
A MODEL FOR IMAGE SPLICING 
 

Tian-Tsong Ng and Shih-Fu Chang 
 

Department of Electrical Engineering, Columbia University, New York 
{ttng,sfchang}@ee.columbia.edu 

 
ABSTRACT 

 
The ease of creating image forgery using image-splicing 
techniques will soon make our naïve trust on image authenticity 
a thing of the past. In prior work, we observed the capability of 
the bicoherence magnitude and phase features for image splicing 
detection. To bridge the gap between empirical observations and 
theoretical justifications, in this paper, an image-splicing model 
based on the idea of bipolar signal perturbation is proposed and 
studied. A theoretical analysis of the model leads to propositions 
and predictions consistent with the empirical observations.  
 

1. INTRODUCTION 
 
Image splicing, herein defined as a cut-and-paste of image 
regions from one image onto the same or another image without 
post-processing, is the basic operation for creating a digital 
photomontage, i.e., a paste-up of digital photographic regions. 

Photomontage, with a root as old as the history of camera, is 
now a looming threat for our naïve trust on image authenticity. 
The advent of the modern digital technology has not only 
brought about the prevalent use of digital images in our daily 
activities but also the ease of creating image forgery using 
public accessible and user-friendly image processing tools such 
as Photoshop. Hence, the need for image authenticity assurance 
and detection of image forgery such as photomontage becomes 
increasingly acute as digital images take the role as news 
photographs, legal evidence and digital financial documents. 

Active image authentication approaches include digital 
watermark and digital signature. However, when the prior 
knowledge of an image is unavailable, passive approaches 
become important. Human experts could analyze an image for 
any potential scene-level inconsistencies [1], such as a 
misplaced shadow, with special attentions given to minor details 
which forgers are likely to overlook. We recently experimented 
with the use of the bicoherence features for detecting image 
splicing and evaluated their effectiveness by classification 
experiments using Support Vector Machine based on a data set 
consisting of authentic and spliced image blocks [2, 3]. Without 
incorporating the improvement methods, the baseline 
bicoherence magnitude and phase features achieved on average 
62% in authentication classification accuracy. This indicates the 
capability of the bicoherence features for image splicing 
detection. However, theoretical justification for the approach 
was missing. In our work, we consider an image as authentic as 
long as it is a direct output from an imaging device, even when 
the imaged object or scene is synthetic. 

In this paper, we propose a model for image splicing which 
provides an insight into our previous empirical findings. The 

model is intuitively meaningful and predicts a phase bias at 
±90o, which is also observed in [3]. Examples of ±90o phase bias 
for spliced images are shown in Figure 1. In the next section, we 
look at related prior work on audio splicing. After a brief 
introduction to bicoherence, the proposed image-splicing model 
is outlined and a theoretical analysis for the response of the 
bicoherence magnitude and phase features to image splicing is 
performed based on the model. Finally, the theoretical findings 
are validated by empirical observations based on a data set. 
   

2. PRIOR WORK 
 
In [4], bicoherence magnitude and phase features are applied for 
detecting human speech splicing and the approach is justified 
with the following arguments: 
1. Human speech signal is originally weak in higher order 

correlation, reflecting on the low value of the bicoherence 
magnitude feature. 

2. A quadratic operation, by inducing a Quadratic Phase 
Coupling (QPC) phenomenon, increases the bicoherence 
feature values due to the quadratic harmonic relation and 
the 0o phase bias. A general non-linear operation, when 
expressed by a Taylor expansion, has a partial sum of low-
order terms resembling a quadratic operation.  
 

However, the arguments could not justify the use of bicoherence 
features for image splicing detection: 
1. Image signal may not be originally weak in higher order 

correlation as demonstrated in [5]. 
2. In [4], detection of a cascaded splicing and smoothing 

(using a Laplacian pyramid) operation on fractal signal and 
human speech signal is demonstrated. However, a splicing 
operation, if were to be considered a function, is potentially 
discontinuous and has no Taylor expansion. Thus, the 
aforementioned argument about QPC cannot be applied. 
Besides that, the effect on the bicoherence features due to 
splicing is still unknown. 

 
3. BICOHERENCE FEATURES 

Definition 1 (Bicoherence) The bicoherence of a signal x(t) 
with its Fourier transform being X(ω) is given by [6]: 
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Bicoherence is obtained by normalizing the bispectrum of the 
signal (numerator) with the Cauchy-Schwartz upper bound. 
Bispectrum refers to the Fourier transform of the third order 



moment of a signal. We employed the bicoherence magnitude 
and phase features for image splicing in [2]. 

Definition 2 (Bicoherence Phase Histogram) An N-bin 
bicoherence Phase histogram given by:                                    
p(Ψn) = (1/M2)∑Ω 1(Φ(b(ω1, ω2))∈ φ), 1(·) = indicator function 

where                 
Ω={(ω1, ω2)| ω1=(2πm1)/M, ω2=(2πm2)Mm, m1, m2= 0,…,.M-1} 
Ψn={φ|(2n-1) π/(2N+1)≤φ< (2n+1) π /(2N+1)}, n=–N,.. ,0,.. ,N 

 
Figure 1 Typical examples of bicoherence phase histogram 
from spliced images: (Left) Strong ±90o phase bias (Middle) 
near ±90o phase bias (Right) non ±90o phase bias 

Definition 3 (Bicoherence Magnitude Feature) The magnitude 
feature is the mean of the magnitude of the bicoherence:             
fM =(1/M2)∑Ω|b(ω1, ω2)| 

Definition 4 (Bicoherence Phase Feature) The phase feature 
which measures the non-uniformity or the bias of the 
bicoherence phase histogram: fP=Σn p(Ψn)log p(Ψn) 

Proposition 1 (Symmetry of Bicoherence Phase Histogram) 
For a real-valued signal, the N-bin bicoherence phase histogram 
is symmetrical: p(Ψn) = p(Ψ–n) for all n 

Proof The Fourier transform of a real-valued signal is conjugate 
symmetric, i.e., X(ω)= X*(-ω), hence, from Definition 1, its 
bicoherence is also conjugate symmetric, i.e., b(ω1, ω2)= b*(–ω1, 
–ω2). Therefore, its bicoherence phase histogram is symmetrical.  

 
4. SPLICNG MODEL 

 
Although image splicing is performed with 2-D regions, we 
detect the splicing through computing the bicoherence features 
of the vertical and horizontal 1-D slices of a spliced image [2]. 
In this paper, therefore, we propose a 1-D model for splicing, 
which is also applicable to the splicing of any 1-D signal. Here, 
we consider splicing a joining of signals without any post-
processing of the spliced signal.    

 
Figure 2 (Left) a jagged signal exhibits abrupt changes when 
compared to a smooth signal. (Right) the difference between 
the jagged and the smooth signals 

A composite signal, due to the splicing of two signal 
segments, is very likely to introduce a discontinuity or an abrupt 
change at the splicing point. The lack of smoothness can be 
thought of a departure from a smooth signal due to a 
perturbation of a bipolar signal (Figure 2), which is similar to 
Haar high pass basis. 

As almost every camera is equipped with an optical low pass 
filter and almost every scanner has a post-scanning low pass 
operation for avoiding aliasing effect which produces Moiré 
pattern, authentic images, being a direct output from image 
acquisition devices such as camera and scanner, could be 
modeled as a ‘smooth’ signal. With the idea of the authentic 
counterpart [2] (i.e., a possibly hypothetical but authentic image 
that resembles the spliced image in every respect except for 
those properties induced by splicing), we can model image 
splicing as a perturbation of the authentic counterpart with a 
bipolar signal.  

Definition 5 (Bipolar signal) A bipolar at location xo with the 
antipodal delta separated by ∆, and with k1 and k2 being of 
opposite sign, i.e., k1 k2<0, is represented as         
 d(x)=k1δ(x-xo)+k2 δ(x-xo-∆), δ(·) being a delta function 
and its Fourier Transform  is ωωω )(

21)( ∆+−− += oo xjjx ekekD  

4.1. Response of Bicoherence Phase Feature 
 
As the phase of a bicoherence is equal to the phase of numerator 
of the expression in Definition 1, therefore, it suffices to 
examine the numerator as far as the response of the bicoherence 
phase feature is concerned.  

Proposition 2 (Phase of  Bipolar Signal Bicoherence) 
Assuming k1 = –k2 = k, the phase of the bicoherence for a 
bipolar signal is concentrated at ±90o. 

Proof  When k1 = –k2 = k, the third-order moment of D(ω):   
D(ω1)D(ω2)D*(ω1+ω2)=2k3j[sin∆ω1+sin∆ω2–sin∆(ω1+ ω2)] (1)  
is an imaginary number. The expectation of an imaginary 
random number is still an imaginary number with a phase at 
±90o. 

It is interesting to observe that the phase bias at ±90o is not 
due to QPC which could in turn give rise to 0o phase bias. QPC 
is due to the existence of harmonics with the same frequency 
and phase relationship, e.g., when there exists harmonics at ω1, 
ω2 and ω1+ω2 for the Fourier transform of a signal S(ω), the 
phase of the harmonics are φ1, φ 2 and φ1+φ 2 respectively, 
hence, phase[S(ω1)S(ω2)] = phase[S(ω1+ω2)]. However, for the 
bipolar signal, the phase relationship is given by       
phase[D(ω1)D(ω2)] = phase[D(ω1+ω2)] ± π/2. 

On the other hand, when k1 = k and k2 = –k+ε<0, 
        D(ω1)D(ω2)D*(ω1+ω2) = ε(3k2-3kε+ε2)+ 
         kε(ε-k)[exp(j∆ω1)+ exp(–j∆ω2)+ exp(j∆(ω1+ω2)]+ 
         2k2(k-ε)j[sin∆ω1+sin∆ω2–sin∆(ω1+ ω2)]                        (2) 

Therefore, if ε is small relative to k, in equation (2), the last 
term becomes dominant and the phase remains concentrated 
around ±90o. In other words, if the magnitudes of the opposite 
poles of the bipolar are approximately equal, the ±90o phase 
concentration occurs.  

Before moving on to Proposition 3, please note that, in 
practice, bicoherence is computed by:  
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where the expectation terms are estimated by the average terms 
with a set of signal segments from the target 1-D signal [2]. 

When a signal s(x), is perturbed by a bipolar signal, d(x), the 
resulting perturbed signal and its Fourier transform is given by: 

sp(x)=s(x)+d(x) ↔ Sp(ω)=S(ω)+D(ω) 

Proposition 3 (Response of Bicoherence Phase Feature) 
Perturbation of a signal with a bipolar contributes to a phase 
bias at ±90o. The strength of the overall contribution is 
dependent on (1) the magnitude of the bipolar (2) the percentage 
of bipolar perturbed segments within the set of signal segments 
used for computing the bicoherence by averaging.  

Proof  For simplicity, assume that k1 = –k2 = k for the 
magnitude of the bipolar, the correlation of the Fourier transform 
of the perturbed signal is given by: 
         Sp(ω1)Sp(ω2)Sp

*(ω1+ω2) =  S(ω1)S(ω2)S*(ω1+ω2)+ 
        cross terms+2k3j[sin∆ω1+sin∆ω2–sin∆(ω1+ ω2)]          (3) 
where  
cross terms = kS(ω1) S*(ω1+ ω2) exp(-jxoω2)[1- exp(-j∆ω2)]+ 
    k S(ω2) S*(ω1+ ω2) exp(-jxoω1)[1- exp(-j∆ω1)]+k2 S*(ω1+ ω2) 
   exp(-jxo(ω1+ ω2)) [1- exp(-j∆ω1)] [1- exp(-j∆ω2)]+ 
   k S(ω1) S(ω2) exp(jxo(ω1+ ω2)) [1- exp(j∆(ω1+ ω2))]+   
   k2S(ω1) exp(jxoω1) [1- exp(-j∆ω2)] [1- exp(j∆(ω1+ ω2))]+  
   k2S(ω2) exp(jxoω2) [1- exp(-j∆ω1)] [1- exp(j∆(ω1+ ω2))] 
 
We can see that the imaginary term due to bipolar perturbation 
contribute consistently at every (ω1, ω2) to the imaginary 
component of equation (3). The strength of the contribution 
depends on k. The same argument is applicable to the case when 
k1 = k and k2 = –k+ ε<0 with ε being small relative to k, but the 
strength of the contribution is lessened. 

As numerator of bicoherence expression is estimated by an 
average of the third-order moment for the Fourier transform of a 
signal over a set of signal segments, the percentage of bipolar 
perturbed segment within the set affects the contribution to ±90o 
phase bias. In actual case, we estimate the bicoherence of a 1-D 
image slice of length 128 pixels with 3 overlapping segments of 
length 64 pixels [2, 3]. The overlap of segments ensures a larger 
extent of the perturbation effect, as a splicing point is likely to 
be captured by two adjacent segments with a probability of 0.5, 
assuming uniformly distributed splicing point. 
 
4.2. Response of Bicoherence Magnitude Feature 
 
When examining the response for the bicoherence magnitude 
feature, we need to consider the entire expression from 
Definition 1, including the normalization term.  

Proposition 4 (Response of Bicoherence Magnitude Feature) 
Perturbation of a signal with a bipolar signal contributes to an 
increase in the value of the bicoherence magnitude feature. The 
amount of the increase depends on (1) the magnitude of the 
bipolar relative to the mean of the magnitude of the original 
signal Fourier transform (2) the percentage of bipolar perturbed 
segments within the set of signal segments used for computing 
the bicoherence by averaging. 

Proof For simplicity, we analyze the perturbation with a bipolar 
having k1 = –k2 = k. Note that the sign of equation (1) at a 
particular (ω1, ω2) is determined by the separation (denoted by 
∆) and the orientation (denoted by the sign of k) of the poles of a 
bipolar signal. With the following assumptions on the bipolar 
across the ensemble of signal used for estimating bicoherence, 
D(ω1)D(ω2) would be equal to D(ω1+ω2) within a constant for a 
particular (ω1, ω2). 
• The orientation of the bipolars is the same. (This 

assumption is reasonable as the same bipolar can be 
captured by two different but overlapping windows.) 

• The pole separation for the bipolar is the same (This 
assumption is also valid because the bipolar introduced by 
splicing is compact at the splicing interface) 

• The magnitude of bipolar is the same.  
 
When D(ω1)D(ω2) = c(ω1,ω2)D(ω1+ω2) with c(ω1,ω2) being a 
constant for a particular (ω1,ω2), the magnitude of the 
bicoherence is 1 at every frequencies (ω1, ω2), as, in this case, 
the numerator of Definition 1 attains the Cauchy-Schwartz 
inequality upper bound. When a signal s(x) with Fourier 
transform S(ω) is perturbed by a bipolar, the magnitude of the 
bicoherence is given by: 
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where G(ω)=exp(-jxoω) [1- exp(-j∆ω)] 
From Markov inequality, the term |S(ω)/k|  in equation (4) is 

upper-bounded in probability by P(|S(ω)/k| ≥ ε) ≤ E[S(ω)]/(kε), 
for any all ε>0. Hence, for an energy signal, i.e., signal with 
finite energy such as normal image signal, limk→∞ P(|S(ω)/k| ≥ ε) 
= 0, for E[S(ω)] being finite. As a result, the magnitude of 
bicoherence |b(ω1, ω2)| in equation (4) satisfies: 
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With the above assumptions: limk→∞P(| |b(ω1, ω2)| –1 | ≥ ε) = 0 
Therefore, the more frequency triplets with a small E[S(ω)] 

relatively to k, the greater the contribution of the bipolar 
perturbation to an increase in the bicoherence magnitude feature.  

Similar to the bicoherence phase feature, the extent of bipolar 
perturbation in the ensemble of signal is another factor affecting 
the contribution of bipolar perturbation to an increase in 
bicoherence magnitude feature. 
 

5. VALIDATION BY EXPERIMENT 
 

5.1. Data Set Description 
 
Our data set (available at [7]) is collected with sample diversity 
in mind. It has 933 authentic and 912 spliced image blocks of 
size 128 x 128 pixels. The image blocks are extracted from 
images in CalPhotos image set [8]. As the images are 
contributions from photographers, we assume that they can be 
considered authentic i.e., not digital photomontages.  

The authentic category consists of image blocks of an 
entirely homogenous textured or smooth region and those having 
an object boundary separating two textured regions, two smooth 
regions, or a combination of a textured region and a smooth 



region. The location and the orientation of the boundaries are 
random. The spliced category has the same subcategories as the 
authentic one. For the spliced subcategories with object 
boundaries, image blocks are obtained from images with spliced 
objects; hence, the splicing region interface coincides with an 
arbitrary-shape object boundary. Whereas for the spliced 
subcategories with an entirely homogenous texture or smooth 
region, image blocks are obtained from those in the 
corresponding authentic subcategories by copying a vertical or a 
horizontal strip of 20 pixels wide from one location to another 
location within a same image. 
 
5.2. Validation for Bicoherence Features 
 
With the above-mentioned data set, by examining the difference 
of the mean of the phase histogram (Definition 2) for the 
authentic and spliced categories of our data set (Figure 3), a 
clear statistical difference of phase bias for the two categories at 
±90o is observed. This observation supports the theoretical 
prediction of the ±90o phase bias (Proposition 2) based on the 
proposed image-splicing model. Note that, from Proposition 1, it 
suffices to study the positive half of the bicoherence phase 
histogram (i.e. from 0o to 180o). Figure 1 shows two examples of  
±90o phase bias from spliced images. 

 
Figure 3 The mean of the authentic phase histogram minus 
the mean of the spliced phase histogram  

 
Figure 4 The histogram of the bicoherence features: (Left) 
phase feature (Right) magnitude feature 

In addition, the histogram for bicoherence magnitude and 
phase features (Figure 4) for the spliced category is observed to 
have a larger mean and a heavier tail compared to that of the 
authentic category. This validates the Proposition 3 and 4. 
 
5.2. 90o Phase Bias as Prediction Feature 
 
To evaluate the performance 90o phase bias as a feature for 
image splicing detection, we performed the same classification 
experiments as in [2] by replacing the negative phase entropy 
with the 90o phase bias, which is measured by the value of the 
bicoherence phase histogram at 90o. The results of detection 
accuracy over the same data set are comparable at about 70%. 
This indicates that the negative phase entropy, despite being a 

general measure of phase bias, has already captured the specific 
effect of 90o phase bias. The fact that the feature using the 
specific 90o phase bias fails to achieve noticeable improvement 
indicates the weakness of the phase bias effect, which is linked 
to the high estimation variance that commonly plagues the 
estimation of higher order statistics such as bicoherence. 
 

6. CONCLUSIONS 
 
We have proposed an image-splicing model based on the idea of 
bipolar perturbation of an authentic signal and performed a 
theoretical analysis for the response of the bicoherence 
magnitude and phase features to splicing based on the proposed 
model. The analysis leads to the final propositions that image 
splicing increases the value of the bicoherence magnitude and 
phase features and a prediction of ±90o phase bias, which both 
are shown to be consistent with the empirical observations based 
on our data set. 

The proposed model has founded the use of bicoherence 
magnitude and phase features for image splicing detection on a 
sound theoretical ground. Bicoherence could become more 
powerful for image splicing detection if such capability of 
bicoherence can be further isolated from the interference of 
other non-splicing factors, as demonstrated in [2]. We will study 
the image-splicing model further in hope that other useful image 
splicing detection features of bicoherence in particular or higher 
order statistics in general could be identified. 
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