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Abstract

As computer graphics (CG) is getting more photorealistic, for the purpose
of image authentication, it becomes increasingly important to construct a de-
tector for classifying photographic images (PIM) and photorealistic computer
graphics (PRCG). To this end, we propose that photographic images contain
natural-imaging quality (NIQ) and natural-scene quality (NSQ). NIQ is due
to the imaging process, while NSQ is due to the subtle physical light trans-
port in a real-world scene. We explicitly model NSQ of photographic images
using natural image statistics (NIS). NIS has been used as an image prior in
applications such as image compression and denoising. However, NIS has
not been comprehensively and systematically employed for classifying PIM
and PRCG. In this work, we study three types of NIS with different statistical
order, i.e., NIS derived from the power spectrum, wavelet transform and local
patch of images. The experiment shows that the classification is in line with
the statistical order of the NIS. The local patch NIS achieves a classification
accuracy of 83% which outperforms the features derived from modeling the
characteristics of computer graphics.

1 Introduction

Traditional photographs were considered faithful records of the state of a real-
world event, as its manipulation is not only technically challenging (e.g. requires



Figure 1: Examples of authentic images (top row) and photorealistic CG (bottom
row).

contriving multiple exposures of a film in a darkroom), traces of manipulations are
normally revealing. Unfortunately, today’s digital images, being just an array of
numbers, are susceptible to tampering. Even back in 1989, ten percent of all color
photographs published in the United States were digitally retouched or altered,
according to the Wall Street Journal estimate [1].

While compositing camera images is a popular means of creating image forgery,
a more versatile way is however through computer graphics (CG) technique, where
images of arbitrary scene composition and arbitrary viewpoints can be generated
as long as the 3D model of the scene and objects are available. Photorealism (a
visual fidelity close to that of real-world photographic images) has long been the
Holy Grail of computer graphics research and leads to CG techniques such as the
physics-based rendering, which simulates the physical light transport process, and
image-based rendering, which synthesizes images of novel viewpoints from a set
of images taken from other viewpoints. To feature the photorealism of the current
CG technology, Alias, one of the major 3D CG company, challenges viewers to
distinguish CG from photograph (http://www.fakeorfoto.com).

The main contributions of this work is that we develop an effective means for
distinguishing PRCG from PIM through a PIM model based on NIS. Specifically,
we study the NIS derived from the image power spectrum, the wavelet transform,
and the local image patches. The power spectrum and the local patch NIS have
not been used before for classifying PIM and PRCG. The experiment is conducted
using a dataset of images, where examples of them are shown in Fig. 1.

In this work, we consider PRCG detection as an important problem of the
passive-blind image authentication where an image is authenticated without us-
ing any prior information of the image. Being passive and blind, there is no need



for pre-extracting a digital signature from an image, nor pre-inserting a watermark
into an image.

In the following section we define the characteristics of authentic images and
explain why PRCG falls short of being authentic. In Sec. 3, we will describe the
prior work for PIM and CG classification and then provide a short survey on NIS.
In Sec. 4, we will detail on the NIS features being employed in this work. In Sec. 5,
we will describe our experimental dataset, followed by the classification results in
Sec. 6. In Sec. 7, we will discuss several interesting aspects of this work before
coming to the conclusions.

2 Definitions

2.1 Image Authenticity

A good definition of image authenticity should be conducive for deciding whether
an image is authentic. The definition may be different dependent on the availabil-
ity and the reliability of certain prior information of an image. In the extreme case
where the provenance information of an image (e.g., captured by what camera, by
who and through what process an image is produced) is known, image authentic-
ity should be evaluated based on the provenance information. When there is no
prior information is available, image authenticity should be evaluated based on the
intrinsic quality of authentic images.

We identify two intrinsic qualities of authentic images, which we call natural-
imaging quality (NIQ) and natural-scene quality (NSQ). NIQ captures the char-
acteristics of images due to the imaging acquisition process. For the case of a
digital camera, the image acquisition process consists of low-pass filtering, lens-
distortion, color filter array interpolation, white-balancing, quantization, and non-
linear transformation [2]. A PRCG may be highly photorealistic but it lacks NIQ
as it has not undergone a physical acquisition process. On the other hand, NSQ
captured the image characteristics due to the subtle physical interaction of the il-
lumination and objects in a real-world scene. NSQ includes the correct shadows,
shading, surface foreshortening, and inter-reflection, as well as realistic object tex-
ture. A manipulated image such as photomontage may have a reduced NSQ as it
may have a misplaced shadow. Although re-photographing could restore the NIQ
of the manipulated image, it cannot undo the lack of NSQ.

A PRCG may not have a perfect NSQ, due to the various simplification in a
CG rendering process. The elements of a high-quality PRCG are the soft shadows,
complex lighting, global illumination, realistic reflectance model, and realistic ge-
ometric model. The computational complexity and the technical challenges make
it difficult for a PRCG to have all the above-mentioned elements. The disparity of



NSQ between PIM and PRCG is the main theme of this work, where we character-
ize the NSQ of PIM using NIS.

2.2 Natural/Authentic/Photographic Images

In the NIS literature [3], natural images are generally defined as the photographic
images of scenes which human visual system is commonly exposed to (as opposed
to satellite, or microscopic images). In this work, we consider PIM to be of the
natural scene and hence PIM is equivalent to natural images. As a PIM satisfies
NIQ and NSQ, it be an authentic image. As we do not consider photomontage in

this work, the term “natural image”, ”authentic image” and “photographic image”
are deemed interchangeable.

3 Prior Work

3.1 Photographic Images vs. Computer Graphics (CG) Classification

CG is generally defined as any imagery generated by a computer, which includes
PRCG, 2D drawing, and cartoon. In [4], the problem of classifying the CG and
the photographic video key frames is considered, for the purpose of improving the
video key retrieval performance. In this case, the CG video key frames include also
those of cartoon and 2D drawing. The authors identified the CG main characteris-
tics as having few and simple color, patches of uniform color, strong black edges
and containing text. Features inspired by these CG characteristics are used for the
classification task and achieved CG detection rate of 82% and 94% respectively on
the TREC-2002 video corpus and the Internet images.

Farid and Lyu [5] has briefly described an experiment on classifying PIM
and PRCG using higher-order statistics wavelet features (originally employed for
steganographic message detection) which achieved a detection rate of 98.7% and
35.4% respectively for PIM and PRCG !. The higher-order statistics (HOS) wavelet
features are in fact a form of wavelet NIS.

3.2 Natural Image Statistics (NIS)

The main goal of the NIS studies is to observe, discover and explain the statistical
regularities in natural images [7]. The study of natural images through a statistical
approach, instead of a deterministic mathematical model, gains ground due to the
complexity of natural images. NIS, being a form of natural image model, has

'Our work is done before the publication of the further work by Lyu and Farid on PIM and PRCG
classification [6]



found application in texture synthesis, image compression, image classification
and image denoising.

In late 80’s, Field [8] discovered the power law for the power spectrum of
natural images, S( f,-). The power law can be expressed as Equ. 1 and when taking
the natural logarithm of Equ. 1 we obtain Equ. 2.

A
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log S(fr) =log A — alog f: (2)

where (f,)? = (f:)? + (f,)? is the radial spatial frequency of the 2D image power
spectrum Sap(fz, fy). Power law implies the scale-invariant/fractal/self-similar
property of natural images (which implies the non-existence of an absolute scale
for natural images) because a power spectrum which is scale-invariant satisfies
Equ. 3 and the only continuous solution to Equ. 3 is in the form of a power law
function as in Equ. 1.
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The exponent of the power law function for natural images, «, is empirically
found to be about the value of two. This empirical result implies that the power of
natural images is constant over the octave bands.

The power law of natural images has been widely accepted for an ensemble of
images. For a single image, the power law is also empirically found to be valid
but with a larger deviation from the ideal power law function as in Equ. 1 [3],
although some argues otherwise [9]. Besides that, the power law exponent o was
found to be different for different image types, such as images of a forest scene
and that of the man-made objects. In a recent study [10], the power law of CG
images is shown to be insensitive to image processing operations such as gamma
correction and lossy compression, as well as to the particularity of rendering, such
as with/without diffuse inter-reflection and hard/soft shadow. The insensitivity to
the image processing operations is a good news, but being unable to discriminate
the advanced photorealism effects is a bad news. At the same time, the authors [10]
also found that the power law is closely related to the geometric aspect of an image
(e.g., the distribution of edges). Although PRCG seems to follow the same power
law, in this work we are interested to find out how the power spectrum of PIM and
PRCQG are different through a detailed model which will be described in Sec. 4.1.2.

Another major discovery about natural image statistics is non-gaussianity of
natural images (i.e., there exists higher-order correlations of image pixels). A

S(Z) = KMS(fr) 3)



Figure 2: An example of image style translation; input natural image (left) output
van Gogh style image (right). Source: [15]

study [11] shows that there are interesting patterns in the kurtosis and the trispec-
trum (the fourth order moment spectra) of an ensemble of whitened images (i.e.,
second-order de-correlated), which contain only image phase information. Fur-
thermore, higher-order correlations between wavelet coefficients are also found
among adjacent scales, orientations and locations [12].

Some well-known works in NIS explore the joint probabilistic distributions of
pixels in local image patches. In [13], the scale-invariant statistics of 3x3 image
patches were studied by categorizing image patches according to a set of prototyp-
ical patterns with different complexity. Whereas in [14], the empirical distribution
of 3x3 normalized high-contrast image patches was studied in a eight-dimensional
Euclidean space and the probability mass was found concentrating around a two-
dimensional manifold. It is interesting to note that the empirical distribution cap-
tures the differences between camera (optical) images and range images, where
the differences is related to the image formation and sensor model. The reason
for studying only the high-contrast image patches is because the interesting im-
age features are richer in the high-contrast image regions. The choice of the local
patch NIS in our study is inspired by the recent successes of the patch-based image
model in various image processing task, including image style translation [15], im-
age segmentation [16] and image scene synthesis. In particular, the work of image
style translation [15] has demonstrated the effectiveness of the local image patch
in capturing the style of an image category, as shown in Fig. 2. In our work, we
can consider PIM and PRCG as two image categories with different styles.

4 NIS and CG Features

In this paper, we study the NIS from the natural image power spectrum (a second
order statistics) and the high dimensional probability distribution of local image



patches. We then compare the performance of the features extracted from these
NIS to those of the wavelet NIS [5] and the CG features [4]. Note that the power
spectrum NIS, the wavelet NIS, and the local image patch NIS have a different
statistical order. On the other hand, an image forgery detection technique should
be robust to the common image-processing operations such as scaling, compression
and so on, we therefore will also study the scale and the rotation invariant property
of the NIS features.

4.1 Power Law of Natural Image Power Spectrum

In [3], a detailed modeling of power spectrum is applied to luminance channel
image. We apply the modeling technique separately to each of the individual RGB
color channel, for which the power law also holds [17]. To compute the power
spectrum features on images of the same size, we first downsize all images such
that the smaller dimension of an image becomes 350 pixels and then estimate the
features using the central 350 350-pixel portion of the downsized images.

4.1.1 Estimation of Power Spectrum

To reduce frequency leakage, a single channel image I(x,y) of size NxN pixels
is windowed by a circular Kaiser-Bessel function w(z,y) and mean-subtracted
before computing its Discrete Fourier Transform (DFT) as in Equ. 4.

P f) = Y MO0 e pespomitefa us) @
(zy)
where
i=+v—-1
I, (moy /1 — 25 (22 +92)
w(x,y) = ( \/IO(:Q) ) : —g<fv,y§g
(=, y)w(z,y)
N T ()
and

> (w(z,y)® =1
()
Then, the power spectrum of the image is given by Equ. 5
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and the radial-frequency power spectrum is computed from Equ. 6.
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4.1.2 Modeling of Natural Image Power Spectrum

For a power spectrum that follows power law shown in Equ. 2, the plot of log S( f;)
versus log f, would be a straight line with a slope of —« and an intercept of log(A).
To compute the slope and the intercept, we perform a least square error linear fit
on the plot. To estimate the goodness of the linear fit, we compute the root-mean-
square (RMS) error of the fit. Besides that, the oriented log-contrast which was
shown to improve the power spectrum model [8] is also computed as in Equ. 7.

Clpnsa) = > log (S(fx, fy)) (7)
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We compute the orientated log-contrast on the eight orientation pie-slice of
45°. The power spectrum feature is naturally scale-invariant because it follow the
power law. However, the orientated log-contrast may not be rotation-invariant as
the power spectrum of natural images is known to be anisotropic in the sense that
dominant energy concentrates at the horizontal and vertical orientations.

4.2 Higher-Order Correlation of Wavelet Coefficients

NIS motivated by the higher-order correlation of the cross-subband wavelet coeffi-
cients is used in [5] for classification of PIM and PRCG. The wavelet NIS consists
of the mean, variance, skewness and kurtosis of the marginal wavelet coefficients
in each subband and the mean, variance, skewness and kurtosis of the linear predic-
tion error of the wavelet coefficients which captures the cross-subband correlations.

4.3 Local Image Patch Distribution

The analysis of 3x3 contrast-normalized image patch in [14] provides a mathe-
matical framework for the high-dimensional probability mass distribution (PMF)
of image patches. The paper reveals that the geometrical structure of the high-
contrast image regions (e.g., the edge region) captures the difference between im-
ages with different generative process. This inspires us to expand the modeling of



local image geometrical structure by capturing the 1D geometrical structure around
the high contrast region in the RGB color space, while reusing the same mathemat-
ical framework.

4.3.1 Analysis of 3x3 contrast-normalized patch distribution
The contrast of an image patch in a vector representation, & = [x1,...,x9]7, is

given by the D-norm in Equ. 8

1 = [ (i —x:)? )
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where ¢ ~ j represents the 4-connected neighborhood. Equ. 8 can be expressed in
matrix form as in Equ. 9.
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where the D matrix is given by Equ. 10.
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Before constructing the full distribution, 3 x 3 image patches are mean-subtracted
and contrast-normalized as in Equ. 11.
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This step projects the image patches to a 7-dimensional ellipsoid embedded in
a 9-dimensional Euclidean space, S” C R?, and the ellipsoid is represented as in
Equ. 12.
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The particular form of matrix D can be diagonalized and whitened by the 2-
dimensional Discrete Cosine Transform (DCT) basis. Ignoring the constant DCT
basis, the DCT basis matrix can be written as A = [ey,...,¢eg], where ¢;,i =
1,...,8are the DCT non-constant basis. Whitening of D matrix gives AT DA = I,
where [ is the identity matrix.

Hence, the transformation of 3 to v by ¥ = Av would project y to points onto
a 7-dimensional sphere in a 8-dimensional Euclidean space, ST C RS, as given by
Equ. 13.

8
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The distribution of the data points on S7 can be approximated by the histogram
binning technique. The histogram bins are the Voronoi cells with their centers form
a dense set of sampling points on S7. Such set of sampling points is given by the
solution of the sphere-packing problem in R®, which gives us 17520 bins in total.

4.3.2 Modeling Local Image Geometrical Structure

While the image edge region is considered to be most informative of the difference
of image generative process, the non-zero contrast patches in the non-edge region
(e.g., the weak-edge patches) could be useful too. The information inherent in the
geometrical structure variation in the luminance channel could be limited. This
would mean that it is harder to tell PRCG from PIM perceptually for a grayscale
image. Therefore, we extend the geometrical modeling to 1D geometrical struc-
ture which captures the geometric transitions in RGB color space around the edge
pixels. As a result, we altogether obtain four types of sampling methods (each may
have several patterns) (see Figure 3):

4.3.3 Model PMF

For each image, we extract 4000 patches (whenever possible) for each type of the
sampling patterns. Hence, for each sampling pattern ¢, ¢ = 1,...,7', we construct
a model PMF respectively for PIM and PRCG. Let the category index be y € {0, 1}
with 0 and 1 representing PIM and PRCG respectively. Each image contributes T’
sets of patches, X;, where ¢t = 1,...,T and Xy = {zyli =1,..., N;}. Let [z]
denotes the bin index of a patch x with [z] € {b1,...,bi7520}. Given a training
set,
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Figure 3: (1) 2D patch centered at edge points (in luminance channel) (2) 2D
non-zero-contrast patch centered at non-edge points (in luminance channel) (3)
1D patch centered at edge points (use RGB channels as features/in vertical and
horizontal directions) (4) 1D patch along different gradient directions from edge
points (use RGB channels as features/sampled in eight directions)

with M training images (each has Nt(m) patches for each sampling pattern and is
assigned a corresponding label yﬁm)), the model PMF is given by Equ. 14:

prodel g _ )~ T X W) =by™ =yl
yt — Y = M N(m) (m) _ s =1,...,

om—1 Ny Ly, =y) + 17520

(14)

where 1(-) is the indicator function. Note that Laplacian smoothing (add one for

each bin) which is well-known in text document classification is applied in Equ. 14
to smooth out the empirical estimate of the model PMF.

Given a new image, we sample patches of different sampling patterns from the

image. For each sampling pattern, we form an empirical PMF as in Equ. 15.

N(m> m
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Note that the empirical PMF are smoothed with a factor relatively consistent
with the amount of smoothing in the model PMF. Then, for each sampling pattern,
we compute the Kullback-Leibler (KL) distance between the empirical PMF and
the model PMF, as in Equ. 16. The KL distances will be used for image classifica-
tion.

11
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Figure 4: The variation of the average KL distance difference when some example
images from the natural and CG category are scaled to different sizes (left) and
rotated with different angles (right)
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The patch NIS feature is found to be approximate scale and rotation invariant
as Fig. 4 shows how

T

1
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t=1

(the averaged KL distance difference) of some example images vary as they are
rotated to different angles and scaled to different sizes (each line in Fig. 4 is corre-
sponding to an image).

4.4 CG features

In [4], features motivated by CG characteristics is proposed for classifying the pho-
tographic and the CG video key frames. The main characteristics of CG video key
frames are identified as having few and simple colors, patches of uniform color,
strong black edges and containing text. By modeling the CG characteristics, fea-
tures such as average color saturation, ratio of image pixels with brightness greater
than 0.4, HSV color space histogram, edge orientation and strength histogram,
compression ratio and pattern spectrum (i.e., the distribution of object size) were
used.

12



5 Dataset

We initiated a dataset collection project for producing a dataset tailored for the
passive-blind image forgery detection research. At the first stage, we collected a
set of PIM and PRCQG, to be used in the experiments. Examples of the images are
shown in Fig. 1.

5.1 Authentic and Natural Images

The PIM category consists of 800 images which are authentic (directly from a
camera and are not photomontage) and of scenes commonly encountered by hu-
man. Two main characteristics of this PIM set are its diversity from the point of
view of image generative process and its readiness to facilitate the studies of image
processing effects on a forgery detection technique. Images are generated as light
rays from the illumination source are reflected off the scene objects before being
captured by a camera, which is operated by a photographer. The PIM category has
diversity in light sources (indoor bright/dim, outdoor daylight/dusk/night/rain), ob-
ject types (natural/manmade/artificial), camera model (Canon 10D and Nikon D70,
which are known to use different makes of the camera main chip) and photogra-
phers (three persons). Besides that, we recorded the images simultaneously in the
high-quality JPEG format and RAW format. The RAW format images are the di-
rect output from the imaging sensor (hence not lossy compressed and free from any
image operation), therefore we can study the effect of image operations on image
forgery detection algorithm using these RAW format images. The original size of
the images is about 30002000 pixels. In order to match the size of the PRCG
images, which have an average dimension of about 630 pixels, we resize the PIM
with bicubic resampling to the size of about 730x 500 pixels.

5.2 Photorealistic CG Images

The PRCG set consists of 800 PRCG collected from a list of reputable and trustable
3D graphics company websites and the professional 3D artist websites. Of the
many subcategories of PRCG, we only selected those which are of good photoreal-
ism and with scenes that are commonly encountered by human. The subcategories
in the PRCG set are ‘architecture’, ‘people and animals’, ‘objects’, ‘scenery’ and
‘games’. Subcategories such as ‘fantasy’ and ‘abstract’ are intentionally excluded.

13



Table 1: Feature List

Features Dimension
Power spectrum model (PS Features) 33
Local Patch Features 24
Wavelets higher-order statistics (HOS) 72
CG Features 108

6 PIM vs. PRCG Classification

6.1 Summary of Image Features

We evaluate three types of NIS features discussed in Sec. 4 including the second-
order power spectrum model features, the wavelets higher-order statistics features [5]
and the local patch features. We compare these NIS features (modeling natural im-
ages) with features that model computer graphics characteristics [4]. The dimen-
sion of the features is shown in Table 1.

6.2 Support Vector Machine (SVM) Classification

We use SVM (from the LIBSVM implementation [18]) with radial basis function
(RBF) kernel as our classifier. The best classifier parameters (soft-margin parame-
ter, C, and the RBF kernel parameter, ) are selected using a grid search strategy,
through a five-fold cross-validation on the training set. Although the features be-
ing compared are of different dimensionality, there is less concern of classifier
overfitting as SVM is based on the principle of structural risk minimization (i.e.,
not minimizing the empirical risk but the regularized risk which bounds the true
risk from above). Furthermore, the classification receiver operating characteristic
(ROC) curve is estimated through five-fold cross-validation to avoid overfitting of
the classifier.

6.3 C(lassification Results

Fig. 5 shows the five-fold cross-validation ROC (positive being PIM) for the fea-
tures listed in Table 1, as well as certain fusions of them. Fig. 6 shows the example
classification results of the local patch classifier and the CG classifier. For classifier
fusion, we choose to fuse the decision value of the SVM classifier output instead
of simply concatenating the input feature vectors because of the large difference
between the patch NIS feature and CG feature in input space dimensionality. Such
difference would result in a bias of the fused decision toward the feature with a
higher dimensionality. As SVM output was shown to fit well with a distribution

14



5-fold Cross Validation ROC
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Figure 5: Classification accuracy (in ROC) for distinguishing CG from natural
images

from the exponential family, hence logistic regression fusion would be an ideal
option for fusing SVM decisions, assuming independent decisions. For logistic
regression fusion, the posterior probability of the class label 1 is given by Equ. 17
where fs,m being a vector of decision value from SVM classifiers. The linear
coefficients (a, b) are learnt by maximizing the class label likelihood.

1
1 + eXp(CLTfsvm + b)

Below are the observations from the experiment:

p(y = 1| fsum)

a7

1. The second-order NIS, i.e., PS performs worst in the classification. The
wavelet HOS which can be considered a higher-order NIS is doing better,
while the image patch features, which is derived from the full-distribution of
local patches, performs the best. Hence, there is a trend that the higher the
statistical order of the NIS, the better it captures the unique characteristics of
PIM.

2. The CG-motivated features are performed surprisingly well despite the fact

15
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Figure 6: Example of the classification results; Row 1: images correctly classified
by both the patch feature and CG feature. Row 2: patch feature correct, CG feature
wrong; Row 3: both features wrong; Row 4: patch feature wrong, CG feature
correct.
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that the CG in our dataset are photorealistic. Of all the CG features, the con-
tribution from the color histogram is the most significant. This observation
indicates that the color of the PRCG is still quite different from that of PIM,
despite not being visually obvious.

3. Since the patch features and CG features are separately modeling the charac-
teristics of natural images and CG, the classification performance improves
when combining the two features.

7 Discussion

7.1 Possible Extensions for Local Patch Distribution Modeling

Currently, we are using image patch of size 3x3. We believe that more interest-
ing structure can be captured if we increase the patch size. To do this we need to
overcome the difficulties of analyzing the full distribution with a quadratic dimen-
sionality increase. There could be two potential ways to overcome such difficulty:

1. We can capture the structures inherent in a larger patch size by having a
scale-space representation of image patch in a manageable dimensional-
ity [19].

2. We may be able to learn a probabilistic generative model for a large set of
images using the epitome learning framework [16]. In this case, the map
from an individual image to the epitome synthesizes the image, while the
reverse map from the epitome to the large set of images provide the full
probability distribution of the patches. However, the learning procedure may
be computationally demanding.

7.2 Adversarial Attack on Passive-Blind Techniques

It is natural to assume that there will be adversarial attacks on any image forgery
detection techniques. Therefore, robustness against adversarial attack is critical.
This work does not study such aspect comprehensively. If attackers have access
to the detector or have full knowledge about the detection algorithm, they can re-
peatedly test and refine an image forgery (within the constraints of photorealism),
until the image forgery escapes detection. Such attack is known as oracle attack in
the digital watermarking literature and has been a serious threat to the public wa-
termarking system. The proposed countermeasures to such attack in watermarking
system are also applicable to our case. These techniques include converting the
parametric decision boundary into a fractal one [20] and modifying the detector
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temporal behavior such that time taken for returning a decision will be lengthened
when the sequence of detections carries the mark of an oracle attack [21].

8 Conclusions

In this paper, we showed a way to distinguish PRCG from PIM by modeling PIM
using NIS. Specifically, we propose novel features derived from local patch dis-
tributions and the power spectrum of images. The NIS features complement the
features inspired by the CG characteristics. The patch-based NIS which recently
found successes in various image processing application performs well in the clas-
sification task, when the image geometrical structure is sufficiently captured. Fur-
thermore, the performances of the NIS features are in line with the corresponding
statistical order.
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