-class-dependent search models in multimodal re-
trieval. The framework automatically discovers useful query classes
by clustering queries in a training set according to the performance
of various unimodal search methods, yielding classes of queries
which have similar fusion strategies for the combination of uni-
modal components for multimodal search. We further combine
these performance features with the semantic features of the queries
during clustering in order to make discovered classes meaningful.
The inclusion of the semantic space also makes it possible to choose
the correct class for new, unseen queries, which have unknown
performance space features. We evaluate the system against the
TRECVID 2004 automatic video search task and find that the au-
tomatically discovered query classes give an improvement of 18%
in MAP over hand-defined query classes used in previous works.
We also find that some hand-defined query classes, such as “Named
Person” and “Sports” do, indeed, have similarities in search method
performance and are useful for query-class-dependent multimodal
search, while other hand-defined classes, such as “Named Object”
and “General Object” do not have consistent search method per-
formance and should be split apart or replaced with other classes.
The proposed framework is general and can be applied to any new
domain without expert domain knowledge.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models

General Terms
Algorithms, Performance, Experimentation

Keywords
Video Search, Multimodal Fusion, Query-Class-Dependent
Models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011 ...$5.00.

Find shots of one or more people going up or down some visible steps or stairs.Text Query

Example Video Shots Example Images

Figure 1: An example multimodal query for a video database,
including text, example video shots, and images.

1. INTRODUCTION
In multimodal search applications, we are dealing with

large sets of documents which contain information and cues
in a number of different modalities. On the Web, we can
think of the documents as being individual pages on the
web, which are composed of information from several differ-
ent modalities, such as the text they contain, the structures
(such as titles, sections, and metadata) associated with that
text, as well as the count and quality of other pages linking
to them. In personal image collections, we can think of the
documents as the low-level visual qualities of the images as
well as metadata (such as keywords, dates, and sizes) asso-
ciated with them. And in video databases, we can think of
shots or segments of video as the documents, which are com-
posed of information from a number of different modalities,
such as low-level visual content of the images in the video
stream, the qualities of the audio stream, and the transcript
of the words being spoken (captured via automatic speech
recognition (ASR) or closed captions).

In each of these situations in multimodal search, we are
tasked with finding the most relevant documents in the in-
dex according to some query which is itself multimodal. In
particular, in the case of multimodal search over a video
database, we may want to issue a query with a set of key-
words and a visual example (such as a shot or an image). An
example of such a query is shown in Figure 1. A straight-
forward strategy for finding relevant shots for this document
might be to issue two unimodal queries. The first would be
a text search over the ASR transcript of the videos and
the second would be a content-based, query-by-example im-
age search over the images contained in the video stream.
We would then need to come up with a fusion strategy for
merging the results from unimodal searches into a multi-
modal ranking of relevance. We would quickly discover that
there are limitations to fusing the unimodal searches using



a query-independent model, where the same fusion strat-
egy is used for every query in order to optimize the aver-
age performance. The best fusion strategy for each given
query is not necessarily the best fusion strategy for other
queries and in certain cases the text search may be domi-
nant while the image search only degrades the results (or
vice versa). So, we would then benefit from developing a
model wherein we choose the fusion strategy individually
for each query to optimize the performance for that query
alone: a query-dependent model. Of course, it’s not feasible
to know the proper fusion strategy for every possible query
in advance and training for particular queries is counter to
the untrained nature of the search task. To address this
need, recent work has led to the development of query-class-
dependent models, which classify queries into one of several
classes. Search strategies are then tuned to optimize aver-
age performance for queries within the same class. So, each
query within the same class uses the same strategy, but dif-
ferent classes of queries may have different strategies.

Query-class-dependent modeling can give significant im-
provement over query-independent modeling, but there is
still the unanswered fundamental question of how, exactly,
to define the classes of queries. In previous work [15, 3],
the classes used have been human-defined, typically by ex-
amining some set of queries and identifying trends of se-
mantic similarity that seem to be present. The classes dis-
covered by these methods range from “Named Persons” to
“General Objects” to “Financial” to “Sports.” The results
have confirmed the general benefits of query-class-dependent
modeling over query-independent modeling, but they have
not shown whether the hand-defined query classes are truly
meaningful or optimal. It is unclear if they provide classes
which have queries with similar optimal search strategies.

If the end goal of query-class-dependent models is to find
query-classes wherein the optimal search fusion strategies
for the queries within the class is consistent, then it seems
that the definitions of query classes should have the con-
straint that each of the queries within a class has similar
performances in the various unimodal search methods. To
address this constraint, we propose a data-driven method
for the discovery of query classes, in which we rely on a
set of example queries with labeled ground truth relevance.
We discover query classes by clustering in a “Performance
Space,” which is defined by the performance of the query in
various unimodal searches, as well as a “Semantic Space,”
which is defined by the semantic content of the query. Once
query classes are discovered, fusion strategies for each class
are found and unseen queries can be mapped in semantic
space to the class with the best fusion strategy.

We implement the model for the TRECVID 2004 video
search task and find that we can increase performance from a
MAP of 0.0605 (using hand-defined query classes) to a MAP
of 0.0711 (using automatically discovered performance-based
query classes). The results confirm the usefulness of query-
class-dependent models and show that performance-based
query classes outperform hand-defined query classes. The
results also suggest that some hand-defined classes, such as
“Named Person” and “Sports,” do have consistency in per-
formance, while other hand-defined classes, such as “Named
Object” and “General” should either be split apart into sub-
classes or removed altogether and replaced with some other
class, such as “Named Location,” “Vehicles,” or “Animals.”

The unique contribution of this work is a framework for

automatically discovering query classes which have consis-
tent performance across various unimodal search methods
and, thus, consistent search method fusion strategies. The
method is the first approach to use a performance-based
strategy to automatically discover query classes. By includ-
ing the semantic space, the framework can handle unseen
queries, with no known performance features, and map them
to performance-based classes. The framework can be de-
ployed over any new task with little expert knowledge and
can alleviate the errors in class selection caused by human
factors. We have uncovered query classes which have not
been considered in previous work and can motivate future
research in video search.

In Section 2, we will discuss previous and our proposed
framework. Our experiments will be discussed in Section
3. In Sections 4 and 5, we will discuss the results of the
experiments and the conclusions that we can draw.

2. QUERY CLASS DISCOVERY
Having seen the limitations of query-independent fusion

in multimodal search, some recent efforts in the TRECVID
video search task, have implemented query-class-dependent
models and have seen significant improvements.

A group from Carnegie Mellon (CMU) [15] defined five
classes by hand: “Named Persons” “Named Object,” “Gen-
eral Object,” “Scene,” and “Sports.”

Another group from the National University of Singapore
(NUS) [3] also developed a query-class-dependent model.
Their model had six hand-defined classes: “Person,” “Sports,”
“Finance,” “Weather,” “Disaster,” and “General.”

In both cases, fusion strategies are determined for each
class (either by learning over a training set, or hand-tuning).
The test queries could be automatically mapped to classes
using some light natural language processing on the text of
the query (since the classes of queries tend to have similar
linguistic properties). The findings both confirm that the
use of these query classes in a query-class-dependent model
provides significant improvement over a query-independent
approach. The work from both groups gives good reason
to believe that there exists some way to classify queries
where intra-class queries have very similar fusion strategies,
so much so that the query-class-dependent model can ap-
proximate the performance of a query-dependent model.

There is an open question, however, of how to optimally
choose these query classes. Inspection of the query classes
provided by CMU and NUS shows that there is a significant
human factor to the classes discovered. Only two classes,
“Named Person” and “Sports,” are shared between the two
sets. Some classes, such as “Finance” and “Weather” from
NUS, are not representative of the types of queries typically
used: there are virtually no such queries in the TRECVID
search task. And some classes, such as the “General” class
from NUS, are too broad: approximately half of all TRECVID
queries fall into this category. And finally, the classes given
by NUS and CMU seem to be chosen mostly by the semantic
similarity between the queries they contain. The end goal
should be the discovery of classes that contain queries that
are best served by similar unimodal fusion strategies, but
the semantics-based methods employed by previous efforts
do not guarantee that this will be the case.

2.1 Performance Space
In our work, we propose a framework for automatically



P1

P2

.Q1
.Q2

.Q3 .Q4

.Q5

.Q6

.Q7
.Q8.Q9

S1

S2

.Q1

.Q2

.Q3

.Q4

.Q5

.Q6

.Q7

.Q8 .Q9

P1

P2

.Q1
.Q2

.Q3 .Q4

.Q5

.Q6

.Q7
.Q8.Q9

S1

S2

.Q1

.Q2

.Q3

.Q4

.Q5

.Q6

.Q7

.Q8 .Q9

Performance Space Semantic Space Performance Space Semantic Space

P1

P2

.Q1
.Q2

.Q3 .Q4

.Q5

.Q6

.Q7
.Q8.Q9

S1

S2

.Q1

.Q2

.Q3

.Q4

.Q5

.Q6

.Q7

.Q8 .Q9

Performance Space Semantic Space

(a) Clustering in 
Performance Space

(b) Clustering in 
Semantic  Space

(c) Clustering in
Joint Performance/Semantic Space

Figure 2: Conceptual view of the mapping of queries and clusters into performance, semantic, and joint performance/semantic spaces.
Performance space (P1,P2) is defined in terms of the performance of two example unimodal search methods. Semantic space (S1,S2) is
defined in terms of some features which can be extracted from queries in the absence of performance information. The Queries (Q) are
shown mapped to their respective locations in each space. Clusters found in the various spaces are shown in white and gray boxes.

discovering classes of queries which have consistent perfor-
mance in various unimodal searches and are thus more likely
to have consistent intra-class fusion strategies. To achieve
this class-consistency in performance, we discover the query
classes by forming clusters of queries in Performance Space,
which is defined for each query by the performance of vari-
ous unimodal search methods on that query. Namely, each
query, Q, is represented by the performance of all unimodal
search methods, P = {P1, ..., PN}, where Pi is the per-
formance measure (e.g. average precision) of the search
method i in answering query Q against some training cor-
pus with ground truth. Queries near each other in perfor-
mance space will have similar performances in the various
unimodal search methods, while queries far away from each
other will have very different performances. For example,
“Named Person” queries tend to have high performance in
text searches and low performance in content-based image
searches and could be discovered as a useful query class us-
ing this method. On the other hand, “General” queries have
highly variant performance across all unimodal search meth-
ods and would most likely not be discovered as a useful query
class using this method. In comparison to hand-defined
query classes, such as those defined by NUS and CMU, the
query classes discovered by clustering in performance space
should have more consistent within-class fusion strategies,
be more representative of the query classes needed for the
task, and less susceptible to errors induced by human fac-
tors. The method can then also be deployed in new domains
without requiring experts to define new classes of queries.

2.2 Joint Performance/Semantic Space
In later experiments, we will find that while performance

space clustering can discover classes of queries which can
improve the performance of query-class-dependent models,
the amount of improvement is limited by our ability to se-
lect the correct query class for each new query. New queries
coming into a system do not have any known ground truth
relevance information and it’s impossible to predict the lo-
cation of the query in performance space. We therefore need
to introduce a space to describe incoming queries.

Typically, the only information available at query time
(in the TRECVID task in particular) is a natural language
textual statement of the query and some example images.
We can therefore describe queries in terms of a Seman-
tic Space, which can be composed of the characteristics of
the query such as the occurrence of named entities, parts
of speech, and senses of words in the text. Namely, each
query, Q is represented by a semantic description vector,
S = {S1, ..., SN}, where Sj are the linguistic features ex-

tracted from Q. In fact, we can think of the hand-defined
queries from previous work as being defined in this semantic
space, without knowledge of the performance space.

The semantic information about the queries can be lever-
aged in a number of ways. A first attempt might be to dis-
cover query classes by clustering in performance space and
then attempt to learn a mapping between the performance
space clusters and the semantic space. A more useful solu-
tion might be to temper the performance space clustering
with constraints for semantic similarity as well as perfor-
mance similarity during clustering. This can be achieved
by forming a Joint Performance/Semantic Space. The joint
performance/semantic space is simply composed of the com-
bination of the unimodal search method performances (the
performance space) with the query term features (the se-
mantic space). The distances in the performance and se-
mantic spaces can be measured using different metrics and
can be combined through weighted summation to arrive at
the joint performance/semantic space.

Figure 2 conceptually shows the positioning of queries and
discovered clusters in semantic, performance, and joint pe-
formance/semantic spaces. We see that queries are mapped
differently in performance and semantic spaces. Discovering
query classes through clustering in performance space alone
can cause the classes to be ill-formed in semantic space,
making it difficult to map new queries to the correct class.
Defining query classes through semantic space alone (like
in hand-defined schemes) can lead to clusters which are ill-
formed in performance space, causing difficulties when try-
ing to choose the best fusion strategy for each class. Dis-
covering the query classes through clustering in joint perfor-
mance/semantic space can lead to classes with consistency
in both performance and semantic space, allowing for clear
choice of fusion strategy and easy mapping of new queries.

2.3 System Architecture
Figure 3 shows an overview of the system architecture for

our framework. The system consists of two major compo-
nents, one for training and another for testing.

During training, we rely on a collection of queries with
ground truth relevance labels. We use any number of uni-
modal search methods, run them against the queries, and
evaluate the results against the ground truth to determine
the performance space for each query. We then run some
light natural language processing analysis on the queries
to extract their semantic space features. The joint perfor-
mance/semantic space is then used in clustering to discover
the query classes. Optimal unimodal fusion strategies are
then learned for each class of queries. The discovered query
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Figure 3: Overview of framework for query class discovery by
clustering in joint performance/semantic space (in the “Training”
phase) and the application of the discovered clusters to a query-
class-dependent model (in the “Testing” phase).

classes (along with their semantic-space characteristics) and
the optimal fusion strategy for each class are then passed
along to the testing component.

During testing, we take new queries, which have unknown
ground truth and apply the query classes and fusion strate-
gies learned in training to score the relevance of video shots
in the test database. Each new query is processed to extract
its location in semantic space, which is then used to select
the proper class. The unimodal search methods are run, the
results are fused according to the rules for the given class,
and the combined multimodal result is returned.

3. COMPONENTS AND EXPERIMENTS
We conduct experiments to verify the utility and perfor-

mance of our query-class-dependent model and query class
discovery framework using the NIST TRECVID 2003/2004
corpus, which consists of more than 150 hours of news video
from a series of 30-minute broadcasts from ABC and CNN
collected throughout 1998. The corpus is divided into three
major sections: the development and test sets from the 2003
evaluation and the test set from the 2004 evaluation. A ref-
erence automatic shot segmentation (with over 100,000 shots
in total) is given along with the output from an automatic
speech recognition system [5].

We evaluate the system against the TRECVID 2004 au-
tomatic video search task. In this task, we are given a set of
23 multimodal queries containing textual natural language
statements of information need as well as example video
shots and static images showing samples of the desired type
of shot. Figure 1 is a real example query from the TRECVID
2004 search task. In the automatic video search task, the
system must parse this query without any interaction from
a human and rank shots in order of their relevance to the
query. To train the system we develop against the test data
from TRECVID 2003 using the 25 multimodal queries de-
fined from that year’s video search task.

To bolster our set of example queries, we define an ad-
ditional 143 queries with natural language text queries and
example shots. We define these queries by studying a log of
over 13,000 actual requests for footage from a video archive
at the BBC in 1998. We filter through the queries by hand
and choose only the queries which would be appropriate
for an archive of news footage such as the TRECVID 2003
search set. We also make an effort to choose queries in the
style of the TRECVID queries, which tend toward searches
for visual concepts in the video stream rather than news
topics specified by the speech of the reporter.

Once we have established the set of queries, we find visual
examples for each query by browsing the TRECVID 2003
development set to find example video shots for each query.
We then generate “pooled” ground truth relevance labels for
each of the queries by running some search methods for each
query against the set and evaluating only the top-ranked
results. Shots which are human-evaluated to be relevant are
counted as relevant shots. All other shots (human-evaluated
to be irrelevant or not human-evaluated at all) are counted
to be irrelevant. NIST uses this method to generate the
ground truth when evaluating the search task. In total,
we evaluate approximately 3000 shots for each query. We
then drop queries which have no example images found in
the development set or fewer than 5 total relevant shots in
the search set. We are left with 89 new queries that we’ve
defined with pooled ground truth. We merge this set with
the 23 usable queries from TRECVID 2003, giving us a set
of 112 total queries, which we use to discover query classes
and train our query-class dependent model.

The validity of the learned classes is certainly sensitive to
the types of queries found in the training set. To be sure that
the training queries are representative of the testing queries,
we use a very similar method to NIST for determining worth-
while queries (browsing the BBC log). The fact that the
queries come from a real-world application also ensures that
the classes learned are, indeed, useful for real-world video
search. If, in other deployments of the framework, we were
to discover that the query-class-dependent modeling was not
outperforming the query-independent model, we could back
off to the query-independent model, or re-tune the system
to accommodate the types of queries that it is seeing.

3.1 Search Methods
The query class discovery framework relies on a set of uni-

modal search methods which we use to define the semantic
space. In principal, these component search methods can be
any reasonable ranking of document relevancy with respect
to some aspect of the query. They need not be unimodal and
could even be composed of various combinations of simpler
search methods. In this work, we keep the search methods
as fundamental as possible. This is an initial investigation
and we are limited in the number of methods that we can
reasonably use (we have only 112 queries to cluster and must
keep the dimensionality of the performance space small).

We include six search methods in our performance space:
four are variants on text search against the ASR transcript,
one is a content-based image retrieval method comparing
query images against keyframes of shots from within the
search set, and the last is a specialized named person search
method, which incorporates text search information as well
as time distribution and face detection information. All have
been shown to be useful for searching news video [15, 2, 3].
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3.1.1 Text Retrieval
In text retrieval, we conduct text searches against the

ASR transcript of the broadcasts using key words extracted
from the natural language text queries. The text associ-
ated with each shot is the entire text of the story in which
it is contained. A “story” is defined as a segment of the
news broadcast with a coherent news focus and at least two
independent, declarative clauses. It has been shown that
stories are good segments for semantic associations between
words and visual concepts [2]. For training, we use ground
truth story boundaries as provided by the LDC. For test-
ing, we use automatically-detected story boundaries. We
compare the retrieval performance achieved using these au-
tomatic boundaries with the retrieval performance found us-
ing ground truth story boundaries. We notice only a small
decrease in performance. So, automatic story segmentation
is imperfect, but still usable for retrieval purposes.

The text is then stemmed using Porter’s algorithm [10]
and stop words are removed. Retrieval is done using the
OKAPI BM-25 formula [12] with key words automatically
extracted from the natural language text queries. The man-
ner in which the key terms are extracted from the text
queries is the main point of difference between the four text
search methods used. The query keyword extraction process
is summarized below and in Figure 4. The keywords, ex-
tracted using the various methods for a few example queries,
are shown in Table 1. We see that various queries have vary-
ing qualities of keywords found by each method, which has
a direct impact on the performance of the various methods
for search and indicates a need for a query-class-dependent
model for properly choosing when to use each method.

3.1.1.1 Simple OKAPI.
In simple OKAPI retrieval, we just use keywords which we

automatically extract from the text query to search against
the ASR text associated with the videos. The text query
is analyzed with a part-of-speech tagger [8]. Standard stop
words are removed. Nouns are taken to be the query key-
words. If there are no nouns in the query, then we back
off to the main verb [3, 15]. The list of keywords is then
issued as a query against the ASR index using the OKAPI
formula. This simple keyword extraction scheme works well
for queries which have well-pointed keywords already in the
text query, such as queries for named entities.

3.1.1.2 Pseudo-Relevance Feedback.
In pseudo-relevance feedback, we operate under the as-

sumption that the top-returned documents from a text search
are mostly relevant and we can then just take the most fre-
quent terms in those top documents and feed those terms
back in to another search. This approach can be useful for
identifying additional keywords for general object queries
where some of the words in the original query can return
some relevant documents, which contain clues on additional
related words to search to give better results [3].

We begin by issuing the same query we used in simple
OKAPI retrieval. We then analyze the top M returned doc-
uments to find the top N most frequent terms that appear
in those documents. The discovered terms are then added
to the query and search is repeated. M and N are chosen by
an exhaustive search for the single combination that yields
the best retrieval results on the training set in terms of mean
average precision (MAP), which is defined in Section 4.

3.1.1.3 Query Expansion.
In query expansion, we look to add additional terms to

the query which are related to the desired search term and
give improved precision and recall. The strategy for query
expansion involves using the simple OKAPI query against
some knowledge resources to discover related terms. Query-
expansion is a long-standing technique for enhancing infor-
mation retrieval results which has been shown to be useful
in video retrieval [3], particularly in cases where the exact
terms contained in the query are lexically or semantically
(but not exactly) related to the terms contained in relevant
documents. We implement two query expansion systems
using two knowledge sources: WordNet [9] and Google.

We use WordNet for query expansion by extracting all
the hypernyms (general terms which also denote the spe-
cific term, for example, “vehicle” is a hypernym of “train”)
and synonyms (specific terms which denote other specific
terms, for example, “locomotive” is a synonym of “train”)
for each of the terms from our Simple OKAPI query from
the database. We add N terms to the query by construct-
ing lists of related terms for each query term and iterating
through each query term, adding the top related term to the
query. N is set through experiments to maximize retrieval
performance on the training set.

We use Google for query expansion by, again, issuing our
simple OKAPI query to Google. Google then returns a list
of ranked documents and we can examine the top M doc-
uments to discover the top N most frequent terms in those
documents. The documents are part-of-speech tagged and
only nouns are retained. Stop words are removed and only
the remaining terms are analyzed for frequency. Those terms
are then added to the expanded query. M and N are chosen
to maximize performance on the training set.

3.1.2 Content-Based Image Retrieval
In content-based image retrieval (CBIR), we use the ex-

ample shots and images from the query to find shots from
within the search set which have similar visual characteris-
tics in some low-level feature space. CBIR is a common ap-
proach for finding visually similar images in image databases.
It works particularly well when the images being sought in
the database have consistent visual features, compared with
each other and the query image, which are distinct from
other images in the database and can be very useful for ad-



Original Query Simple OKAPI PRFB WordNet Google

Find shots of Osama bin
Laden.

osama bin laden osama bin laden
afgahnistan taliban

osama bin laden
container bank

osama bin laden
usama fbi wanted

Find shots of pills. pills pills viagra pfizer pills lozenge tab dose pills prescription drug
Find shots with a
locomotive (and attached
railroad cars if any)
approaching the viewer.

locomotive
railroad car viewer

locomotive railroad
car viewer germany
crash wreckage

locomotive railroad
car viewer engine
railway vehicle track
machine spectator

locomotive railroad
car viewer steam
engine power place
locomotion

Table 1: Keywords automatically extracted from various queries using part-of-speech tagging (simple OKAPI), pseudo-relevance feedback
(PRFB), query expansion via WordNet and Google.

dressing some of the queries in video search tasks. Shots
in the search set and the query are represented by single
keyframes from the center of the shot. Each still image is
then represented in LAB color space and segmented into a
5x5 grid. The features representing each image are the first
three moments of the distribution in each channel in each
grid. Each query shot is then matched against each shot in
the search set using the Euclidean distance. The score for
each shot in the search set is then just the minimum distance
between the shot and any one of the query images.

3.1.3 Person-X Retrieval
In previous works in the TRECVID search task, it has

been shown that the retrieval of named persons has been the
most important source of performance for a system, and so
it has been common practice to build search methods specif-
ically geared toward retrieval of named persons. Person-X
search leverages text searches for the person’s name along
with knowledge of the distribution of the time delay between
the appearance of a person’s name in the ASR and the ac-
tual appearance of their face in the video stream. Detection
of anchors and faces are also incorporated. The score for
Person-X retrieval is then given as

PX = λPT + (1 − λ)(αPt + βPf + (1 − α − β)Pa) (1)

where Pf is the probability of a face detected in the shot, Pa

is the probability of the absence of an anchor detected in the
shot, PT is the probability of a text match existing between
the person’s name and the text in the ASR transcript, and
Pt is the probability of the shot being relevant, given its
time distance from the nearest appearance of the person’s
name in the ASR text. λ, α, and β are weighting factors,
where λ and (α + β) are constrained to be between 0 and 1.
The probability distribution for Pt, as well as the weighting
factors, λ, α, and β, are learned over a training set. PX is
the final combined Person-X score.

Previous work has also included specific-person face de-
tection, where example shots of faces are provided by a user
or mined from the Web and eigenfaces is employed to rate
the appearance of a specific person’s face. At this time we
are only providing baseline measurements so we do not fully
implement the specific face detection component.

3.2 Query Clustering
With the pool of training queries and the set of search

methods, we set out to automatically discover meaningful
query classes. The approach we take is to compute pairwise
distances between each of the training queries, measured in
performance and semantic spaces, and apply a clustering
algorithm to discover the classes.

3.2.1 Performance Space
The performance space for each query is represented as a

vector of performances in the six search methods defined in
Section 3.1. Each of the search methods is run for each of
the queries. The performance is measured in terms of non-
interpolated average precision at 1000 returned shots, a met-
ric used by NIST in the TRECVID evaluations, which ap-
proximates the area underneath the Precision-Recall curve.
The various search methods used are predisposed to hav-
ing different performances: text search is usually high and
content-based image retrieval is usually low. To avoid hav-
ing one performance dimension dominate the clustering pro-
cess, we normalize the results from the various search en-
gines to have similar dynamic ranges by subtracting the
mean from each dimension and dividing by the variance.
The performance vector for each query is then L1-normalized,
which makes the performance metric in each dimension a
measure of the relative usefulness of each search method for
each query, rather than a measure of absolute performance.
Experimentation shows that these normalization steps lead
to better performance. Euclidean distances in performance
space are then calculated pairwise between all queries.

3.2.2 Semantic Space
In our experiments, we will see that while performance-

space clustering alone has the potential to improve per-
formance, it is hindered by our inability to map incoming
queries into the correct performance space clusters. To ad-
dress this issue, we need to constrain the clusters to be con-
sistent in the semantic space, which we can measure at query
time without need for explicit performance space knowledge.
We develop two methods for measuring distances in the se-
mantic space. The first method, Query Term Features, cal-
culates features based on a light natural language processing
of the text query. The second method, WordNet Semantic
Distance, uses WordNet to estimate a measure of semantic
similarity between the terms in two queries.

With query term features, we calculate a 5-dimensional
representation of each query based on counts of nouns, verbs,
and named entities appearing within the text query. We run
a part-of-speech tagger as well as a named entity tagger [1]
against each text query and count the noun phrases, verb
phrases, named persons, named locations, and named or-
ganizations contained within each query, leaving out query
stop words, such as “find” and “shot.” Differences in dy-
namic range between dimensions are normalized to have
unit variance (without shifting the distribution mean). This
normalization step is shown to improve results in the query-
class-dependent model. Distances between query term fea-
tures are calculated pairwise between all queries using cosine



distance, which is simply 1 - the cosine similarity:

cosine distance = (1 − cos θ) = (1 − q · q′

‖q‖‖q′‖ ) (2)

where q and q′ are the vectors of two queries in query term
feature space and cosine distance is the pairwise distance
between them. q and q′ have zero cosine distance if the
proportional distributions among dimensions are equal.

For WordNet semantic distance, we use the semantic sim-
ilarity metric defined by Resnick [11], which fuses semantic
similarity in WordNet with probabilistic corpus-based se-
mantic similarity. The similarity between two terms can be
determined via corpus-based techniques by counting cooc-
currences for the pairs of words in some corpus. This ap-
proach leads to problems since incredibly large corpora are
needed to gather statistically meaningful counts for all possi-
ble word pairs. Resnick’s technique overcomes this challenge
by counting cooccurrences of hypernyms of words. So, in the
case where pairwise counts for two terms are unknown, we
can back off up the WordNet hierarchy and examine cooc-
currences of hypernyms of terms. Specifically, the Resnick
similarity between two terms is the information content of
the lowest super-ordinate (lso, or lowest hypernym pair) for
the terms which can be counted from the corpus:

simResnick(t1, t2) = log P (lso(t1, t2)) (3)

where ti are the terms and P (lso(t1, t2)) is the probability
of observing the lowest super-ordinate of the two terms.

Since Resnick’s measure is a similarity, we use its inverse
to measure the WordNet semantic distance. We measure
the pairwise WordNet semantic distance for each individual
term in the queries against all other terms in the queries. We
can then measure the pairwise WordNet semantic distances
between queries with the average of the word-level distances.

3.2.3 Joint Performance/Semantic Space
To leverage the power of both the performance and seman-

tic spaces, we combine them into a joint space. The pairwise
distances between queries in joint performance/semantic space
can easily be calculated as a weighted sum of the pairwise
distances in each of the performance and semantic spaces:

D = αDP + (1 − α)(λDQT + (1 − λ)DWN ) (4)

where D is the joint performance/semantic distance matrix,
and DP , DQT , and DWN are the distance matrices in per-
formance space, query term space, and WordNet, respec-
tively. α and λ are weights which are either set to 0, 0.5, or
1. In other words, we generate a number of different joint
performance/semantic distance matrices in which particular
dimensions are either entirely on, entirely off, or evenly av-
eraged. Any weighting can be used, but for simplicity, we
only explore these few cases.

3.2.4 Clustering
Given our pairwise distance matrices between queries, we

can cluster the queries using any number of clustering al-
gorithms (from K-means, to Normalized Cuts, to Hierarchi-
cal Clustering). We avoid normalized cuts since the clus-
ters discovered by normalized cuts are not necessarily of the
form that we would like to find. Namely, the clusters can
have highly irregular shapes, and since we are looking for
compact clusters with consistent performance across vari-
ous search methods, the Normalized Cut method may hurt

more than it helps. K-means and Hierarchical Clustering
are both well-suited for finding the sorts of tight clusters
that we’re looking for. We choose Hierarchical Clustering
over K-means, since Hierarchical Clustering gives us a bet-
ter method for choosing the number of clusters. Varying
the number of clusters in K-means can lead to wildly differ-
ent clusters, while varying the number of clusters in Hierar-
chical Clustering leads only to splitting or merging various
clusters. The Hierarchical Clustering is performed by form-
ing a linkage tree by iteratively joining queries with their
nearest neighboring queries (or clusters of queries). We can
form clusters from the linkage tree by taking a horizontal
cut across the linkage tree, adjusting the height of the cut in
order to produce a particular number of subtrees. Each sub-
tree forms a cluster consisting of all the leaf nodes which are
children of that subtree. We choose the number of clusters
by trying all numbers of clusters and picking the number
which maximizes retrieval performance (in terms of mean
average precision) on a held-out validation set.

3.3 Search Method Fusion
After query classes are discovered, we need to find optimal

fusion strategies for combining the various search methods
in each class. For this initial study, we use linear weighting
of the scores from each of the unimodal search methods:

Score(c)M =
X

i

λi(c)Scorei (5)

where Scorei is the score of each individual search engine, λi

is the weight for the individual search engine, and Score(c)M

is the combined multimodal score. The weights, λi, are
conditioned on c, the class of the query.

The weights, λi are found through a full grid search of all
possible combinations, where each weight is quantized to 11
values between 0 and 1 (0, 0.1, 0.2, etc) and it is constrained
that all weights sum to one. The combination of weights for
each query class which gives the best performance for that
class in the training set is retained and used in the test
application. The scores, Scorei, can be estimated from the
raw scores, Scoreri (the outputs from each unimodal search
method) using rank-based normalization.

For rank-based normalization, we essentially ignore the
raw scores for each shot given by each of the search meth-
ods and only evaluate based on the position of each shot
in the ranked list of scores [15]. This eliminates the need
to scale disparate scoring metrics and helps smooth large
quantizations that happen when using story-based grouping
of shots, like we do with our text search. (With story text
search, all of the shots in a story get the same raw score and
the difference in scores between stories may be large, mak-
ing it difficult to gain anything from content-based image
search. Rank does not allow shots to have the same score
and smoothes out the large gaps between stories). The rank-
normalized score is calculated as Scoreij = 1−Rij/N , where
Rij is the location of the shot j in the ranked list returned
from search method i. N is the total number of shots.

3.4 Query Classification
At query time in an application situation, we need to prop-

erly choose the best class for each incoming query and em-
ploy the optimal fusion strategy for that query. With these
incoming queries, we have no advance knowledge of search
engine performance and we only have the semantic space



Method Baseline Classification
O SD SVM

Query-
Independent

Text 0.0595 - -
Multimodal 0.0595 - -

Hand-defined
Classes

CMU 0.0605 - -
NUS 0.0598 - -

Automatically
Discovered
Classes

P+Q+WN 0.0748 0.0673 0.0359
P+Q 0.0749 0.0711 0.0478
P+WN 0.0745 0.0645 0.0421
P 0.0769 0.0172 0.0320
Q+WN 0.0609 0.0598 0.0465
Q 0.0615 0.0602 0.0533
WN 0.0599 0.0590 0.0544

Table 2: Summary of performance (in Mean Average Precision)
on the TRECVID 2004 search test set using various query-class-
dependent models. Baselines are query-independent models us-
ing text-only and multimodal searches. Automatically discovered
classes are shown with performance in three classification scenar-
ios: Oracle (another baseline: the best class is known ahead of
time, denoted by “O”), Shortest Distance (“SD”), and Support
Vector Machine (“SVM”). Classes are automatically discovered in
variants of joint performance/semantic space, in the presence or
absence of the three subspaces: P (performance space), Q (query
term space), and WN (WordNet space).

coordinates of each query to aide us in our decision. In this
work, we evaluate two methods to make this decision: short-
est distance in semantic space and a support vector machine
(SVM) using the semantic space kernel.

3.4.1 Shortest Distance
Using shortest distance in semantic space is straight-forward

and quite powerful in our case, since the classes we find are
constrained to form reasonable clusters in semantic space.
To measure the distance between an incoming query and a
class of queries, we take the average distance in semantic
space between the query and each of the queries within the
class. We then choose the class of the query to be the class
with the shortest distance in semantic space.

3.4.2 SVM
A potentially powerful method for classification is the sup-

port vector machine [14]. SVMs learn optimal hyperplanes
for binary decisions in some high-dimensional space given
only a kernel matrix for that space. Traditionally, kernels
such as linear, polynomial, and radial basis functions have
been used as SVM kernels. Recent research, however, has
shown that any kernel matrix can be used in SVMs, as long
as the matrix is positive semi-definite and represents a plau-
sible distance between examples [6, 7]. We can use our se-
mantic space distance matrix, given by the combination of
the distances in query terms space and WordNet, and simply
plug it into an SVM. Since SVMs are binary discriminators,
and our application requires a multiclass classifier, we need
to extend the SVM to a multiclass tool [13], which can be
done using error-correcting output codes [4]. In our analy-
sis, we find that the SVM does not perform as well as simply
using the shortest distance. This is most likely due to the
small size of our training set (only 112 examples).

4. ANALYSIS OF RESULTS
We perform the query class discovery over our training set

of queries and apply the learned clusters and fusion strate-

gies to the TRECVID 2004 search task. The results, ex-
pressed as Mean Average Precisions (“MAP,” or the mean
of the average precisions for each of the 23 queries in the
evaluation set), are summarized in Table 2. The results
confirm that query-class-dependent models improve upon
query-indepdent models and that classes discovered by clus-
tering in joint performance/semantic space can improve upon
classes defined by hand. The results also show that the
choice of space for query clustering has significant impact
on our ability to map to the correct class for test queries.
The performance is discussed in more detail in Section 4.1.

Analysis of the classes discovered by clustering in joint
performance/semantic space confirms that some of the query
classes that have been defined by hand in previous efforts,
such as “Named Person” and “Sports” are, indeed, useful
classes, while other classes, such as “Named Object,” can
be split into subclasses and other classes, which have not
been used before may be helpful. The qualities of the classes
discovered are discussed in more detail in Section 4.2.

We have experimented with number of clusters. In these
analyses, we only discuss the best case, which uses eight.

4.1 Performance
We use two query-independent fusion strategies as base-

lines: text-only (using only simple OKAPI search) and query-
independent multimodal fusion (“Text” (MAP: .0595) and
“Multimodal” (MAP: .0595) in Table 2, respectively). We
find that query-independent multimodal fusion cannot out-
perform text-only queries, which confirms the need for query-
class-dependent models to fully leverage the power of content-
based image searches and textual query expansion.

We then test our fusion strategies against the hand-defined
classes from the prior work of CMU and NUS (marked “CMU”
(MAP: .0605) and “NUS” (MAP: .0605)) in Table 2. We
learn optimal fusion strategies for each of query class in our
training set and apply them in the test case. Both groups
present rule-based algorithms, which can classify the incom-
ing queries nearly perfectly, so we assume errorless classi-
fication. We see that these query-class-dependent models
give some improvement over query-independent models.

We then apply our query class discovery framework over
the training set to discover query classes. We experiment
with several variations on the joint performance/semantic
space for clustering queries and also with several methods for
classifying incoming queries. The joint performance/semantic
space is formed using all possible combinations of the per-
formance space, “P,” the query term space, “Q,” and the
WordNet space, “WN.” For each space, we also experiment
with different classification methods for assigning classes to
incoming queries. The “O” classification method is the “Or-
acle” method, which is not a real classification method at
all, but a baseline method in which we explore the limits of
the discovered classes by assuming that we can automati-
cally pick the best query class for each incoming query. The
“SD” (Shortest Distance) and “SVM” (Support Vector Ma-
chine) classification methods are real classifiers, which were
discussed in Section 3.4

We see that using the performance space to conduct query
class discovery provides the best potential for overall perfor-
mance, as evidenced by the “P” method with Oracle classifi-
cation (MAP: 0.769). We see, however, that it is impossible
to use real classifiers to recover the proper class for incom-
ing queries, unless we incorporate the semantic space into



our query class discovery framework: the classes discovered
in joint performance/semantic space have only slightly de-
graded potential for performance and can be better recov-
ered at query time, with a maximum MAP of .0711. Clus-
tering in semantic-space alone gives performance similar to
the hand-defined clusters found by CMU and NUS, with
MAPs ranging from .0590 to .0602, which makes sense since
those clusters were essentially found by human inspection of
queries, looking for common semantic groupings.

The quality of the classification schemes is difficult to eval-
uate empirically: it’s unclear what the “true” class mem-
bership of each incoming query is. Various classes can still
have similar fusion strategies, so it’s unclear what penal-
ties a “misclassification” of an incoming query will actually
have on the end performance. We can, however, look at the
best-case performance from classification using the Oracle
baseline. We see that in joint performance/semantic clus-
ters, like “P+Q,” we are able to map to classes which are
close to the best-performing class by using the shortest dis-
tance classification method. In performance-only clustering,
“P,” we are unable to map to useful classes in any meaning-
ful way at query time. This is due to the lack of cohesion in
semantic space found in the pure performance clusters.

In almost all cases, the SVM classification fails to map to
useful classes, which is most likely due to the small num-
ber of training examples available. Interestingly, the SVM
classification provides significant improvement over short-
est distance in performance-only clustering (MAP: .0320
vs. MAP: .0172). This is probably since the divisions be-
tween classes in semantic space in this clustering approach
is highly non-linear (since there is no constraint on semantic
space similarity in performance space clustering) and SVMs
are particularly adept at learning such complicated decision
boundaries. This also gives hope that, given enough training
examples, we may be able to exploit the power of SVMs for
classification, uncovering some nonlinear mapping between
the performance space and the semantic space, which would
allow us to discover clusters in pure performance space, leav-
ing the decision on semantic mappings up to the classifier.

Figure 5 shows the mean average precision of each of the
methods discussed on the TRECVID 2004 video search task
using shortest distance classification (in red) against all offi-
cial TRECVID 2004 runs (as scored by NIST). We see that
while we are able to show improvement by automatically se-
lecting the query classes, we are still inhibited by the quality
and number of our component search methods as well as our
search method fusion strategy. In this work, we focus on the
evaluation of the effects of automatic query class discovery,
and we leave the tasks of exploring better search methods
as well as better fusion strategies to future work.

4.2 Discovered Classes
Figure 6 shows some sample queries from the classes au-

tomatically discovered by clustering in joint performance/
semantic space. The queries are segmented into clusters and
each cluster shows only a few example queries. (There are
112 training queries in total). The blocks to the left of each
query show the performance space mappings for the query.
Each block gives the relative performance for the query in
each independent search method. The bright blocks indicate
high performance, while the dark blocks indicate low perfor-
mance. The performances are normalized for each query, so
the performances indicate which methods are most helpful
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Figure 5: Performance (MAP) of our methods (red) and all offi-
cial TRECVID 2004 automatic search task submissions (purple).

and least helpful on a per-query basis. The figure shows the
six classes (out of the total eight), which have interesting
interpretations and consistency in performance space. The
remaining two classes have no easy interpretation and are
quite similar to the “General” class described by NUS.

The first cluster contains virtually all of the Named Per-
sons in the training set. The queries all also seem to have
consistently high performance across the various search meth-
ods, except for content-based image retrieval. Simple OKAPI
and person-X searches are most helpful, pseudo-relevance
feedback and query expansion seem to slightly degrade per-
formance, and content-based image retrieval does not help
at all. This cluster seems to confirm the usefulness of the
“Named Person” classes defined both by CMU and NUS,
since these classes are tightly-clustered in performance space.

The second and third clusters both contain many Named
Objects. There is a distinction between the two classes,
however, in performance space. In the second cluster, text-
based searches seem to be the most useful, while content-
based image retrieval doesn’t help at all. In the third clus-
ter, the case seems to be quite the opposite: content-based
image retrieval is much more accurate than text searches.
Examining the semantics of the queries seems to show that
the queries in the third cluster are more graphical (such as
the Dow Jones financial screen or the Siemens logo), while
the queries in the second cluster seem to be more or less
specific scenes or locations (such as the Sphinx or the New
York City skyline). These two clusters seem to confirm the
need for a “Named Object” class, as suggested by CMU, but
they also seem to indicate that this class could be split into
two subclasses (Named Object and Named Location)
to give more cohesive classes in performance space.

The fourth cluster presents an interesting group of queries
with various meanings. Most interestingly, many of the
queries related to Sports and Vehicles end up in this class.
In performance space, these queries all seem to perform sim-
ilarly in all search methods, which leads to the conclusion
that for these queries, all search methods (including content-
based image retrieval) are equally important. This cluster
seems to support the validity of the “Sports” classes iden-
tified by both CMU and NUS, but also indicates that this
class could be augmented to include other types of queries,
such as “vehicle” queries, since they have similar profiles in
performance space and benefit from similar fusion strategies.

The fifth cluster contains mostly Animals (along with
some other queries) and gets the most performance from
query expansion via Google. No such animal cluster has
been identified by previous work, but it seems that queries
for animals have a compact class cluster in performance
space and would be well-served by similar fusion strategies.

The final cluster contains a number of queries which ben-
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2

XIGWPS Query

3

4

Find shots of Jerry Seinfeld.
Find shots of Alan Greenspan.
Find shots of Senator John McCain.

Find shots of the New York City skyline.
Find shots of the earth from outer space.
Find shots of the Sphinx.

Find shots of the Siemens logo.
Find shots of the front of the White House...
Find shots of a graphic of Dow Jones Industrial...

Find shots of people skiing.
Find shots of ice hockey games.
Find shots from behind the pitcher in a baseball...

Find shots of heavy traffic.
Find shots of one or more roads with lots of vehicles.
Find shots of one or more tanks.

Find shots of space shuttles.
Find shots of trains.

Performance Scale

Low High

5
Find shots of aiport terminal interiors.
Find shots of birds.
Find shots of one or more cats.

#

6
Find shots of a person diving into some water.
Find shots with aerial views containing ... buildings...
Find shots of an airplane taking off.

Cluster Discovery Method: 
Joint Performance/Semantic 
Space (P+Q+WN)

Find shots of underwater seascapes.
Find shots of buildings destroyed by missiles.
Find shots of people using cell phones.

Figure 6: Sample queries from the clusters discovered in joint
performance/semantic space. Class IDs are shown along the
left side, with relative performance in each dimension in perfor-
mance space to the right (“S” = Simple OKAPI, “P” = Pseudo-
Relevance Feedback, “W” = Query Expansion via WordNet, “G”
= Query expansion via Google, “I” = Content-based Image Re-
trieval, and “X” = Person-X), followed by the text of the query.

efit more from content-based image retrieval than any
other search method. The queries contained within this clus-
ter seem to be mostly scenes, but it is difficult to assign
an understandable semantic label to this cluster. There is,
however, some semantic relationship which can be recovered
through semantic space classification, which demonstrates
the power of clustering in joint performance/semantic space,
particularly its ability to discover classes of queries which are
useful for query-class-dependent retrieval.

5. CONCLUSIONS
We have developed a framework for automatically discov-

ering query-class-dependent models for multimodal search
by defining query classes through a clustering process ac-
cording to search method performance and semantic fea-
tures. We apply this framework to the TRECVID 2004
video search task. We confirm that query-class-dependent
models can outperform query-independent models and find
that automatically discovered performance-based classes can
outperform the hand-defined query classes from previous
works. The query classes that we discover indicate that
some hand-defined classes from previous works are useful
for query-class-dependent modeling, while others should be
split into subclasses or replaced with different classes.

The unique contribution of this work is a system which
can automatically discover classes of queries having consis-
tent performance in various search methods, and therefore,
similar optimal strategies for fusing those search methods.
The discovered classes can also be constrained to have con-
sistent semantic characteristics, allowing us to map incom-
ing queries, with no performance information, into appropri-
ate performance-based classes. The process can be used to
develop a query-class-dependent model for any new domain
without requiring expert knowledge, while also alleviating
errors induced by human factors in query class definition.

While we have shown that automatic discovery of query
classes improves over hand-defined query classes, we have
also seen that much improvement can be gained through
choosing better component search methods and employing
better search fusion strategies. In future work, we will ex-
plore ways to discover the best search methods and fusion
strategies, through similar performance-based metrics.
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