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Abstract

Indexing echocardiogram videos at different levels of
structure is essential for providing efficient access to their
content for browsing and retrieval purposes.

We present a novel approach for the automatic identifica-
tion of the views of the heart from the content of the echocar-
diogram videos. In this approach the structure of the heart is
represented by the constellation of its parts (chambers) un-
der the different views. The statistical variations of the parts
in the constellation and their spatial relationships are mod-
eled using Markov Random Field models. A discriminative
method is then used for view recognition which fuses the as-
sessments of a test image by all the view-models.

To the best of our knowledge, this is the first work ad-
dressing the analysis of the echocardiogram videos for the
purpose of indexing their content. The method presented
could be used for multiple-object recognition when the ob-
jects are represented by their parts and there are structural
similarities between them.

1. Introduction

Echocardiography is a common diagnostic imag-
ing modality that uses ultrasound to capture the structure
and function of the heart [7]. A comprehensive evalua-
tion entails imaging the heart in several planes (aspects)
by placing the ultrasound transducer at various loca-
tions on the patient’s chest wall. The recorded image se-
quence (echocardiogram video, or echo video for short)
therefore displays the 3-dimensional heart from a se-
quence of different 2-dimensional cross sections (views).
Under different views, different sets of cardiac cavities (ob-
jects) are visible. The spatial arrangement of those objects
is unique to each view. Figure 1 shows the representa-
tive images taken from two different views.

Our goal is to automatically index the content of the
echocardiogram videos at the view and object levels using

Figure 1. Spatial arrangement of caridac
chambers for apical four chamber (left), and
parasternal long axis (right) views. (LV: Left
Ventricle, LA: Left Atrium, RV: Right Ventri-
cle, RA: Right Atrium, AO: Aorta) [7]

the characteristics of the spatial arrangement of the car-
diac chambers in the different views.

A view-centered modeling approach is employed
in which the spatial arrangement of the cardiac cavi-
ties and the statistical variations of their properties are
modeled for each view. A test image represented by the
constellation of its parts (cardiac chambers) is classi-
fied into one of the view classes by fusing the assessments
of it by all the view-models. The fusion framework is em-
ployed to resolve ambiguities and make correct recognition.
The ambiguities are due to the structural similarities be-
tween the constellation of cardiac chambers in the different
views of the echo video.

1.1. Challenges

There are several reasons to make the problem of view
recognition in echo videos a difficult task. The appearance
of the images captured under the same view of the heart for
the same patient and among different patients will always
be subject to a high degree of variations. This is because of
the following two reasons:



Figure 2. Constellation of caridac cavities for
the apical four chamber view [7]. Chambers
are represented by the blobs, and the lines
indicate the relationships between them.

1. Different patients have slightly different heart struc-
tures based on their physical characteristics.

2. There are no natural markers available for placing the
ultrasound transducer on the patient body for imaging.

Therefore, the general category of the appearance-based
methods which have successfully been applied to some
recognition problems [12] can not be employed for the task
of view recognition in the echo videos. For this reason, we
resort to the category of the part-based approaches. Here,
one can model the variations in the properties of the parts,
which makes it more suitable for modeling the structure of
the heart although it faces its own set of problems.

Because echo videos are the result of the ultrasound in-
terrogation of the structure of the heart, they are highly de-
graded by multiplicative noise. Therefore, automatic detec-
tion of the cardiac cavities results in missed and false cav-
ities which correspond to occlusion and clutter in the lan-
guage of object recognition. In addition, there is a great de-
gree of uncertainty in the properties of the chambers in the
constellation, which is the result of the same artefacts men-
tioned above.

Even if all of the cardiac cavities could be detected cor-
rectly and the false chambers avoided, one still faces the
high degree of structural similarity among the constella-
tions of the different views. The ambiguities because of the
structural similarity between the views will even become
worse when one adds the possibility of missing and false
chambers to the scenario. In summary, the challenging task
is to be able to distinguish between the instances of the dif-
ferent views of the echo video in the presence of occlusion
(missing parts), clutter (false parts), uncertainty in the fea-
tures of the parts, and structural similarity between the dif-
ferent views.

1.2. Prior Work

The part based representation has been widely used in
the literature for object recognition. The intuition behind

this approach is the fact that an instance of an object could
be identified when correct parts are observed in correct spa-
tial configuration [13]. In this type of modeling the features
(parts) are distinct and specific detectors for each of the dif-
ferent types of parts are available. The goal is then to choose
a set of foreground parts in the correct spatial configuration
in order to be able to identify the objects of interest.

The method that we use to model the constellation of car-
diac chambers is between the modeling method mentioned
above and another category of models which is referred to
as pictorial structures. In a pictorial structure, the parts are
described using appearance models and their constellation
is described using a spring-like model [8, 3]. The image is
then searched for the optimal position of the parts based on
their match with their appearance model and their spatial
configuration.

Although all of the above mentioned approaches and
similar ones focus on object/clutter discrimination, they are
not meant to distinguish between the different objects with
high structural similarity. Boshra and Bhanu [2] addressed
the issues of recognition performance and its dependence on
object model similarity and the effects of distortions such as
occlusion and clutter. They also obtained bounds on the per-
formance of the recognition in the presence of the distortion
factors for the case where the uncertainties of the parts prop-
erties were expressed using uniform distributions and find-
ing the correspondence between the model and the scene
was performed using a voting scheme.

1.3. Our Approach and Contribution

We use a generic cardiac chamber detector on the im-
ages obtained from the echo videos to locate the chambers.
The spatial arrangement and the properties of the cardiac
cavities are captured using an attributed relational struc-
ture. Figure 2 shows the relational structure for the constel-
lation of parts of an image taken from one of the views. The
model of the spatial arrangement of the cardiac cavities and
the distribution of their properties are also expressed as a re-
lational structure.

Finding the correspondence between the two relational
structures expressing the model of a view and that of the ob-
served constellation is posed as a search for the optimal con-
figuration of a random field defined on the parts of the ob-
served constellation. The optimal configuration is the one
that minimizes the overall posterior energy of the field.

Markov Random Field [9] is a statistical modelling
method in which one could efficiently expresses the contex-
tual constraints using locally defined dependencies between
the interacting entities. Through the Hammersly-Clifford
theorem these local dependencies lead to the encapsu-
lation of the joint global characteristics. MRF has been



applied to high-level vision problems such as image inter-
pretation before [9].

In order to disambiguate between the constellations
taken from the different views and to be able to recog-
nize the correct view-label for them, we use a discrimina-
tive approach. Methods such as Support Vector Machines
(SVM) [5] have been shown to perform well in discriminat-
ing between the instance of the different classes in general
pattern recognition applications.

For each observed constellation, we obtain the optimal
labeling of its parts according to each view-model. The vec-
tor of the energies assigned to the observed constellation at
the optimal configuration of the random field according to
the different view-models is used to classify the constella-
tion into the correct view-class. By using this method, as a
matter of fact, we fuse the assessments of the observed con-
stellation by the different view-models in order to correctly
identify its originating view.

The optimal energy assigned to the constellation by the
different view-models projects the constellation of parts
into a point in the energy space as shown in Figure 4. The
SVM classifier learns the decision boundaries to correctly
classify the instances of the different views in this space.
This approach is similar in nature to the one proposed in
[10] in the way that both use all the models to disambiguate
the object; however, there are some fundamental differences
between them. See Figure 5 for an illustration of the idea of
disamiguation.

This work is to the best of our knowledge, the first
attempt to automatically analyze the content of the echo
videos for indexing and annotation purposes. The proposed
method uses the discriminative classifiers on the results of
the application of the generative view-models to classify
images taken from echo videos into correct view classes.
The use of the reported approach and results are not lim-
ited to the application presented here and could be applied
to multiple object recognition problems when the objects
are represented by the constellation of their parts.

2. Part-Based Representation of Echocardio-
gram Views

The spatial arrangment of the chambers of the heart was
proven effective by Tagare et al. [11] in finding similar im-
age planes in tomographic images. The assumption was that
if two images contain the same chambers and each chamber
is surrounded similarly by other chambers, then those two
images should have been taken from the same view of the
heart. This is intuitive when one looks at the images as cross
sections of the imaging plane and the 3-dimensional struc-
ture of the heart at different angles. In that application, the
chambers of the heart were manually located and labeled by
an expert. The focus of the work was on expressing the spa-

Figure 3. GSAT applied to four different key-
frames in the apical four chamber view. The
automatically detected chambers are shown
with solid blobs. The boundary lines are
drawn by hand to show the actual location
of the chambers. The top-right image has a
false positive, whereas in the bottom-left im-
age a chamber is missing.

tial arrangements and assessing the similarity between such
representations.

In light of that work, one could assume that the spatial
arrangement of cardiac cavities is a good indicator for iden-
tifying the different views in the echo videos. We have to
make a note here that the physicians do not rely solely on
the spatial arrangement of the chambers for identifying the
different views and use additional contextual information in
doing so. This is also confirmed in [11], where the results
showed that retrieval of similar image planes was slightly
better by an expert compared to the machine which was only
relying on the spatial relationships between the chambers.

2.1. Automatic Chamber Detection

The cardiac chamber segmentation has been an active
field of research. There are various semi-automatic and
automatic methods proposed in the literature. We use the
method proposed by Bailes [1] which is based on the Gray-
Level Symmetric Axis Tranform (GSAT) to detect the car-
diac cavities. This method assumes that there exists a dis-
tinct cavity in the image for each chamber of the heart. It
then tries to locate the deepest cavities in the image. We
avoid the details of the GSAT method and refer the reader
to [1]. Figure 3 shows the application of the GSAT method
to key-frames taken from a view of the echo video.

Before proceeding, we need to mention that we repre-
sent each temporal segment of the echo video corresonding
to a view of the heart by a set of representative frames or
key-frames which are sampled from the content at semanti-



cally meaningful time instances (see our previous work on
content-based sampling of the echocadiograms: [6]). The
location of each key-frame corresponds to the structural
state of the heart where the heart is most expanded (End-
Diastole [7]).

The reason for using only images of each view at this
structurally unique state is that during each heart cycle
heart goes through different phases of activity, where in
each phase the number of parts, their spatial relationships,
and their properties change. Such structural variability will
hamper our ability to learn a model of the heart for repre-
senting the constellation of its parts in the different views.

3. Modelling the Constellation of Parts

We express both the models of the constellation of parts
in each view and the observed constellations from a given
image using Relational Structures (RS). Each node in such
structure represents a cavity (see Figure 2). Both the nodes
and the edges in the structure have attributes. The attributes
of the nodes are the properties of the cavities and those
of the edges are the relationship between two neighbor-
ing nodes. For handling the missed and false cavities in the
scene (observed constellation), we let all the nodes be re-
lated to each other in the relational structure.

Let the parts in the observed constellation be indexed by
the set S = {1, 2, . . . , N} (we follow the notation presented
in [9] in the following), and let d = [d1(i), d2(i, i′)] , where
i, i′ ∈ S be the unary and binary properties of the parts.
We can represent the relational structure of the observed
constellation as the attibuted graph: G = (S,N , d), where
N represents the fully connected neighborhood structure in
the relational structure. Likewise, the model of a view with
M parts having labels L = {l1, l2, . . . , lM}, and the parts
properties D = [D1(I),D2(I, I ′)], where I ∈ L, could
be expressed as the attributed graph: G′ = (L,N ′,D), in
which N ′ denotes the full connectivity between the parts in
the model. Note that in the ideal case where there are no
missing and false cavities in the observed constellation, one
would have M = N .

The task of labeling the observed constellation using the
model of a certain view is then posed as finding the best
mapping between the nodes of the two attibuted graphs:
f : G → G′. We define a set of random variables f =
{f1, f2, . . . , fN} (Random Field) on the nodes of the at-
tributed graph of the scene, where each of the random vari-
ables take values in the set of labels fi ∈ L in the attributed
graph of the model of the view. Using this framework, the
problem of finding the optimal mapping between the two at-
tributed graphs could be posed as a search for the optimal
configuration of the random field f in the space of possi-
ble configurations Ω = LN .

The optimal configuration of the random field is the
one that results in maximum posterior probability P (f |d)
(MAP-MRF) or equivalently minimizes the posterior energy
[9]; i.e.,

f∗ = argmin
f∈Ω

(U(f |d)) = argmin
f∈Ω

(U(f) + U(d|f)) (1)

where U(f) is the prior energy and U(d|f) the likelihood
energy. The prior energy of a configuration is defined as
(note that we only consider cliques of size up to two);

U(f) =
∑
i∈S

V1(fi) +
∑

i∈S,i′∈S−{i}
V2(fi, fi′) (2)

where the potentials are defined as follows:

V1(fi) =

{
v1 if fi = 0,

0 otherwise.

V2(fi, fi′) =

{
v2 if fi = fi′ and fi �= 0,

0 otherwise. (3)

where both v1 and v2 are positive values. The intuition be-
hind this definition is that a NULL label assignment (here-
after NULL and fi = 0 will be used interchangabely) to
a site incurs a positive energy. This is to avoid all sites in
the field to be labeld NULL. A NULL label only will be as-
signed to a site if the relative penalty of it is smaller than the
the likelihood of the site having any other label. The pair-
site prior potential encourages the sites to have distinct la-
bels. This is derived from the fact that in the constellation
of the heart chambers a chamber can not appear more than
once.

The energy likelihood is defined as;

U(d|f) =
∑
i∈S

V1(d1(i)|fi)+
∑

i∈S,i′∈S−{i}
V2(d2(i, i′)|fi, fi′)

(4)
where the likelihood potentials on single cliques and double
cliques are defined as:

V1(d1|fi) =




K1∑
k=1

(d(k)
1 (i) − D

(k)
1 (fi))/{2σ2

k(fi)}
if fi �= 0,

0 .

V2(d2|fi, fi′) =




K2∑
k=1

(d(k)
2 (i, i′) − D

(k)
2 (fi, fi′))/{2σ2

k(fi, fi′)}
if fi �= fi′ , fi �= 0, fi′ �= 0,

0 .

K1 and K2 are the total number of unary and binary fea-
tures defined on single and pair-site cliques. In the present
work, we use location, area, and directionality as the prop-
erties of each individual part, and distance and angle be-
tween a pair of parts as their joint properties. The properties



of the single and double site cliques are considered to be dis-
tributed according to Gaussian distributions with means de-
fined by D

(k)
j , j = 1, 2.

We obtain the maximum likelihood estimate of the pa-
rameters of the potential functions from the manually la-
beled training data. The bounds on the prior parameters v1

and v2 are estimated such that the training data are embed-
ded at the minimum energy configurations of the configura-
tion space.

To embed the training constellations at the minimum en-
ergy configuration in the configuration space, we note that
any perturbation of the configuration of the labels on the
training set should result in non-optimal configuration. By
changing the non-NULL labeled parts to NULL and vice
versa and obtaining the energy of the new configuration, we
therefore obtain a set of inequalities which provides us with
the bounds on the prior parameters. Equations 6 and 7 illus-
trate the conditions to obtain the lower and the upper bounds
for the prior parameters.

∀i ∈ S, f∗
i �= 0 → fi = 0,

E(fi|f∗
S−{i}, v1, v2) − E(f∗

i |f∗
S−{i}, v1, v2) > 0,

⇒v1 > E(f∗
i |f∗

S−{i}, v1, v2) (6)

∀i ∈ S, f∗
i = 0 → fi �= 0,

E(fi|f∗
S−{i}, v1, v2) − E(f∗

i |f∗
S−{i}, v1, v2) > 0,

⇒E(fi|f∗
S−{i}, v1, v2) > (v1 − α × v2) (7)

where α is zero if the label assigned to the previously NULL
site is a label that is missing from the observed constella-
tion and is one if that label already exists in the constella-
tion; and therefore, we incur a penalty by having two sites
with the same label. We apply this estimation of the bounds
of the prior parameters to each constellation in the train-
ing data and take the common value over all those constel-
lations.

The value of the local energy resulting from assigning
the label fi to a site i is defined as:

E(fi|fS−{i}) � E1(fi) +
∑

i′∈S−{i}
E2(fi, fi′) (8)

where;

E1(fi) =

{
V1(d1(i)|fi) if fi �= 0,

v1 otherwise.

E2(fi, fi′) =




V2(d2(i, i′)|fi, fi′) if fi �= 0, fi′ �= 0,

v2 if fi = fi′ �= 0,

0 otherwise.

(9)
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Figure 4. A constellation is shown in its en-
ergy space representation.

4. View Recognition

So far, we have learned the model of the constellation of
the cardiac chambers for each view of the echo video. Given
the constellation C obtained from a test image I, we want
to determine its correct view-label V ∗

The chamber constellation C is matched against the
model of each view Mk, where k = 1, . . . ,K (total num-
ber of views in our case is K = 10). The optimal la-
beling of the chambers in the observed constellation
according to each of the models is inferred by mini-
mizing the posterior energy of the configuration of the
labels such that the resulting configuration is both consis-
tent with the prior knowledge and the evidence. The HCF
method proposed by Chou and Brown [4], which is a de-
terministic algorithm for combinatorial optimization,
is used to obtain the optimal configuration of the ran-
dom field. The main advantage of this method is its low
complexity O(n) (n= number of sites).

Say labeling the constellation C against all the K mod-
els results in the set of optimal configurations and their cor-
responding energy values,

F∗(C) = {F ∗
k (C) | k = 1, . . . ,K},

E∗(C) = {E∗
k(C) | k = 1, . . . , K} (10)

where, F ∗
k (C) is the optimal configuration of the random

field defined on the sites in the constellation C according to
the model of the k − th view, and E∗

k(C) is its correspond-
ing energy. Each element of the enregy vector is an indica-
tor of how the corresponding model matches the constella-
tion. In other words, it quantifies how each model ”sees”
the constellation C. Figure 5 illustrates this idea.

For now, we assume that the constellation C is complete,
meaning that it does not have any false parts and there are
no chambers missing from it. In this case if one slightly
purturbes the properties of the nodes and edges in the at-
tributed relational structure of C the corresponding optimal
energy vector will change to E∗(C) + δE(C).



Therefore, the energy vectors for all the complete con-
stellations taken from the same view populate the same re-
gion in the energy space (see Figure 4 for illustration ). One
can use discriminative techniques such as SVM [5] to find
the best classifier for discriminating between the constel-
lations taken from the different views. Therefore, the re-
sults of matching the observed constellation C against all
the models are fused together in order to decide the correct
view label.

Two views (classes) will become indistinguishable from
each other in this framework when the energy vector of the
constellations taken from them populate the same region in
the energy space. This would happen if none of the view-
models can distinguish the identities of the two views. In
this case the representation used and the models of the con-
stellation of the parts in the different views do not possess
enough complexity.

If we now allow missing parts (still no false parts ob-
served), the distributions of the energy vectors of the con-
stellations of the different views will tend to spread out
and have more overlap with the ones belonging to the other
models. The reason is that based on which combination of
the parts is missing, the observed constellation could po-
tentially become more similar to the typical constellations
in another view. Still one could learn a classifier to sepa-
rate the constellations of the different views. Naturally, one
would expect higher error rates in the recognition results.

The most challenging case would be the one when both
missed and false parts are allowed in the constellations. The
effect of the false positives will completely deviate the en-
ergy vector associated with the observed constellation from
its normal distribution. This is because the introduction of
the false positives will potentially contribute to higher a de-
gree of similarity between the two models, based on the
properties of those false parts and their numbers.

In this case, we form a multi-hypothesis testing case. For
each possible view k ∈ 1, . . . ,K, we assume that the ob-
served constellation was taken from that view, i.e. C ∈ Vk,
where Vk has the model Mk. For each such assumption,
we label the constellation C according to the model Mk,
and find the optimal label of the parts. We then delete the
parts labeled as false according to this labeling and then ob-
tain the energy vector for the filtered constellation. By do-
ing this, if the observed constellation C was truly taken from
view Vk, it would be correctly classified by the classifier
learned for the case where only missing parts were allowed.
We now apply the same process to the observed constel-
lation according to all the different view assumptions and
find the corresonding classification results for each such ob-
tained energy vectors. One could then decide on the correct
view label for the observed constellation by comparing the
confidence scores of the different classification results un-
der the different view assumptions and fuse the decisions.

C10C9

4E

9E

10E

Figure 5. The images from top to bottom
show the energies assigned to constellations
taken from the views 9 and 10 (C9, C10) by the
models of views 4, 9, and 10 (E4, E9, E10). It
is evident from the figures that neither the
model of view 9, nor is view 10 able to distin-
guish between the constellations. However,
the model of view 4 could be used to dis-
tinguish the constellations taken from those
two views. In other words, the model of view
4 ”sees” the constellations taken from the
views 9 and 10 differently.

5. Experiments and Results

In this section, we report the results of our experiments
for view recognition in echo videos using the proposed
method. Our data set is consisted of N1 = 15 echo videos
of normal, and N2 = 6 echos of abnormal cases. The echos
of the normal heart with a total of 2657 key-frames are
used both for training and testing (in leave-one-out fash-
ion), while those of the abnormal echo videos with total of
552 key-frames are only used for testing purposes. Every
key-frame in the data set is manually labeled by an expert.
There are K = 10 different views present in these echo
videos, taken from the Parasternal Long Axis (2 views),
Parasternal Short Axis (4 views), and Apical (4 views) an-
gles of imaging [7].

We conduct the experiments in a leave-one-out scheme,
where in each round (15 rounds total) one echo videos is
left out as the test data and we learn the models from the re-
maining 14 echos. For each of the views, we learn the priors
and the paramters of the Gaussian distributions of the sin-
gle and double cliques from the hand-labelled training data.
The SVM classifiers are also learned for each round of ex-
periment. The experiments and results are reported for four
different cases below.

CASE 1 (Normal Echos-Complete Constellations). In



the first set of experiments, we want to investigate the per-
formance of the view recognizer for the case where the con-
stellations are complete; i.e., they do not have false parts and
none of the parts are missing. In this case, the uncertain-
ties in the properties of the parts in the model of each view
and the closeness of the geometry of the constellations cre-
ates ambiguities between the constellations of the different
views.

From the available training data, only the key-frames
which contain complete constellations and maybe false pos-
itive chambers are selected. If the constellation contains
false parts, those parts are removed from the constellation
(filtered constellations). Each filtered constellation is then
labeled according to the models of the different views, and
the corresponding energy vector at the optimal configura-
tions is found.

Using the energy vectors obtained for all training data, a
multi-class SVM classifier is then trained for each round.
The energy vectors of the test key-frames (also filtered
constellations) are then classified using the learned multi-
class SVM classifier. The top two images in Figure 6 show
the Hinton diagram of the confusion matrix for this case
with and without considering clinical similarities. We de-
fine clinically similar views as the ones that even the hu-
man expert could not discriminate and for clinical purposes
they are regarded as identical. In the present case, the views
in each of the following sets {4, 5, 6}, {7, 8}, and {9, 10}
are considered clinically similar.

The average precision over all rounds of experiment and
all views is 67.8% without and 88.35% with taking into
account the clinical similarities. As shown in Figure 6,
for the original case the set of views that are often con-
fused with each other are {4, 5, 6}, {1, 3, 7}, and {2, 10}.
In the first set, all views have a single part (degenerate case)
with highly overlapping property distributions; in the sec-
ond case all views have constellations with four parts; and
in the last case, all have two part constellations.

It is worth mentioning that the direct comparison of the
energy values obtained from comparing the test images with
the different view-models results in an average precision of
20% for this case.

CASE 2 (Normal Echos-Complete Constellations with
False Chambers). In this case, the introduction of the false
chambers contributes to the similarity between the constel-
lations taken from the different views. The false chambers
only occur at certain regions of the image based on the
view. However, because of the Gaussin model used for the
cliques in the random field modeling, they still could be la-
beled non-Null under certain view assumptions based on
their properties in the image.

In order to do the view recognition in this case, we use
the multi-hypothesis approach as explained in Section 4 and
use the same SVM classifiers learned for the complete case.
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Figure 6. Hinton diagrams of the confusion
matrices for cases 1 ∼ 3 from top to bottom
respectively. Ideally, one should only see full
white squares on the diagonal. On the left,
the confusion matrices for the original set of
views are shown, and on the right are the
ones for the case where the clinical similar-
ities are taken into consideration.

The Hinton diagrams of the confusion matrices for the
cases with and without taking into account the clinical sim-
ilarities are shown in the middle row of Figure 6. The av-
erage precisions of 54.1% and 74.34% are obtained for the
original and the clinically similar cases respectively.

CASE 3 (Normal Echos-Constellations with Missed and
False Chambers). For this case, we learn the SVM classi-
fiers for each round of experiment using constellations with
their false chambers removed. Then, the multi-hypothesis
approach was used to classify each real constellation (both
false chamber and missed chambers exist).

As seen from the confusion matrices shown in the bot-
tom row of Figure 6, the ambiguity between the views nat-
urally becomes worse than the case that only false positives
were allowed. The average precision in this case drops to
34% without and 52% with the clinical similarity taken into
account.

It is useful to compare these results to the random guess-
ing of the views with non-uniform priors. Given that the



prior probability of correctly guessing the view labels for
the constellations taken from the view k is pk, the overall

rate of error becomes; ε =
K∑

k=1

pk(1−pk) = 1−
K∑

k=1

p2
k. The

average rate of error of randomly guessing the view labels
with non-uniform priors over the 15 rounds of experiments
became ε = 88.13%, that is average rate of correct recogni-
tion by guessing is 11.87%. Therefore, the automatic recog-
nition is almost three times better than random guessing in
the worst case.

CASE 4 (Abnormal Echos). In this experiment, we want
to see how the models learned from the key-frames taken
from the normal echos perform on the test images taken
from the abnormal ones. There are 6 abnormal echo videos
on which we test the performance of the view recognizer.
We only consider the complete constellation case in this ex-
periment.

The confusion matrix of this case is very similar to that
of case (1). The average precision is 56% without and 78%
with taking into account the clinical similarities. Compared
to the similar case for the normal echos, the precision has
slightly dropped.

6. Conclusion and Future Work

In this paper, we addressed the issue of automatic view
recognition in echocardiogram videos and its application
to the indexing of the content of these videos. The auto-
matic indexing process could potentially be applied to both
the analog echo videos (after digitization) and the digital
ones. It is very expensive to manually index the content
of the analog echo videos. For the digital echos although
the new acquisition devices provide online annotation tools
their use is burdonsome because the focus during the acqui-
sition process is on capturing the best and the most clear
images rather than annotating the content.

We used a part-based representation for the constella-
tion of the heart chambers in the different views and used
Markov Random Fields to model such represenations. The
collection of the energies obtained from comparing a test
image to the models of the different views was then used as
the input to a SVM classifier to find the view label. This fu-
sion scheme helped to disambiguate the constellations taken
from the views with structural similarities.

The results of the automatic recognition of the view la-
bels could be improved if one uses more complex distribu-
tions for the properties of the parts. Also, the training of the
MRF model of the constellations of the cardiac chambers
and the SVM classifiers were performed separately. One can
combine the two to obtain better results.

In our approach, the models of the different views of the
echocardiogram video were learned from the key-frames
extracted from the content of the videos. We believe that

by using the spatio-temporal characteristics of the constel-
lation of the chambers of the heart, we not only can im-
prove the results but also potentially recover the different
phases of activity of the heart during each cycle of its activ-
ity. We are currently investigating this issue.

Although the approach presented in this paper was ap-
plied to the echo images, it could potentially be applied to
any multiple object recognition problem when the objects
are represented by the constellation of their parts and there
are ambiguities due to similarity in their structures.
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