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ABSTRACT 

 
In this paper, we investigate the prospect of using bicoherence 
features for blind image splicing detection. Image splicing is an 
essential operation for digital photomontaging, which in turn is a 
technique for creating image forgery. We examine the properties 
of bicoherence features on a data set, which contains image 
blocks of diverse image properties. We then demonstrate the 
limitation of the baseline bicoherence features for image splicing 
detection. Our investigation has led to two suggestions for 
improving the performance of the bicoherence features, i.e., 
estimating the bicoherence features of the authentic counterpart 
and incorporating features that characterize the variance of the 
feature performance. The features identified through the 
suggestions are evaluated using Support Vector Machine (SVM) 
classification and shown to be encouraging. 

 
1. INTRODUCTION 

 
Photomontage refers to a paste-up produced by sticking together 
photographic images. In olden days, creating a good composite 
photograph required sophisticated skills of darkroom masking or 
multiple exposures of a photograph negative. In today’s digital 
age, however, the creation of photomontage is made simple by 
the cut-and-paste tools of the popular image processing software 
such as Photoshop. With such an ease of creating good digital 
photomontages, we could no longer take image authenticity for 
granted especially when it comes to legal photographic evidence 
[1] and electronic financial documents. Therefore, we need a 
reliable and objective way to examine image authenticity. 

Lack of internal consistency, such as inconsistencies in 
object perspective, in an image is sometimes a telltale sign of 
photomontage [1]. However, unless the inconsistencies are 
obvious, this technique can be subjective. Furthermore, forgers 
can always take heed of any possible internal inconsistencies.  

Although image acquisition device with digital watermarking 
features could be a boon for image authentication, presently 
there still is not a fully secured authentication watermarking 
algorithm, which can defy all forms of hacking, and the 
hardware system has to secure from unauthorized watermark 
embedding. Equally important are the issues such as the need for 
both the watermark embedder and detector to use a common 
algorithm and the consequence of digital watermarks degrading 
image quality.  

On the premise that human speech signal is highly Gaussian 
in nature [2], a passive approach was proposed [3] to detect the 
high level of non-gaussianity in spliced human speech using 
bicoherence features. Unlike human speech signal, the premise 
of high guassianity does not hold for image signal. It was shown 

[4] that bispectrum and trispectrum of natural images have a 
concentration of high values in regions where frequency 
components are aligned in orientation, due to image features of 
zero or one intrinsic dimensionality such as uniform planes or 
straight edges. As images originally have high value in higher 
order spectrum, detecting image splicing based on the same 
principle of increased non-gaussianity would be a very low 
signal-to-noise problem, not to mention the possible complex 
interaction between splicing and the non-linear image features. 

Recently, a new system for detecting image manipulation 
based on a statistical model for ‘natural’ images in the wavelet 
domain is reported [5]. Image splicing is one kind of image 
tampering the system takes on; however, no further detail about 
the technical approach is provided in the article. 

Image splicing is defined as a simple joining of image 
regions. We currently do not address the combined effects of 
image splicing and other post-processing operations. Creation of 
digital photomontage always involves image splicing although 
users could apply post-processing such as airbrush style edge 
softening, which can potentially be detected by other techniques 
[5]. In fact, photomontages with merely image splicing, as in 
Figure 1, can look deceivingly authentic and each of them only 
took a professional graphic designer 10-15 minutes to produce. 

 

 

  

 

 
Figure 1: Spliced images that look authentic subjectively 

In this paper, we pursue the prospect of grayscale image 
splicing detection using bicoherence features. We first examine 
the properties of the proposed bicoherence features [3] in 
relation to image splicing and demonstrate the insufficiency of 
the features. We then propose two new methods on improving 
the performance of the bicoherence features for image splicing 
detection. Lastly, we evaluate the methods using SVM 
classification experiments over a diverse data set of 1845 image 
blocks. More details about this work are included in [6]. 

 
2. BICOHERENCE 

 
Bicoherence is a normalized bispectrum, i.e., the third order 
correlation of three harmonically related Fourier frequencies of a 
signal, X(ω) [7]: 
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When the harmonically related frequencies and their phase are 
of the same type of relation, i.e., when there exists (ω1, φ1), (ω2, 
φ2) and (ω1+ω2, φ1+φ2) for X(ω), b(ω1,ω2) will have a high 
magnitude value and we call such phenomena quadratic phase 
coupling (QPC). As such, the average bicoherence magnitude 
would increase as the amount of QPC grows. Besides that, 
bicoherence is insensitive to signal gaussianity and bispectrum is 
often used as a measure of signal non-gaussianity [8]. 

 
2.1. Bicoherence Features 
 
Motivated by the effectiveness of the bicoherence features used 
for human-speech splicing detection [3], similar features are 
extracted from a bicoherence with  

• Mean of magnitude: M = |Ω|–1∑Ω|b(ω1, ω2)| 
• Negative phase entropy: P=Σn p(Ψn)log p(Ψn) 

where  
Ω={(ω1, ω2)| ω1=(2πm1)/M, ω2=(2πm2)/M, m1, m2= 0,…,.M-1} 
p(Ψn)= |Ω|–1∑Ω 1(Φ(b(ω1, ω2))∈ Ψn) , 1(·)=indicator function 
Ψn={φ|-π+(2πn)/N≤φ< -π+2π(n+1)/N}, n=0,…, N-1 
2.2. Estimation of Bicoherence Features 
 
With limited data sample size, instead of computing 2-D 
bicoherence features from an image, 1-D bicoherence features 
can be computed from Nv vertical and Nh horizontal image slices 
of an image and then combined as follows: 
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In order to reduce the estimation variance, the 1-D bicoherence 
of an image slice is computed by averaging segment estimates: 
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We use segments of 64 samples in length with an overlap of 32 
samples with adjacent segments. For lesser frequency leakage 
and better frequency resolution, each segment of length 64 is 
multiplied with a Hanning window and then zero-padded from 
the end before computing 128-point DFT of the segment.  

In Fackrell et al. [9], it is suggested that N data segments 
should be used in the averaging procedure for estimating a N-
point DFT bispectrum of a stochastic signal. Overall, we use 768 
segments to generate features for a 128x128-pixel image block. 
 

3. IMAGE DATA SET 
 
Our data set [10] is collected with sample diversity in mind. It 
has 933 authentic and 912 spliced image blocks of size 128 x 
128 pixels. The image blocks are extracted from images in 
CalPhotos image set [11]. As the images are contributions from 
photographers, in our case, they can be considered as authentic 
i.e., not digital photomontages.  

The authentic category consists of image blocks of an 
entirely homogenous textured or smooth region and those having 

an object boundary separating two textured regions, two smooth 
regions, or a textured regions and a smooth region. The location 
and the orientation of the boundaries are random.  

The spliced category has the same subcategories as the 
authentic one. For the spliced subcategories with object 
boundaries, image blocks are obtained from images with spliced 
objects; hence, the splicing region interface coincides with an 
arbitrary-shape object boundary. Whereas for the spliced 
subcategories with an entirely homogenous texture or smooth 
region, image blocks are obtained from those in the 
corresponding authentic subcategories by copying a vertical or a 
horizontal strip of 20 pixels wide from one location to another 
location within a same image. 
 

4. PROPERTIES OF BICOHERENCE FEATURES 
 
We are interested in investigating the performance of 
bicoherence features in detecting spliced images on the three 
object interface types for which such performance varies over, 
i.e. smooth-smooth, textured-textured, and smooth-textured. 
Figure 2 shows the scatter plot of the bicoherence magnitude 
feature (fM) of the authentic and spliced image blocks with a 
particular object interface type. The plots also show how well 
the edge percentage (y-axis) captures the characteristics of 
different interface types. The edge pixels are obtained using 
Canny edge detector. The edge percentage is computed by 
counting the edge pixels within each block. As the plots for 
bicoherence phase feature (fP) are qualitatively similar, they are 
omitted due to space constraints.  

 

 
Figure 2: Bicoherence magnitude feature for different object 
interface types 

 
Figure 3: Distribution of the bicoherence magnitude feature, 
fM, (left) and the phase feature, fP (right)  

We observe that the performance of the bicoherence feature 
in distinguishing spliced images varies for different object 



interface types, with textured-textured object interface type 
being the worst case. Figure 3 shows the distribution of the 
features for the authentic and spliced image categories. We can 
observe that the distributions of the two image block categories 
are greatly overlapped, although there are noticeable differences 
in the peak locations and the heavy tails. Hence, we would 
expect poor classification between the two categories if the 
features were to be used directly. 
 
5. METHODS FOR IMPROVING THE PERFORMANCE 

OF BICOHERENCE FEATURES 
 
Our investigation on the properties of bicoherence features for 
images leads to two methods for augmenting the performance of 
the bicoherence features in detecting image splicing: 
1. By estimating the bicoherence features of authentic images. 
2. By incorporating image features that capture the image 

characteristics on which the performance of the bicoherence 
features varies, e.g., edge pixel percentage feature (fE) 
capture the characteristics of different object interface. 

  
5.1. Estimating Authentic Counterpart Bicoherence Features 
 
Assume that for every spliced image, there is a corresponding 
authentic counterpart, which is similar to the spliced image 
except that it is authentic. The rationale of the approach, 
formulated as below, is that if the bicoherence features of the 
authentic counterpart can be estimated well, the elevation in the 
bicoherence features due to splicing could be more detectable. 
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where  ΛI is a set of splicing-invariant features while ΛS is a  set 
of features induced by splicing, s is a splicing indicator and ε is 
the estimation error. In this formulation, g1 corresponds to an 
estimate of the bicoherence feature of the authentic counterpart, 
denoted as fAuthentic and g2 corresponds to the elevation of the 
bicoherence feature induced by splicing, denoted as ∆fSplicing. 
With ∆fSplicing, splicing would be more detectable after the 
significant interference from the splicing-invariant component, 
g1, is removed. ∆fSplicing can be estimated with fBic– fAuthentic, 
which we call prediction discrepancy. The fAuthentic estimation 
performance would be determined by two factors, i.e., how 
much we capture the splicing-invariant features and how well we 
map the splicing-invariant features to the bicoherence features.  

A direct way to arrive at a good estimator is through an 
approximation of the authentic counterpart obtained by 
depriving an image of the splicing effect. As a means of 
‘cleaning’ an image of its splicing effect, we have chosen the 
texture decomposition method based on functional minimization 
[12], which has a good edge preserving property, for we have 
observed the sensitivity of the bicoherence features to edges.  

 
5.2. Texture Decomposition with Total Variation 
Minimization and a Model of Oscillating Function 
 
In functional representation, an image, f defined in Ω⊂R2, can 
be decomposed into two functions, u and v, within a total 
variation minimization framework with a formulation [12]:  
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where the u component, a structure component of the image, is 
modeled as a function of bounded variation while the v 
component, representing the fine texture or noise component of 
the image, is modeled as an oscillation function. ||·||* is the norm 
of the oscillating function space and λ is a weight parameter for 
trading off variation regularization and image fidelity. 

The minimization problem can be reduced to a set of partial 
differential equations known as Euler-Lagrange equations and 
solved numerically with finite difference technique. As the 
structure component could contain arbitrarily high frequencies, 
conventional image decomposition by filtering could not attain 
such desired results. In this case, the structure component will 
serve as an approximation for the authentic counterpart, hence, 
the estimator for  fMAuthentic and  fPAuthentic are respectively 

structureAuthentic fMMf =ˆ  and 
structureAuthentic fPPf =ˆ . 

 
Figure 4: Examples of texture decomposition 

For the linear prediction discrepancies between the bicoherence 
features of an image and those of its authentic counterpart, i.e., 

AuthenticMffMfM ˆα−=∆  and AuthenticPffPfP ˆβ−=∆ , the parameters α 
and β, without being assumed to be unity, are learnt by Fisher 
Linear Discriminant Analysis in the 2-D space (fM, AuthenticMf̂ ) 
and (fP, AuthenticPf̂ ) respectively, to obtain the subspace projection 
where the between-class variance is maximized relative to the 
within-class variance, for the authentic and spliced categories. 

We evaluate effectiveness of the estimator, as shown in 
Figure 5 using the prediction discrepancy for the magnitude and 
phase features. Our objective is to show that the new features 
(∆fM, ∆fP) have a stronger discrimination power between 
authentic and spliced compared to the original features (fM, fP). 
This objective is partially supported by observing the difference 
between Figure 5 and Figure 3 (In Figure 5, two distributions are 
more separable) 

 
Figure 5: Distribution of prediction discrepancy 

6. SVM CLASSIFICATION EXPERIMENTS 
 
We herein evaluate the effectiveness of the features, which are 
derived from the proposed method, i.e., prediction discrepancy 
and edge percentage using our data set. SVM classifications with 
RBF kernel are performed with parameters chosen for ensuring 
no overfitting as verified by 10-fold cross-validation. Three 
statistics obtained from 100 runs of classification are used to 
evaluate the performance of feature sets: 
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where S and A represents Spliced and Authentic respectively and 
Ni

A|B denotes the number of samples B detected as A in the ith 
run. The results of the experiment are shown below: 

Feature Set Maccuracy Mprecision Mrecall 
Orig  0.6259 0.6354 0.5921 
Delta 0.6876 (+6.2 %) 0.6685 0.7477 
Orig+Delta 0.7028 (+7.7 %) 0.6725 0.7925 
Orig+Edge 0.7005 (+7.5 %) 0.6780 0.7667 
Delta+Edge 0.6885 (+6.3 %) 0.6431 0.8517 
Orig+Delta+Edge 0.7148 (+8.9 %) 0.6814 0.8098 
Note: Statistical t-tests for classification results using feature set 
{fM, fP} against all other results are performed. The null 
hypothesis (i.e., the mean of the two results are the same) is 
rejected at a 0.05 significance level for all tests. 
 
Below are the observations from the classification results: 
1. Prediction discrepancy features alone obtain 6.2 % 

improvement in Maccuracy over the original bicoherence 
features.  

2. Edge percentage improves the performance of the 
bicoherence features by 7.5 % in Maccuracy. 

3. Prediction discrepancy and edge percentage are redundant 
with respect to each other. 

4. The best performance (last row) obtained by incorporating 
all the proposed features is 71 % in Maccuracy, which is 8.9 % 
better than the baseline method (first row). 

 
The results are encouraging as it shows the initial promise of 

the authentic counterpart estimation. The third observation may 
be an indication that the prediction discrepancy features are less 
affected by image texturedness. Hence, if the estimation of the 
authentic counterpart bicoherence features can be further 
improved, it may help in the classification of the toughest case 
where the object interface type is textured-textured. 

The block level detection results can be combined in 
different ways to make global decision about the authenticity of 
a whole image or its sub-regions. For example, Figure 6 
illustrates the idea of localizing the suspected splicing boundary. 

 
7. CONCLUSIONS 

 
In this paper, we have shown the difficulties of image splicing 
detection using bicoherence features, despite the technique being 
effective on human speech signals. We have also empirically 
shown how the performances of the bicoherence features 
depending on the different object interface types. Two methods 
are proposed for improving the capability of the bicoherence 
features in detecting image splicing. The first exploits the 
dependence of the bicoherence features on the image content 
such as edge pixel density and the second offsets the splicing-
invariant component from bicoherence and thereby obtains 

better discriminative features. Finally, we observe improvements 
in SVM classification after the derived features are incorporated.  

 

 

 

 
Figure 6: Spliced image blocks (marked with a red box) 

This is the first step of our effort in using bicoherence 
features for image splicing detection. We will next seek a model 
to get an insight on why bicoherence is sensitive to splicing, 
from which other effective features can be derived.  
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Feature Label Feature Name 
Orig magnitude and phase features { fM, fP } 
Delta Prediction discrepancy { ∆fM, ∆fP } 
Edge Edge percentage fE 


