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Abstract

Detecting text in natural 3D scenes is a challenging prob-
lem due to background clutter and photometric/gemetric
variations of scene text. Most prior systems adopt ap-
proaches based on deterministic rules, lacking a systematic
and scalable framework. In this paper, we present a parts-
based approach for 3D scene text detection using a higher-
order MRF model. The higher-order structure is used to
capture the spatial-feature relations among multiple parts
in scene text. The use of higher-order structure and the
feature-dependent potential function represents significant
departure from the conventional pairwise MRF, which has
been successfully applied in several low-level applications.
We further develop a variational approximation method, in
the form of belief propagation, for inference in the higher-
order model. Our experiments using the ICDAR’03 bench-
mark showed promising results in detecting scene text with
significant geometric variations, background clutter on pla-
nar surfaces or non-planar surfaces with limited angles.

1. Introduction
Text detection in natural 3D scenes is an important but chal-
lenging problem. Scene text provides direct information
about the scene and event. It therefore can be used as ef-
fective features for image recognition, search and retrieval.
Figure 1 shows some examples of scene text, illustrating the
variations of 3D shape, lighting, and background cluttered-
ness.

There have been much prior work on text detection,
but most of them use ad hoc rules, lacking a systematic
framework. Such approaches are difficult to generalize and
achieve robust performance. They can be classified as tex-
ture based [10][1], region based [9][12], or hybrid [7]. Spa-
tial layout analysis is also used in some of the systems in a
rule based setting.

Text lines or words can be modeled as multi-part objects,
where characters are disconnected parts. There has been
some prior work on parts-based object detection and motion
analysis. For example, in [2][5], a part constellation model

Figure 1: The examples of scene text in images

is proposed to detect multi-part object with supervised and
unsupervised learning. Spatial relations of parts are mod-
eled using covariance matrix. In [4], Objects are modeled
as trees. Detecting objects is realized by matching model
trees and input pictures. In [13], human motion detection is
realized by a parts-based approach, where the parts model-
ing is limited to triangulated decomposable graphs. In [8],
a parts-based approach is proposed to detect human body.
Boosting is applied to combine weak classifiers correspond-
ing to different body part assemblies. In [15], a graph parti-
tioning approach is developed to group individual parts into
objects. However, no probabilistic structure is presented to
support systematic learning.

Markov Random Field (MRF) is an undirected graphi-
cal model, having widespread applications in computer vi-
sion. MRF with pairwise potential and belief propagation
has been applied in many low-level vision applications [6].
However, in order to detect multi-part objects, pairwise po-
tential is often inadequate since it only captures two-node
constraints. For example, in the text detection task, the pair-
wise potential cannot capture the unique spatial relationship
that every three characters should be aligned on a straight
line or a smooth curve. Another limitation of the traditional
pairwise MRF model is that the state potential function does
not incorporate the observed features. This makes it diffi-
cult to model the parts relations for general applications.
For example, if we need to enforce that the ”land” region
should locate below the ”sky” region in a natural image, the
coordinate difference of the two regions is necessary to be
taken into account.

1



In this paper, we propose a parts-based object detection
system via learning a high-order MRF model. The method-
ology is applied to detect scene text in images. The prob-
lem is formulated as calculating the beliefs (the marginal-
ized probability) at nodes that correspond to automatically
segmented regions. In order to realize efficient probabilistic
inference, a variatioanl method similar to Bethe approxima-
tion [14] is developed, which is converted into higher-order
belief propagation equations. Supervised learning of this
high-order MRF model is realized by maximum likelihood
estimation.

Compared with prior systems. The proposed generative
statistical framework incorporates higher-order constraints
and takes advantage of the efficient inference algorithms.
The proposed higher-order MRF model is also unique in
that it uses potential functions considering inter-part rela-
tional attribute.

The higher-order MRF model is evaluated against the
pairwise MRF model using a set of public benchmark im-
ages. The experiments show a substantial performance im-
provement accredited to the adoption of the higher-order
statistical model. Moreover, the results also show that the
presented method is extraordinarily robust even for text in
severely cluttered background or with significant geometric
variations. These evidences confirm the advantage of the
higher-order MRF model for parts-based detection of scene
text and probably broader categories of objects.

The paper is organized as follows: Section 2 describes
the formation of the region adjacency graph. Section 3 for-
mulates the text detection problem using MRF model. Sec-
tion 4 presents the approach for designing potential func-
tions, which is followed by the learning approaches de-
scribed in section 5. Section 6 discusses the problem of
multiple text lines with its solution. Experimental setting
and results are described in section 7. Finally, section 8
summarizes the contribution and future work.

2. Region adjacency graph formation

Region adjacency graph (RAG) is used to model the prop-
erties of parts and parts relations. In this model, each node
represents a segmented region, and each edge represents the
likely relations between two regions. Region detection is
realized by a mean-shift segmentation algorithm [3].

The edges between nodes are established according to
the spatial positions of the regions. An edge is established
only if the minimum distance between two regions is less
than a predetermined threshold. The value of the minimum
distance threshold (MDT) should allow three consecutive
characters form a three-clique (i.e. triangle). Larger MDT
would yield denser graph and more cliques, resulting in
more computation cost. The optimal selection of MDT re-
mains an unsolved issue for future exploitation. A straight-

Figure 2: Region segmentation and adjacency graph. Seg-
mented regions are indicated with green borders.

forward method is to use a multi-pass detection procedure,
in which a small MDT is started and subsequently increased
until text is detected.

Nested regions, such as a bounding box and its encom-
passed characters, would not be connected by edges, in or-
der to prevent unnecessary computation. Moreover, the re-
gions that touch image boundaries are assumed to be back-
ground. They are therefore eliminated to save computation
resources. One example of RAG is shown in the Figure 2.

3. Formulating text detection using
MRF

Based on a RAG, the corresponding Markov Random Field
(MRF) is constructed by attaching each node i a state ran-
dom variable Xi taking value from a label set. In text de-
tection, the label set consists of two labels: ”text” (Xi = 1)
or ”non-text” (Xi = 0). The observed features include one-
node features yi extracted from each region i, and three-
node features yijk extracted from every three connected re-
gions (or a three-clique in RAG). Text detection therefore
can be modeled as the probabilistic inference problem given
all observation features. The overall relations can be mod-
eled as a joint probability p(x, y), with x = {xi|1 ≤ i ≤
N} and y = {yi, yijk|1 ≤ i, j, k ≤ N} where N is the
region number. Text detection is therefore the problem of
computing the marginal (or belief)

p(xi|y) =
∑

x\xi

p(x, y)/p(y) (1)

Labeling a region as text or non-text is realized by like-
lihood ratio rest of the two opposite hypotheses (xi =
1,text;xi = 0,non-text):

p(xi = 1|y)
p(xi = 0|y)

=
p(xi = 1, y)
p(xi = 0, y)

≥ λ (2)

where λ is a threshold, which can be adjusted to vary the
precision and recall rate.

2



3.1 Pairwise MRF

Pairwise MRF has been applied in a variety of low-level
vision applications. The joint probability of a pairwise MRF
can be written as

p(x, y) =
1
Z

∏

ij

ψij(xi, yj)
∏

i

φi(xi, yi) (3)

where Z is the normalization constant, ψij(xi, yj) is
the state comparability function, φi(xi, yi) captures the
compatibility between the state and observation. The
marginal probability of MRF can be calculated by Belief
Propagation[14].

For multi-part object detection in cluttered background,
one needs to identify the parts and group them into assem-
blies by accommodating the relations of the parts. This
requires identifying structures in the adjacency graph, not
only verifying the compatibility between two nodes. For
example, in text detection, we need to verify if three re-
gions are aligned on a straight line approximately. These
constraints cannot be addressed by pairwise potentials and
require functions involving more than two nodes.

3.2 Higher-Order MRF with belief propaga-
tion

To overcome the limitation of the pairwise MRF, we attempt
to utilize MRF model with higher-order potentials while
keeping computational efficiency of the belief propagation.

We adopt a unique generative model accommodating
higher-order constraints, as visualized in Figure 3(Left), in
which the observation features are not only defined at node
but also three-cliques. Here we omit two-node potentials in
order to simplify the computation and due to the fact that
two-node constraints can be also incorporated in the three-
node potentials if the graph is dense. It is not difficult to
show that this model can be factorized as following:

p(x, y) =
1

Z

∏

ijk

ψijk(xi, xj , xk)p(yijk|xi, xj , xk)
∏

i

p(yi|xi)

(4)
Where yi is the observation feature vector at node ni.

yijkis the clique-level relational feature, which is extracted
from the entire set of nodes in the clique and is used to char-
acterize the attribute relations of the three nodes in the same
clique. Examples of clique features may include the rela-
tions of locations, shapes, and symmetry among the nodes.
The higher-order potentials and clique features allow this
model perform local pattern matching and evolve towards
higher-scale hidden structures. The potential function con-
taining the clique features is crucial for multi-part relation-
ship modeling. ψijk(xi, xj , xk) is the potential imposing
prior constraint,and p(yijk|xi, xj , xk),p(yi|xi) is the prob-
ability density functions at three-cliques and nodes respec-

tively. Here we implicitly assume that the observation fea-
tures yijk,yi are independent.

By combining the prior constraints and emission proba-
bilities, this model is equivalent to the following MRF with
inhomogeneous potentials:

p(x, y) =
1
Z

∏

ijk

ψ′
ijk(xi, xj , xk, yijk)φ′

i(xi, yi) (5)

where ψ′
ijk(xi, xj , xk, yijk) and φ′

i(xi, yi) are the inhomo-
geneous potential functions.

In the rest of the paper, we use shorthand
ψijk(xi, xj , xk) and φi(xi) for ψ′

ijk(xi, xj , xk, yijk)
and φ′

i(xi, yi) to simplify notations.
It has been shown that the belief propagation (BP) in

pairwise MRF is equivalent to the Bethe approximation
[14], a type of variational approximation. For higher-order
MRF, we can use a similar variational approximation to ob-
tain a higher-order version of the belief propagation. The
detailed derivation is described in the Appendix.

The message passing rule for higher-order BP is as fol-
lowing (also illustrated in Figure 3(Right))

mjki(xi)←−λ
∑

xj

∑

xk

φj(xj)φk(xk)ψijk(xi, xj , xk)

∏

(l,n)∈Np(k)\(i,j)
mlnk(xk)

∏

(l,n)∈Np(j)\(i,k)

mlnj(xj) (6)

where λ is a normalization factor so that the message
computation will not cause arithmetic overflow or under-
flow. Np(i) is the node pair set in which each node pair
forms a three-clique with the node i. Once the messages
converge, the beliefs are computed using

bi(xi) = kφi(xi)
∏

(j,k)∈Np(i)

mjki(xi) (7)

Where k is a normalization factor. Messages are uniformly
initialized as a constant, typically 1.

iy

ijky

jyky
ix

kx
jx

ix
jx

kx

)( ijki xm

iy

ijky

jyky
ix

kx
jx

iy

ijky

jyky
ix

kx
jx

ix
jx

kx

)( ijki xm

ix
jx

kx

)( ijki xm

Figure 3: (Left) MRF with higher-order potential, node fea-
tures, and clique-level relational features (Right) The mes-
sage passing of the high-order belief propagation
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Figure 4: The reinforcement of the beliefs as the number of
characters increases

Besides using the proposed higher-order BP, an alter-
native approach is to reduce the higher-order MRF to a
pairwise MRF by clustering nodes and inserting additional
nodes [16]. This process needs careful redesign of the po-
tential functions and has to introduce extra delta-function-
like potential functions, which may cause unstable message
updates. It is therefore more straightforward to use the
above higher-order version of belief propagation to perform
inference.

Intuitively, the higher-order BP rules perform local pat-
tern matching (by three-node potential with clique-level
relational features) and pass around the evidences to the
neighboring nodes to enhance or diminish the beliefs. To
show this, Figure 4 shows the inference results from in-
puts with different numbers of characters. The brightness
of each node (corresponding to a character) shown in the
figure represents the belief of being ”text” object. We note
that more characters result in higher beliefs of the individual
characters due to the interactions of the nodes.

Because the region adjacency graph is automatically
generated, the topology of the graph is often loopy. Thus,
in theory, the convergence of the BP cannot be guaranteed.
However, our experiments on actual images so far have not
observed significant divergences of message updates. This
is probably due to the appropriate designs of the potential
functions, or because the magnitudes of oscillations are too
small to be observed.

4. Design of the Potential Functions
In order to effectively detect text, we need to carefully de-
sign the potential functions and emission probabilities in
Eq. (4). The prior potentials are discrete probability mass
functions. For emission probabilities, we have to adopt
parametric probability density functions so that the model
can be properly learned. In our system, we assume that the
p(yijk|xi, xj , xk),p(yi|xi) both have the form of Gaussian
function or mixture of Gaussians.

In the following, we describe a few features for one-node
and 3-node potential functions. Note the functions are gen-
eral and other features can be added when useful, not only
limited to the set we currently include in the implementa-
tion.

4.1 The one-node potential

In our current implementation, only aspect ratio is used as
the feature for one-node potential. The distribution of the
aspect ratio is modelled as Gaussian functions. There are
two Gaussian pdf s: one for state 0 and another one for
state 1, denoted as G0(yi) = N (µ0,Σ0) and G1(yi) =
N (µ1,Σ1) respectively.

This model is accurate in the absence of segmentation
errors. However, in many cases, multiple character regions
may be merged due to poor region segmentation. To accom-
modate the mixed types of regions (single character regions
and merged regions), we can use mixture of Gaussians to
model the distribution.

4.2 The three-node potential

Three-node potential functions are used to enforce the spa-
tial and visual relationship constraints on the cliques. The
clique feature vector is extracted from every three-clique,
the component of this vector is described as follows.

a) Minimum Angle
The feature is defined as the sinusoid of the minimum angle
of the three-clique, i.e.:

yijk(1) = sin(minmθm),m = 1, 2, 3.

where θm is one of the angles of the three-clique. For a
text line, the minimum angle should be close to 0. For text
on a non-planar surface, the angle is assumed to be small
(e.g., text on a cylindrical surface). Note that the statistical
modelling approach allows for soft deviation from a fixed
value, and thus non-planar text with small angles can also
be detected.

b) Consistency of the region inter-distance
For most scene text in an image, the difference of the
character inter-distance is approximately the same. The
feature is defined as ,

yijk(2) = ‖v1‖ − ‖v2‖
where v1,v2 are the two laterals with the maximum angle
in the triangle.

c) Maximum color distance
The feature is defined as the maximum pairwise color
distance of the three regions. The use of this feature is
based on the fact that the text regions in a text line have near
uniform color distribution. The color distance is defined in
the HSV space. For greyscale images, we can replace the
color distance with the intensity difference although it may
not be as robust as using color.
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d) Height consistency of the character
The constraint enforces that the heights of the three
character regions are approximately the same. The height
divergence ratio is defined as

yijk(4) = (hmax − hmin)/hmin

where hmin and hmax are the minimum and maximum
height of the three regions. English characters usually are
written with fixed discrete levels of height. Thus a mixture
of Gaussian s model would be adequate.

5 Learning the Higher-Order MRF

Learning the Higher-Order MRF is realized by the maxi-
mum likelihood estimation. Suppose M images are used in
training. We want to estimate the optimal parameter set θ̂ to
maximize the likelihood of the whole set of images.

θ̂ = argmaxθ

M∑

m=1

lnp(xm, ym|θ) (8)

xm,ym is the state vector and observation feature vector in
the mth image, where xm is labelled by annotators. Ac-
cording to Eq.(4), the joint log likelihood of x,y in one im-
age can be factorized as

lnp(x, y) =
∑

ijk

ln ψ(xi, xj , xk|θx) + (9)

∑

ijk

lnp(yijk|xi, xj , xk, θy3) +
∑

i

lnp(yi|xi, θy1) − ln Z

Where θx is the parameter for the state prior probability
mass function. θy3 is the parameter of the probability den-
sity function for the three-clique relational feature. θy1 is
for the one-node observation density. Since these three
functions have independent parameters, the learning pro-
cess can be carried out separately. The maximum likelihood
estimates of θy3,θy1are obtained by simply calculating the
mean and variance (or covariance matrix) of the Gaussian
functions using the labeled data. θx is the prior distribution
parameter, which can be calculated by counting the number
of the state configurations in the training data.

The features presented in Section 3 require the poten-
tial functions of each clique invariant to permutation of la-
bel assignments of the states in the same clique. For a
three-clique, there are 8 different configurations, but due
to the permutation invariance, there will be only 4 dif-
ferent configurations (xi, xj , xk) = (111),(xi, xj , xk) =
(100),(xi, xj , xk) = (100), (xi, xj , xk) = (000). As an
example, (xi, xj , xk) = (111) means all three nodes in the
clique are text regions. Correspondingly, we have Gaussian
pdf s:

G111(yijk) = p(yijk|xi = 1, xj = 1, xk = 1) = N (µ111, Σ111)

Figure 5: (Left) The miss in detecting multiple text lines due
to cross-text-line (CTL) cliques. (Right) the results after
potential function modification.

G110(yijk) = p(yijk|xi = 1, xj = 1, xk = 0) = N (µ110, Σ110)

G100(yijk) = p(yijk|xi = 1, xj = 0, xk = 0) = N (µ100, Σ100)

G000(yijk) = p(yijk|xi = 0, xj = 0, xk = 0) = N (µ000, Σ000)

6 Modification of the potential func-
tions for multiple text lines

The above detection algorithm works well when the im-
age only contains single text line or the text lines are apart
far away. However, if two or more text lines are close to
one another, the algorithm will miss one or more text lines,
as shown in the Figure 5. Such miss of detection is due
to the negative constraint produced by the cross-text-line
cliques (marked as dashed red lines in the Figure 5(Left)).
In this case, the value of G110(yijk),G100(yijk),G000(yijk)
may be much larger than G111(yijk) for a cross-text-line
clique. The one-dimensional illustration of this situation is
shown in the Figure 6, where the red (blue) curve indicates
the potential function trained from ”text”-”text”-”non-text”
(text-text-text) cliques. Consequently, assigning the ”non-
text” label to one of the nodes in the cross-text-line three-
clique will yield higher overall likelihood (as shown in the
dashed line). One way to fix this problem is to modify the
G111(yijk) potential function such that it only has positive
constraint effect within the desired feature range by the fol-

CTR Clique

111G

110G

'
111G

p

ijky

CTR Clique

111G

110G

'
111G

p

ijky

Figure 6: The potential functions and the modified version
of G111(yijk)
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lowing operator

G′
111(yijk) = sup{G110(yijk), G100(yijk), G000(yijk)}
The resulting function is shown in Figure 6. There-

fore if the three-node feature is far from the mean
of the Gaussian, it no longer gives higher value for
G110(yijk),G100(yijk),G000(yijk) compared with
G111(yijk). This modification shows very significant
improvement in the experiments while it does not signifi-
cantly impact the non-text regions. Figure 5(Right) shows
the results by using the modified potentials. One potential
drawback of the above modification is that it may raise
the belief of the non-text region and thus increase false
alarms. However, if the text line has enough characters,
the likelihood ratio test with higher threshold will correctly
reject those non-text regions. Another problem is that
some singleton regions disconnected with any other region
may exist in image. No three-node potential constraint
is imposed on these nodes. Consequently, the beliefs are
totally determined by the one-node potential function,
which is often inaccurate. To handle this problem, we can
let the one-node potential only give negative constraint to
non-text region if the features are quite different from the
learned Gaussian mean. Thus, the one-node potential is
modified using:

G′
1(yi) = sup{G1(yi), G0(yi))}

7 Experiments and results

To evaluate the proposed approach, we evaluate the perfor-
mance using a public dataset used in the scene text detec-
tion competition in ICDAR 2003 [11]. The dataset con-
tains 20 images with different natural conditions, for ex-
ample, outdoor/indoor, background clutter, geometric vari-
ations, lighting variation, etc. All are colored images in the
RGB format.. The resolution of these images is very high
with a typical size 1280x960. To reduce the computation
cost, we resize these images to about 640x480. This test set
is limited since only images containing text are included.
In order to evaluate the capability of the system in reject-
ing false regions in the cluttered images, another ten images
with cluttered background but without text are added to the
data set.

A cross-validation procedure is used to test the algo-
rithm: the data is divided into two subsets, each of which
alternates as training and testing set in a two fold cross-
validation process. In the learning stage, each image first
segmented by the mean-shift algorithm, and the segmented
regions are manually labeled as text or non-text. Cross-text-
line cliques are excluded from training to avoid confusion.
We measure the precision and recall of the text region de-
tection. Recall is the percentage of the ground truth text
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Figure 7: Precision recall curve, (Top) The comparison of
ROC curve by using conventional pairwise MRF (dashed
blue) and proposed method (red). (Bottom) The ROC curve
of detection in set 1(green) set 2(blue) and average(red).

regions that are detected, while precision is the percentage
of the correct text regions in the detected regions. The ac-
curacy is measured at the character level.

We use the MRF model with pairwise potential as the
baseline for comparison. The relational features are added
into the pairwise model. It uses two features in the two-node
potential - the color difference and height consistency. The
one-node potential is the same as that used in the proposed
higher-order MRF. The potentials are learned from labeled
data. Inference is realized by standard belief propagation. A
precision-recall curve (ROC curve) is generated by varying
the threshold of the likelihood ratio, as shown in Eq.(2).

The performance comparison is shown in Figure 7(Top),
which indicates that the higher-order MRF model signifi-
cantly outperforms MRF with pairwise potential. Note in-
terestingly there seems to be a turning point at 0.85/0.85
as precision/recall. The performance variance when us-
ing the cross-validation process is shown in Figure 7(Bot-
tom), showing that the proposed method is stable over dif-
ferent training/testing partitions. Unfortunately, to the best
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Figure 8: Example results from the higher-order MRF model (Brightness of nodes represents the probability as ”text”)

of our knowledge, there is no public-domain performance
data over the same benchmark set that we can compare.

Note that these results have not included the text regions
missed in the automatic segmentation process. The miss
rate of region detection is about 0.33. This makes the op-
timal recall (including segmentation and detection) about
0.67. The region detection miss is mainly due to the small
text size. The inference computation speed excluding seg-
mentation varies from 0.5 second to 30 second per image
on a Pentium III 800MHz PC depending on the number of
the cliques. The average inference speed is 2.77 second per
image. The speed of segmentation and region formation is
about 0.2 second to 5 second per image, depending on the
image size and the content complexity of the image. The
speed is improvable, since no code optimization and look-
up-table is used currently.

Figure 8 shows some detection results by the proposed
higher-order MRF model. The results show that the method
is very robust to background clutteredness and geometric
variations, and is able to detect text on curved as well as
planar surfaces. Detecting text on curved surfaces is hard
to achieve by conventional systems using fixed rules, where
hard constraints are usually used. Our system achieves im-
proved performance in this aspect by using soft constraints
captured by the statistical method. Furthermore, the issue
of character merging is successfully handled if the merged
regions remain on the same planar or curve surfaces. To
compare with MRF with pairwise potential, Figure 9 shows
its output, which illustrates that without using the higher-
order constraints, the pairwise MRF is very vulnerable to
the clutter.

8 Conclusion

We have presented a statistical method to detect text on pla-
nar or non-planar with limited angles in natural 3D scenes.
We propose a MRF model with higher-order potential and
incorporate intra-part relational features at the clique level.
The proposed method is systematic, learnable, and robust to
the background clutter and geometric variations. The sys-

Figure 9: Output from the pairwise MRF model (brightness
of nodes represents the probability as ”text”)

tem can be readily modified for the general multi-part ob-
ject detection, for instance human body detection. We also
plan to add more features and constraints into the system to
further boost the detection performance.
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9 Appendix

Let bi(xi) denotes the one-node belief and bijk(xi, xj , xk)
denotes three-node belief. Let Np(i) be the node pair set in
which each node pair forms a three-clique with the node i.

The energies associated with nodes and cliques can be
define as

Ei(xi) = −lnφi(xi)

Eijk(xi, xj , xk) = −lnψijk(xi, xj , xk) − lnφi(xi)

−lnφj(xj) − lnφj(xj).

Then the Gibbs free energy [14] is

G =
∑

ijk

∑

xixjxk

bijk(xi, xj , xk)
(
Eijk(xi, xj , xk) +

lnbijk(xi, xj , xk)
)
−

∑

i

(qi − 1)
∑

xi

bi(xi)
(
Ei(xi) + lnbi(xi)

)

Where qi is the degree of the node i. Therefore the La-
grangian multipliers and their corresponding constraints are

rijk :
∑

xi,xj ,xk

bijk(xi, xj , xk) − 1 = 0, ri :
∑

xi

bi(xi) − 1 = 0

λjki(xi) : bi(xi) −
∑

xj

∑

xk

bijk(xi, xj , xk) = 0

The Lagrangian L is the summation of the G and the multi-
plier terms. To maximize L, we have

∂L

∂bijk(xi, xj , xk)
= 0 ⇒

lnbijk(xi, xj , xk) = Eijk(xi, xj , xk) + 1 + λjki(xi)

+λkij(xj) + λijk(xk) + rijk

∂L

∂bi(xi)
= 0 ⇒

lnbi(xi) = −Ei(xi) +
1

qi − 1

∑

(j,k)∈Np(i)

λjki(xi) + r′i

where r′i is the rearranged constant.
By using change of variable or defining message as:

λjki(xi) = ln
∏

(l,n)∈Np(i)\(j,k)

mlni(xi)

We obtain the following equations

bi(xi) = kφi(xi)
∏

(j,k)∈Np(i)

mjki(xi),

bijk(xi, xj , xk) = kψijk(xi, xj , xk)φi(xi)φj(xj)φk(xk)
∏

l,n∈Np(i)\j,k

mlni(xi)
∏

l,n∈Np(j)\i,k

mlnj(xj)
∏

l,n∈Np(k)\i,j

mlnk(xk)

Apply the constraint bi(xi) =
∑

xj

∑
xk

bijk(xi, xj , xk),
we obtain

mjki(xi)←−λ
∑

xj

∑

xk

φj(xj)φk(xk)ψijk(xi, xj , xk)

∏

(l,n)∈Np(k)\(i,j)
mlnk(xk)

∏

(l,n)∈Np(j)\(i,k)

mlnj(xj)

Which is exactly the message passing rule in Eq. (6).
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