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Abstract 
 

The advent of the modern digital technology has not only brought about the 
prevalent use of digital images in our daily activities but also the ease of creating 
image forgery such as digital photomontages using publicly accessible and user-
friendly image processing tools such as Adobe Photoshop. Among all operations 
involved in image photomontage, image splicing can be considered the most 
fundamental and essential operation. In this report, our goal is to detect spliced 
images by a passive-blind approach, which can do without any prior information, 
as well as without the need of embedding watermark or extracting image features 
at the moment of image acquisition. Bicoherence, a third-order moment spectra 
and an effective technique for detecting quadratic phase coupling (QPC), has been 
previously proposed for passive-blind detection of human speech splicing, based 
on the assumption that human speech signal is low in QPC. However, images 
originally have non-trivial level of bispectrum energy, which implies an originally 
significant level of QPC. Hence, we argue that straightforward applications of 
bicoherence features for detecting image splicing are not effective. Furthermore, 
the theoretical connection between bicoherence and image splicing is not clear. 
For this work, we created a data set, which contains 933 authentic and 912 spliced 
image blocks. Besides that, we proposed two general methods, i.e., characterizing 
the image features that bicoherence is sensitive to and estimating the splicing-
invariant component, for improving the performance of the bicoherence 
technique. We also proposed a model of image splicing to explain the 
effectiveness of bicoherence for image-splicing detection. Finally, we evaluate the 
performance of the features derived from the proposed improvement methods by 
Support Vector Machine (SVM) classification on the data set. The results show a 
significant improvement in image splicing detection accuracy, from 62% to 72%.  

 



 
1 Introduction 
 
Photomontage refers to a paste-up produced by sticking together photographic images. 
While the term photomontage was first used for referring to an art form after the First 
World War, the act of creating composite photograph can be traced back to the time of 
camera invention. 
 
Before the digital age, creating a good composite photograph required the sophisticated 
skill of darkroom masking or precise multiple exposure of a photograph negative. 
However, in the age where digital images are prevalent, creating photomontage can be as 
easy as performing a cut-and-paste with specific tools provided by image publishing 
software such as Adobe Photoshop, was reported to have 5 million registered users at 
2004 [1]. Nowadays, this type of software is widely accessible to us. While such act is 
simple for naïve users, slightly more sophisticated users may employ other tools from the 
same software to apply additional tricks such as softening the outline of the pasted object, 
adjusting the direction of an object illumination and so on, in order to enhance the realism 
of the composite. All it takes to create a digital photomontage of fairly high quality is no 
more than a good image-publishing software and an average user of the software [2]. 
Image manipulation (mainly photomontaging) using Adobe Photoshop has actually 
become a pastime for certain users. For instances, sites like b3ta.com and 
Worth1000.com host weekly Photoshop challenges, where users, who may not be a 
professional, submit their work of photomontage to vie for the best. Up till May 2004, 
Worth1000.com site alone contains 85,464 photomontages and examples of these work 
are shown in Figure 1. 
 

  



 
 

Figure 1: Examples of photomontages from the site Worth1000.com 

 
The ease of creating digital photomontage, with a quality that could manipulate belief, 
would certainly make us to think twice before accepting an image as authentic [3]. This 
becomes a serious issue when it comes to photographic evidence presented in the court or 
for insurance claims. Image authenticity is also a critical for news photographs as well as 
for the scanned image of checks in the electronic check clearing system. Therefore, we 
need a reliable way to examine the authenticity of images, even at a situation where the 
images look real and unsuspicious to human.  
 
1.1 Prior Work 
 
One way to examine the authenticity of images is to check the internal consistencies 
within a single image, such as whether or not all the objects in an image are in correct 
perspective or the shadow is consistent with the lighting [3]. This technique inspects the 
minor detail of the image to locate the possible inconsistencies, which is likely to be 
overlooked by forgers.  Coincidentally, Such general methodology finds parallel in the 
area of art connoisseurship and psychoanalysis [4]. However, unless there are major and 
obvious inconsistencies, minor or ambiguous inconsistencies can be easily argued away. 
Furthermore, creating a digital photomontage that is free from major inconsistencies is 
not difficult for professional forgers if internal consistencies are specifically taken into 
consideration.  
 
Another approach of asserting image authenticity is through extracting digital signature 
[5] or content-based signature [6-10] from an image at the moment it is taken by a secure 
or trustworthy camera [5]. Alternatively, watermark data can be embedded into an image 
to achieve the same purpose. Such approach is considered to be an active approach 
because it requires a known pattern to be embedded in an image or the image features to 
be recorded before authenticity checking can be performed later. In general, 
watermarking techniques such as fragile watermarking [11-15], semi-fragile 
watermarking [16-19] or content-based watermarking [20, 21] are used for the image 
authentication application. The watermarking techniques have their own inherent issues. 
Fragile watermark is impractical for many real-life applications as compression and 
transcoding of images are very common in the chain of multimedia delivery. In this case, 



fragile watermarking techniques will declare a transcoded or compressed image as 
inauthentic even though the transcoding or compression operation is a content preserving. 
Although semi-fragile watermark or content-based watermark can be designed to tolerate 
a specific set of content-preserving operations such as JPEG compression with adjustable 
degree of resilience well [17], to design a watermark that could meet the complex 
requirements of the real-life applications in terms of being resilient to a defined set of 
operations with adjustable degree of resilience while being fragile to another set of 
operations is in general challenging. As an example of the complex user requirements, 
watermark for facsimile should be resilient to the errors resulted from scanning and 
transmission and tolerant to intensity and size adjustment but not intentional change of 
the text or characters. 
 
As the watermarking and the signature extraction technique for content authentication 
have to work together with a secure camera, the security of these approaches depends on 
the security of the camera as well as the security of watermarking or the signature 
extraction. Security issues facing a secure camera are such as how easy it is to hack the 
camera such the identification information of a watermark or signature can be forged, 
how easy it is to disable the embedding of watermark or how easy it is to embed a valid 
watermark onto a manipulated image or extract a valid signature from it using the camera 
itself or by other means. In short, a secure camera has to ensure that a watermark is only 
embedded or a signature is only extracted at the every moment an image is captured. 
Whereas the security of a watermarking scheme concerns with how easy it is to illegally 
remove, copy, forge and embed a watermark and the security a signature extraction 
scheme concerns with the ease of forging a signature.  
 
Unfortunately, until today, there is still not a fully secure watermarking scheme; the 
watermarking secret for ensuring the security of a watermarking scheme can be hacked 
given sufficient conditions such as when sufficient number of images with the same 
secret watermark key are available or the embedded watermark can be removed by 
exploiting the weak points of a watermarking scheme [22]. Nevertheless, digital 
watermarking or signature extraction scheme make an attempt to deceive by means of 
digital photomontage more difficult, as forgers would not only need to avoid the 
suspicion from human inspectors, they also have to make an additional effort to fool the 
digital watermark detector. Above all, the prospect for the secure camera to become a 
common consumer product is still fairly uncertain. Other general issues of watermarking 
techniques include the needs for the both watermark embedder and the watermark 
extractor to stick to a common algorithm and degradation of image quality as a result of 
watermarking.  
 
Setting aside the active approach, Farid [23] proposed a passive and blind approach to 
detect the splicing of human speech. The proposed technique uses bicoherence features, 
i.e. the mean of the bicoherence magnitude and the variance of the bicoherence histogram 
to detect the increase in the level of quadratic phase coupling (QPC) induced by splicing 
together two segments of human speech signal. When there exist three harmonically 
related harmonic at frequencies 1 2 1 2,  and ω ω ω ω+  in a signal, quadratic frequency 
coupling (QFC) is considered happening at bi-frequency 1 2( , )ω ω . When the phase the 



three harmonically related frequencies happen to be 1 2 1 2,  and φ φ φ φ+  respectively, QPC 
happens. Although QFC alone may be coincidental, the occurrence of QPC is a strong 
indication for a quadratic non-linearity. The detectability of the increase in QPC induced 
by splicing relies significantly on the premise that human speech signal is originally low 
on QPC. In [24], Fackrell et al. empirically shows that the vowels, nasals as well as the 
voiced and the unvoiced fricatives, among the human speech sounds, do not exhibit 
significant level of QPC. However, in [25], Nemer et al. argued otherwise.  In [25], 
bispectrum of speech linear predictive coding residual of short-term speech is used 
distinguish between speech activity and silence, and it is found that bispectrum of human 
speech is sufficiently distinct from the zero bispectrum of Gaussian noise. 
 
It is easy to see that QPC arises when 1 1 2 2( ) cos( ) cos( )x t t tω φ ω φ= + + +  goes through a 
linear-quadratic operation as shown in Figure 2, where the output is given by: 
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It can be seen that there exists 1 1 2 2 1 2 1 2cos( ),  cos( ) and cos(( ) ( ))t t tω φ ω φ ω ω φ φ+ + + + +  
which results in QPC at 1 2( , )ω ω . 
 
In [23], it is argued that human speech signal splicing operation (which is followed by a 
smoothing post-processing) is a non-linear operation which contains the effect of a linear-
quadratic operation, because a non-linear function contains a quadratic term in its Taylor 
series expansion. 

 

Figure 2: A linear-quadratic operation block diagram 

 
 
Unlike human speech signal, the premise of low-valued bispectrum would not apply to 
image signal, which is often made up of edges and corners. In fact, it has been 
demonstrated that the two-dimensional bispectrum, b(ωx1, ωy1 ; ωx2, ωy2), of natural 
images show a concentration of energy around regions where frequencies are aligned 
according to Equation (1.1) [26].  
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Figure 3: A side-by-side comparison for the magnitude of bispectrum for a natural image and that of 
a random noise. (source: extracted from [26]) 

 
It is also shown in [27] that, the concentration of energy in this particular regions is due 
to the intrinsically 0-D (i0-D) and 1-D (i1-D) local image features. i0-D local image 
features are the constant-valued patches and i1-D local image features are image features 
which can be described using a function of one variable (e.g. straight edges). As an aside, 
it is also shown that i0-D and i1-D local image features are the most common image 
features in natural images.  
 
The relationship between the concentrations of bispectrum energy in natural images and 
the i1-D image features can be intuitively explained as follows:  
 
A local image region with parallel straight lines oriented at an angle θ  with respect to the 
horizontal axis can be described by a plane function as follows: 
 
 ( , ) ( sin cos )u x y x yψ θ θ= − (1.2) 
   
 
The Fourier transform of equation (1.2) is: 
 
 ( , ) ( sin cos ) ( cos sin )x y x y x yU ω ω ω θ ω θ δ ω θ ω θ= Φ − +i  
 
where ( )δ i  is a delta function. Hence, the non-zero frequency components are oriented at 
90o θ−  in the Fourier frequency domain, i.e. / tanx yω ω θ= . Hence, quadratic frequency 
coupling (i.e., the occurrence of high Fourier frequency component at 
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,   and x y x yω ω ω ω+ ) due to the i0-D image features is only possible for frequencies along 
this orientation, i.e., 
 

1 1 2 2 1 2 1 2/ / ( ) /( ) tanx y x y x x y yω ω ω ω ω ω ω ω θ= = + + = . 
 
Krieger’s finding about the concentration of energy (magnitude) for the bispectrum of 
natural images directly implies that the bicoherence magnitude feature (i.e., the mean of 
the bicoherence magnitude) used by [23] would not be originally low for authentic 
images, as under the phase randomization assumption, the magnitude of bispectrum is an 
indication of QPC [28, 29] and the magnitude of bicoherence is a good estimator for the 
ratio of QPC energy [28]. As the level of the bispectrum energy is image feature 
dependent, detecting the increase of the magnitude feature value resulted by image 
splicing would be likened to a detection problem in low signal-to-noise environment, if 
the increase of magnitude feature value were relatively small compared to the original 
variance of the bicoherence features.  
 
The assumption of phase randomization across the data segments refers to that each data 
segment can be considered as an independent phase realization when estimating a 
bispectrum through segment averaging. With phase randomization assumption, the 
magnitude of bispectrum could be high even in the absence of QPC; this could happen 
where is a deterministic coherent relationship between the phases of the harmonically 
related frequencies. In the case of coherent phase, the coherent-phased summation of the 
bispectrum across the data segment would amount to a large value without QPC actually 
happening. Table 1 shows the subtle distinction between the phase relationship of QPC 
and that of coherent-phased harmonics. 
 
Table 1: Distinction between QPC with phase randomization and coherent-phased harmonics 

QPC with phase randomization Coherent phase but without QPC 
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Since the phase of an image in Fourier domain is related to the location of edges [30] and, 
if the location of edges within an image segment are assumed to be random, then the 
phase randomization is valid for the estimation of an image bispectrum. In this case, the 
concentration of high energy for the bispectrum of natural images also implies that 
natural images originally have non-zero and high QPC. Hence, the bicoherence phase 
feature used by [23] (i.e., the variance of the bicoherence phase histogram) would face 
the same challenge as the above-mentioned bicoherence magnitude feature. 
 



Recently, Farid [31] reported his recent system for detecting image manipulation based 
on a statistical model for natural images in wavelets domain. Manipulated images can be 
identified as it deviates from the eight defined statistical properties of natural images, 
which have been identified to be consistent across most natural images. One of the 
statistical properties mentioned in the report is the ratio of the number of the high-value 
wavelet coefficients between wavelet subbands of different scales. The system was 
claimed to be able to detect six types of tampering, i.e., splicing, resizing, printing and 
rescanning, double compression, artificial graphics and steganography. However, not 
much detail about the technical approaches and their performance was provided in the 
article. From the description of the article, it could be that it is the artifact from the post-
processing operation such as airbrushing that follows the image splicing operation that 
the system is detecting and such artifact is considered as an indirect evidence of image 
splicing. However, such artifact does not necessarily imply image splicing. In contrast to 
this, our work described in this report would detect the direct artifacts given rise by image 
splicing. As photomontaging may not be followed by post-processing operation such as 
airbrushing, direct detection of image splicing is important.  
 
1.2 The Important Role of Image Splicing 
 
Creation of photomontages always involves image splicing, although additional tools can 
sometimes be applied to enhance the visual naturalness of the photomontages and most 
importantly to remove the rough edges of the cutout caused by unskillful cut-and-paste 
operation. Image splicing herein refers to a simple putting together of separate image 
regions, be they from the same or different images, without further post-processing steps. 
In a sense, image splicing can be considered the simplest form of photomontaging. 
 
Common post-processing operations following image splicing are feathering effects on 
spliced edges (for creating a smooth blur edges) or airbrush style (with soft and smooth 
effect) erasing of rough object edges. These post-processing of an image will leave 
behind different traces, which can be detected using different techniques. For instance, 
the system of Farid [31] was reported to be able to detect the airbrush style effect and the 
detection of this artifact can be considered an indirect evidence of image splicing.  
 
In contrary to the general belief, a good-quality photomontage can in fact be obtained by 
mere image splicing when the cut-and-paste operation is skillfully and carefully 
performed. The following figure shows examples of photomontages produced by a 
professional graphic designer with pure image splicing: 
  
1.3 Outline of the Report 
 
In this report, we intend to study the feasibility of applying higher order statistics 
techniques for image splicing detection and provide a model of image splicing to explain 
the response of bicoherence (i.e., a normalized version of the Fourier transform of a third-
order moment known as bispectrum) magnitude and phase features to image splicing. 
Apart from image splicing being a basic operation in creating photomontage, another 



main reason why we focus on the problem of image-splicing detection is based on our 
observation in a preliminary experiment described in section 1.4. 
 

Figure 4: deceivingly authentic looking photomontages with mere image splicing: (left) the golfer is a 
spliced object (right) the white truck is an spliced object  

 
In Section 2, we will describe a data set consists of authentic and spliced image blocks, 
which will be used for all the experiments described in this report. Then, in Section 3, we 
will move on to provide an introduction to bicoherence and describes the two 
bicoherence features used in [23]. In Section 4, we describe a signal model from image 
splicing and investigate the effect of image splicing on the bicoherence features in 
accordance to the proposed image-splicing model. Then, we would show some empirical 
evidence supporting the proposed model.  
 
From the experiment results described in Section 5, we will show some properties of the 
plain/baseline bicoherence features for different types of image blocks. The magnitude 
(i.e., the mean of the bicoherence magnitude) and the phase (the negative entropy of 
bicoherence phase histogram) features similar to that used by Farid [23] are considered as 
the plain/baseline features. Since the two baseline bicoherence features would not 
perform well for image splicing detection, we are motivated to propose two general 
methods (i.e., characterizing the image properties and the splicing-invariant features) to 
improve the performance of the bicoherence features in Section 6. As a result of the 
proposed methods, the new features are derived; those are the prediction residual for the 
plain bicoherence magnitude and phase features, and the edge percentage features. 
Finally, in Section 7, we evaluate the features derived from the proposed methods using 
SVM classification experiments. When combining the new features with the plain 
bicoherence features, the classification accuracy improves from the 62% obtained by the 
plain bicoherence features to 72%. 
 
 
1.4 Related Preliminary Work 
 
In a separate experiment (detailed description can be found in the Appendix of this 
report), we have used the higher-order statistics (HOS) (i.e., mean, variance, skewness 
and kurtosis) of both the wavelet coefficients and the linear prediction error of the 
wavelet coefficients [32] as features for distinguishing various types of image operations. 
Farid has used the wavelet features for classification of natural images versus steg image, 



i.e., images with a hidden message (98.9% of the natural and 97.6% of the steg images 
are correctly classified), natural images versus photorealistic 3D computer graphics 
(99.5% of the natural and 36.9% of the computer graphics images are correctly 
classified), and natural images versus print-and-scanned images (99.5% of the natural and 
99.8% of the print-and-scanned images are correctly classified). High classification 
accuracy is obtained except for the natural images versus computer graphics 
classification. However, our preliminary work of classification of a more comprehensive 
set of image operations, as listed below, using the wavelet features has not been reported 
before. 
 

• Low pass (lp) - Gaussian low pass with kernel support size 5x5 and standard 
deviation 8 

• JPEG (jpeg) – JPEG compression with quality factor 60 
• Additive noise (noise) – Gaussian noise with mean 0 and standard deviation 18 
• High pass (hp) – Gaussian high pass with cutoff frequency at 0.025 times 

sampling frequency, compensated with the original image 
• Histogram equalization (histeq) – uniform histogram with 64 bins 
• Median filtering (medfilt) – with filter kernel size 9x9 
• Wiener filtering (wiener) – with filter kernel size 9x9 
• Brightening (bright) – with 0.6 gamma pixel intensity mapping  
• Simulated Image splicing (splicing) – swapping the upper-right quadrant and the 

lower-left quadrant. 
 
Images used are of approximated size of 512x768 pixels. Classification of image 
operations are performed using Support Vector Machine (SVM). The classification 
performance of all operations are reasonably well except that the simulated cropping is 
doing just as good as random guessing. This shows that the wavelet-based multi-
resolution features are inadequate for blind detection of image splicing. The failure of the 
wavelet features in detecting image splicing has motivated us to extend our effort in 
investigating other ways of detecting image splicing.  
 



 
2 Data Set Description 
 
We can imagine that every spliced image has a correspondent authentic counterpart, i.e. 
an image that is similar to the spliced image except that it is authentic or produced by a 
camera. If the authentic counterpart of spliced images does exist, the ideal image data set 
for experiments on detecting image splicing would be one, which comprises a set of 
spliced images and their authentic counterpart. However, constructing such ideal data set 
is highly difficult if not impossible. Therefore, instead of trying to construct such an ideal 
image data set, we try to populate our image data set with samples of diverse properties 
in terms of the orientation of splicing interface (i.e., vertical, horizontal or diagonal), the 
type of splicing (i.e., straight or arbitrary boundary splicing) and different properties of 
splicing regions (i.e., smooth or textured regions). 
 
The data set has 933 authentic and 912 spliced image blocks of size 128 x 128 pixels. The 
image blocks are extracted from images in CalPhotos image set [33]. As the images are 
contributions from photographers, we assume that they can be considered as authentic 
i.e., not digital photomontages.  

 
The authentic category consists of image blocks of an entirely homogenous textured or 
smooth region and those having an object boundary separating two textured regions, two 
smooth regions, or a textured regions and a smooth region. The location and the 
orientation of the boundaries are random.  

 
The spliced category has the same subcategories as the authentic one. For the spliced 
subcategories, splicing boundary is either straight or according to arbitrary object 
boundary. The image block with arbitrary object boundaries are obtained from images 
with spliced objects; hence, the splicing region interface coincides with an arbitrary-
shape object boundary. Whereas for the spliced subcategories with an entirely 
homogenous texture or smooth region, image blocks are obtained from those in the 
corresponding authentic subcategories by copying a vertical or a horizontal strip of 20 
pixels wide from one location to another location within a same image block. 
 
In actual case, image splicing does not always introduce object boundary. For instance, 
when a forger wants to remove a region corresponding to an object from an image, he or 
she may attempt to fill up the removed region using patches similar to the background. 
Therefore, image splicing could take place at homogenous textured or smooth region too. 
This also forms the rationale for our technique of producing the spliced subcategories of 
an entirely homogeneous textured or smooth region.  
 
Figure 5 shows the typical image blocks in each subcategory of the data set and Table 2 
shows the number of image blocks within each subcategory. 
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Figure 5 Typical images in the data set 

 
Table 2 : The number of image blocks in each subcategory of the data set 

Category 
One 

Textured 
Background 

One 
Smooth 

Background

Textured-
Smooth 

Interface 

Textured-
texture 

Interface 

Smooth-
smooth 

Interface 
Total 

Authentic 126 54 409 179 165 933 
Spliced 126 54 298 287 147 912 

 
More details about the dataset can be found in [34]



 
3 Bicoherence 
 
In this section, we will give a brief introduction of bicoherence and illustrate the way we 
estimate the 1-dimensional bicoherence from a 2-dimensional image. 
 
3.1 Introduction to Bicoherence 
 
Bispectrum is defined as the Fourier transform of the third order moment of a signal x(t) 
and can be expressed as Equation (1.3) as the expected third-order or quadratic correlation 
of three harmonics from the Fourier transform of the signal, ( )X ω , at 1 2 1 2,   and ω ω ω ω+ .  
 

1 2( ( , ))*
1 2 1 2 1 2 1 2( , ) [ ( ) ( ) ( )] ( , ) j BISBIS E X X X BIS e ω ωω ω ω ω ω ω ω ω Φ= + = (1.3) 

 
Bispectrum is often used for detecting the existence of the quadratic correlation within a 
signal, as being applied in oceanography [35], EEG signal analysis [36], manufacturing 
[37], non-destructive structural fatigue detection [38] and plasma physics [39] 
applications. 
  
Whereas bicoherence is the normalized version of bispectrum and defined a below [39]: 
 

Definition 1 (Bicoherence) The bicoherence of a signal x(t) with its Fourier transform 
being X(ω) is given by [39]: 
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When the harmonically related frequencies and their phase are of the same type of 
relation, i.e., when there exists (ω1, φ1), (ω2, φ2) and (ω1+ω2, φ1+φ2) for X(ω), b(ω1,ω2) will 
have a high magnitude value and a zero phase, we call such phenomena quadratic phase 
coupling (QPC). As such, the average bicoherence magnitude would increase as the 
amount of QPC grows. Besides that, signals satisfying the gaussianity property can be 
proved to have low bicoherence and thus bispectrum is often used as a measure of signal 
non-gaussianity [40]. 
 
The expression for bicoherence in Equation ((1.4)) is obtained by normalizing bispectrum 
with the Cauchy-Schwartz inequality upper bound on the magnitude of bispectrum; 
hence, its absolute value is bounded between 0 and 1. The Cauchy-Schwartz upper bound 
is achieved when the harmonically related frequencies in the numerator is perfectly phase 
coupled. In this case the magnitude of bicoherence is one and its phase, being 

1 2 1 2( )φ φ φ φ+ − + , is zero. In general, for a signal 
 1 1 1 1 1 2 1 2 1 2 3( ) cos( ) cos( ) cos(( ) ( )) cos(( ) )C UCx t t t A t A tω φ ω φ ω ω φ φ ω ω φ= + + + + + + + + + +  



where 1 2 3,   and φ φ φ  are random and uncoupled. The squared magnitude of the 
bicoherence, 2

1 2( , )b ω ω , is a good measure for the fraction of QPC energy, i.e. 
2 2 2/( )C C UCA A A+ . However, it this case, the phase of the bicoherence is still zero. 

 
 
3.2 Estimation of Bicoherence Features 
 
With limited data sample size, instead of computing 2-dimensional bicoherence features 
from an image, we compute 1-dimensional bicoherence magnitude and phase features 
(will be described in section 4.3) from Nv vertical and Nh horizontal image slices of an 
image and then combined as in equations (1.5) and (1.6). For the image blocks of 
128 128×  pixels in our data set, 128v hN N= = . 
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In order to reduce the estimation variance, the 1-D bicoherence of an image slice is 
computed by averaging segment estimates: 
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We use segments of 64 samples in length with an overlap of 32 samples with adjacent 
segments. For lesser frequency leakage and better frequency resolution, each segment of 
length 64 is multiplied with a Hanning window and then zero-padded from the end before 
computing 128-point DFT of the segment.  
 
In Fackrell et al. [38], it is suggested that N data segments should be used in the 
averaging procedure for estimating a N-point DFT bispectrum of a stochastic signal. 
Overall, we use 768 segments to generate features for a 128x128-pixel image block. 
 
 



4 A Model for Image Splicing 
 
In this section, we would like to propose a way to model image splicing based on the idea 
of signal perturbation by delta functions. The rationale of the proposed model will be 
explained. Before going into image-splicing model, let’s us look at a related prior work 
on human speech splicing 
 
4.1 Prior Work on Human Speech Splicing 
 
In [23], bicoherence magnitude and phase features are applied for detecting human 
speech splicing and the approach is justified with the following arguments: 
1. Human speech signal is originally weak in higher order correlation, reflecting on the 

low value of the bicoherence magnitude feature and a rather randomly distributed 
bicoherence phase. 

2. A quadratic operation, by inducing a Quadratic Phase Coupling (QPC) phenomenon, 
increases the bicoherence feature values due to the quadratic harmonic relation and 
the 0o phase bias. A general non-linear operation, when expressed by a Taylor 
expansion, has a partial sum of low-order terms resembling a quadratic operation.  
 

However, the arguments could not justify the use of bicoherence features for image 
splicing detection: 
1. Image signal may not be originally weak in higher order correlation as demonstrated 

in [26]. With the assumption of phase randomization across data segments used for 
the estimation of bispectrum, bispectrum energy (magnitude) is an indication of the 
QPC. As we can consider bicoherence as a measure of QPC, this empirical 
observation implies that the detection of image splicing through the detection of the 
increase in the plain bicoherence magnitude and phase feature value would face a 
high level of noise if the increase of the feature value is relatively small. 

2. In [23], detection of a cascaded splicing and smoothing (using a Laplacian pyramid) 
operation on fractal signal and human speech signal is demonstrated. However, a 
splicing operation, if were to be considered a function, is potentially discontinuous 
and has no Taylor expansion. Thus, the aforementioned argument about QPC cannot 
be applied. Besides that, the effect on the bicoherence features due to splicing is still 
unknown. 

 
4.2 Image-Splicing Model 
 
When an image is directly acquired by an image acquisition device, such as camera or 
scanner, we call this image an authentic image. Then, when an image created as a 
composite of multiple image regions, it is not considered as an authentic image. In the 
following discussion, we consider image splicing to be an act of putting together different 
image regions without other post-processing such as airbrush style softening of edges at 
the splicing interface.  
 
While images are not just a collection of random pixels, neither is image splicing in real 
life likely to be just putting together of two or more random patches from different or the 



Splicing
Spliced 
Image 

Authentic Counterpart

same images. Spliced image is usually done with a purpose, such as for forging court 
evidence, for changing a figure in a digital check (scanned version of a real check) or for 
creating an image of a scene setting, which is dangerous or expensive to be set up 
physically. In all these cases, the resulting spliced image would highly resemble an 
authentic image if there is one truly exists. Therefore, we can imagine that there exists an 
image, which is visually similar to a spliced image, but is in fact an authentic image, 
hence without splicing effect. We call this possibly hypothetical image an authentic 
counterpart of a spliced image. Even for a spliced image, which looks totally unreal to 
human due to internal scene inconsistencies within the image, it is still in practice 
possible to find an authentic counterpart for such weird looking image. A way to find one 
that is close to the truly authentic counterpart is to recapture the resulting photomontage 
by a camera or a scanner after it has been printed out. Therefore the essential difference 
between a spliced image and its authentic counterpart lies in the fact that the former goes 
through a natural imaging process while the later does not. Figure 6 illustrates the 
concept of an authentic counterpart for a spliced image 
 
 

Figure 6 Illustration for the Concept of an Authentic Counterpart for a spliced image 

 
As we compare a spliced image with its authentic counterpart, the most drastic difference 
between them is at the interface of the splicing regions. In this case, all the regions of the 
pair are authentic per se although they are from different sources. The interface may or 
may not correspond to an image edge, as image splicing can be done in such a way that it 
is meant to remove an object from a background and patching the removed region with 
patches similar to the background, rather than adding an image object to a background. 
However, such splicing interface may correspond to some form of discontinuity. 
 

4.2.1 A general model 
 
A general model for image splicing would be applying a pair of complementary window 
functions on a same or two different images for masking out the interested regions and 
then superpose them to form a composite image, as illustrated in Figure 7. 
 
This model can be used to analyze the effect of combining regions from different sources 
as well as the effect of splicing at the splicing interface. In this report, we consider a 
simpler model, which only consider the effect of splicing at the splicing interface. 



 

 
Figure 7 Illustration of a general splicing model 

 

4.2.2 A Simpler Model 
 
Although image splicing is performed with 2-dimensional regions, we detect the splicing 
through computing the bicoherence features of the vertical and horizontal 1-dimensional 
slices of a spliced image. Therefore, in this paper, we propose a 1-dimensional model for 
splicing, which is also applicable to the splicing of any 1-dimensional signal. Here, we 
consider splicing as a joining of signals without any post-processing of the spliced signal.    
 
A composite signal, due to the splicing of two signal segments, is very likely to introduce 
a discontinuity or an abrupt change at the splicing point. The lack of smoothness can be 
thought of a departure from a smooth signal due to a perturbation of a bipolar signal 
(Figure 8), which is coincidentally similar to Haar high pass basis. 

 
As almost every camera is equipped with an optical low pass filter and almost every 
scanner has a post-scanning low pass operation for avoiding aliasing effect which 
produces Moiré pattern, authentic images, being a direct output from image acquisition 
devices such as camera and scanner, could be modeled as a ‘smooth’ signal. With the 
idea of the authentic counterpart (i.e., a possibly hypothetical but authentic image that 
resembles the spliced image in every respect except for those properties induced by 
splicing), we can model image splicing as a perturbation of the authentic counterpart with 
a bipolar signal. Figure 8 illustrate the idea of bipolar signal perturbation. 



 

Figure 8 (Left) a jagged signal exhibits abrupt changes when compared to a smooth signal. (Right) 
the difference between the jagged and the smooth signals 

 
 

Definition 2 (Bipolar signal) A bipolar at location xo with the antipodal delta separated 
by ∆, and with k1 and k2 being of opposite sign, i.e., k1 k2<0, is represented as  

         d(x)=k1δ(x-xo)+k2 δ(x-xo-∆), δ(·) being a delta function  

and its Fourier Transform is ωωω )(
21)( ∆+−− += oo xjjx ekekD  

 
 
4.3 Definition for Bicoherence Features 
 

Definition 3 (Bicoherence Phase Histogram) An N-bin bicoherence phase histogram 
given by:                                    

 p(Ψn) = (1/M2)∑Ω 1(Φ(b(ω1, ω2))∈ Ψn), 1(·) = indicator function  

where                  

Ω={(ω1, ω2)| ω1=(2πm1)/M, ω2=(2πm2)/M, m1, m2= 0,…,.M-1}  

Ψn={φ|(2n-1) π/(2N+1)≤φ< (2n+1) π /(2N+1)}, n=–N,.. ,0,.. ,N 

 
Figure 9 Typical examples of bicoherence phase histogram from spliced images: (Left) Strong ±90o 
phase bias (Middle) near ±90o phase bias (Right) non ±90o phase bias 

 

Definition 4 (Bicoherence Magnitude Feature) The magnitude feature is the mean of 
the magnitude of the bicoherence:             



fM =(1/M2)∑Ω|b(ω1, ω2)| 
 

Definition 5 (Bicoherence Phase Feature) The phase feature which measures the non-
uniformity or the bias of the bicoherence phase histogram:  

fP=Σn p(Ψn)log p(Ψn) 
 

4.4 Response of Bicoherence Phase Feature 
 

Proposition 1 (Symmetry of Bicoherence Phase Histogram) For a real-valued signal, 
the N-bin bicoherence phase histogram is symmetrical: p(Ψn) = p(Ψ–n) for all n 

Proof The Fourier transform of a real-valued signal is conjugate symmetric, i.e., 
X(ω)= X*(-ω), hence, from Definition 1, its bicoherence is also conjugate symmetric, i.e., 
b(ω1, ω2)= b*(–ω1, –ω2). Therefore, its bicoherence phase histogram is symmetrical.  
 
Note that, from Proposition 1, it suffices to study the positive half of the bicoherence 
phase histogram (i.e. from 0o to 180o). Besides, as the phase of a bicoherence is equal to 
the phase of numerator of the expression in Equation (1.4), therefore, it suffices to 
examine the numerator as far as the response of the bicoherence phase feature is 
concerned.  
 

Proposition 2 (Phase of  Bipolar Signal Bicoherence) Assuming k1 = –k2 = k, the phase 
of the bicoherence for a bipolar signal is concentrated at ±90o. 
Proof  When k1 = –k2 = k, the third-order moment of D(ω):   
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The term 3k in Equation (1.7) is a real positive or negative number, independent of 
frequency, while the sign of the real-value term ))](sin()sin()[sin( 2121 ωωωω +∆−∆+∆  is 
frequency-dependent, as shown in Figure 10. Hence, D(ω1)D(ω2)D*(ω1+ω2) is an 
imaginary number with the a frequency-dependent positive or negative sign. The 
expectation of an imaginary random number is still an imaginary number with a phase at 
±90o. 
 
 



  
1=∆  2=∆  

Figure 10: plot for ))](sin()sin()[sin( 2121 ωωωω +∆−∆+∆  

 
 
It is interesting to observe that the phase bias at ±90o is not due to QPC which could in 
turn give rise to 0o phase bias. QPC is due to the existence of harmonics with the same 
frequency and phase relationship, e.g., when there exists harmonics at ω1, ω2 and ω1+ω2 
for the Fourier transform of a signal S(ω), the phase of the harmonics are φ1, φ 2 and 
φ1+φ2 respectively, hence, phase[S(ω1)S(ω2)] = phase[S(ω1+ω2)]. However, for the 
bipolar signal, the phase relationship is given by: 
 
       phase[D(ω1)D(ω2)] = phase[D(ω1+ω2)] ± π/2. 

 
On the other hand, when k1 = k and k2 = –k+ε<0, 
 

D(ω1)D(ω2)D*(ω1+ω2)= ε(3k2-3kε+ε2)+ kε(ε-k)[exp(j∆ω1)+ exp(–j∆ω2)+  
exp(j∆(ω1+ω2)] +2k2(k-ε)j[sin∆ω1+sin∆ω2–sin∆(ω1+ ω2)] (1.8) 
 
Therefore, if ε is small relative to k, in equation (1.8), the last term becomes dominant and 
the phase remains concentrated around ±90o. In other words, if the magnitudes of the 
opposite poles of the bipolar are approximately equal, the ±90o phase concentration 
occurs.  

Before moving on to Proposition 3, please note that, as mentioned earlier, bicoherence 
is, in practice, computed by:  
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where the expectation terms are estimated by the average terms with a set of signal 
segments from the target 1-D signal [41]. 

When a signal s(x), is perturbed by a bipolar signal, d(x), the resulting perturbed signal 
and its Fourier transform is given by: 

sp(x)=s(x)+d(x) ↔ Sp(ω)=S(ω)+D(ω) 



Proposition 3 (Response of Bicoherence Phase Feature) Perturbation of a signal with 
a bipolar contributes to a phase bias at ±90o. The strength of the overall contribution is 
dependent on (1) the magnitude of the bipolar (2) the percentage of bipolar perturbed 
segments within the set of signal segments used for computing the bicoherence by 
averaging.  

Proof  For simplicity, assume that k1 = –k2 = k for the magnitude of the bipolar, the 
correlation of the Fourier transform of the perturbed signal is given by: 
 
 Sp(ω1)Sp(ω2)Sp

*(ω1+ω2) =  S(ω1)S(ω2)S*(ω1+ω2)+ cross terms+ 
 2k3j[sin∆ω1+sin∆ω2–sin∆(ω1+ ω2)] (1.9) 
          
where  
 

cross terms = kS(ω1) S*(ω1+ ω2) exp(-jxoω2)[1- exp(-j∆ω2)]+ 
k S(ω2) S*(ω1+ ω2) exp(-jxoω1)[1- exp(-j∆ω1)]+k2 S*(ω1+ ω2) 

exp(-jxo(ω1+ ω2)) [1- exp(-j∆ω1)] [1- exp(-j∆ω2)]+ 
k S(ω1) S(ω2) exp(jxo(ω1+ ω2)) [1- exp(j∆(ω1+ ω2))]+ 

k2S(ω1) exp(jxoω1) [1- exp(-j∆ω2)] [1- exp(j∆(ω1+ ω2))]+ 
k2S(ω2) exp(jxoω2) [1- exp(-j∆ω1)] [1- exp(j∆(ω1+ ω2))] 

 
We can see that the imaginary term due to bipolar perturbation contribute consistently at 
every (ω1, ω2) to the imaginary component of Equation (1.9). The strength of the 
contribution depends on k. The same argument is applicable to the case when k1 = k and 
k2 = –k+ ε<0 with ε being small relative to k, but the strength of the contribution is 
lessened. 

As numerator of bicoherence expression is estimated by an average of the third-order 
moment for the Fourier transform of a signal over a set of signal segments, the percentage 
of bipolar perturbed segment within the set affects the contribution to ±90o phase bias. In 
actual case, we estimate the bicoherence of a 1-D image slice of length 128 pixels with 3 
overlapping segments of length 64 pixels [41]. The overlap of segments ensures a larger 
extent of the perturbation effect, as a splicing point is likely to be captured by two 
adjacent segments with a probability of 0.5, assuming uniformly distributed splicing 
point. 
 
4.5 Response of Bicoherence Magnitude Feature 

 

Proposition 4 (Response of Bicoherence Magnitude Feature) Perturbation of a signal 
with a bipolar signal contributes to an increase in the value of the bicoherence 
magnitude feature. The amount of the increase depends on (1) the magnitude of the 
bipolar relative to the mean of the magnitude of the original signal Fourier transform (2) 
the percentage of bipolar perturbed segments within the set of signal segments used for 
computing the bicoherence by averaging. 

Proof For simplicity, we analyze the perturbation with a bipolar having k1 = –k2 = k. 
Note that the sign of equation (1.7) at a particular (ω1, ω2) is determined by the separation 
(denoted by ∆) and the orientation (denoted by the sign of k) of the poles of a bipolar 



signal. With the following assumptions on the bipolar across the ensemble of signal used 
for estimating bicoherence, D(ω1)D(ω2) would be equal to D(ω1+ω2) within a 
multiplicative constant for a particular (ω1, ω2). 
• The orientation of the bipolars is the same. (This assumption is reasonable as the 

same bipolar can be captured by two different but overlapping windows.) 
• The pole separation for the bipolar is the same (This assumption is also valid because 

the bipolar introduced by splicing is compact at the splicing interface) 
• The magnitude of bipolar is the same. (This is also a reasonable assumption for a 

local region) 
 
When D(ω1)D(ω2) = c(ω1,ω2)D(ω1+ω2) with c(ω1,ω2) being a constant for a particular 
(ω1,ω2), the magnitude of the bicoherence is 1 at every frequencies (ω1, ω2), as, in this 
case, the numerator of attains the Cauchy-Schwartz inequality upper bound. When a 
signal s(x) with Fourier transform S(ω) is perturbed by a bipolar, the magnitude of the 
bicoherence is given by: 
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where G(ω)=exp(-jxoω) [1- exp(-j∆ω)] 

 
From Markov inequality, the term |S(ω)/k|  in Equation (1.10) is upper-bounded in 
probability by P(|S(ω)/k| ≥ ε) ≤ E[S(ω)]/(kε), for any all ε>0. Hence, for an energy signal, 
i.e., signal with finite energy such as normal image signal, limk→∞ P(|S(ω)/k| ≥ ε) = 0, for 
E[S(ω)] being finite. As a result, the magnitude of bicoherence |b(ω1, ω2)| in equation 
(1.10) satisfies: 

0
]|)([|]|)]()([|

|)]()()([|
),(lim

2
21

*2
21

21
*

21
21 =
















≥

+

+
−

∞→
ε

ωωωω

ωωωωωω
DEDDE

DDDE
bP

k
 

 
With the above assumptions: limk→∞P(| |b(ω1, ω2)| –1 | ≥ ε) = 0 

 
Therefore, the more frequency triplets which have a small E[S(ω)] relatively to k, the 
greater the contribution of the bipolar perturbation to an increase in the bicoherence 
magnitude feature.  

 
Similar to the bicoherence phase feature, the extent of bipolar perturbation in the 
ensemble of signal is another factor affecting the contribution of bipolar perturbation to 
an increase in bicoherence magnitude feature. 
 
 
 
 



4.6 Empirical Validation for the Proposed Model 
 

4.6.1 Observations on Bicoherence Features 
 
With the data set descrbed in Section 2, by examining the difference of the mean of the 
phase histogram (Definition 3) for the authentic and spliced categories of our data set 
(Figure 11), a clear statistical difference of phase bias for the two categories at ±90o is 
observed. This observation supports the theoretical prediction of the ±90o phase bias 
(Proposition 2) based on the proposed image-splicing model. Note that, from Proposition 
1, it suffices to study the positive half of the bicoherence phase histogram (i.e. from 0o to 
180o). Figure 9 shows two examples of ±90o phase bias from spliced images. 
 

 
Figure 11 The mean of the authentic phase histogram minus the mean of the spliced phase histogram  

 

 
Figure 12 Distribution of the value of bicoherence phase histogram at a specific phase, ranging from 
0o to 180o, for both the authentic and the spliced categories. (y-axis is sample count, x-axis is the value 
of bicoherence phase histogram at a specific phase) 



 
Besides that, the distribution of the value of bicoherence phase histogram (Definition 3) 
at a specific phase for both the authentic and spliced categories in Figure 12 also shows a 
comparably greater difference of phase distribution between the authentic and spliced 
categories at 90o phase. 
 

 
Figure 13 The histogram of the bicoherence features: (Left) magnitude feature (Right) phase feature 

In addition, the histogram for bicoherence magnitude and phase features (Figure 13) 
for the spliced category is observed to have a larger mean and a heavier tail compared to 
that of the authentic category. This validates the Proposition 3 and Proposition 4. 
 

4.6.2 90o Phase Bias as Prediction Feature 
 
To evaluate the performance 90o phase bias as a feature for image splicing detection, we 
performed the same classification experiments as in [41] by replacing the negative phase 
entropy with the 90o phase bias, which is measured by the value of the bicoherence phase 
histogram at 90o. The results of detection accuracy over the same data set are comparable 
at about 70%. This indicates that the negative phase entropy, despite being a general 
measure of phase bias, has already captured the specific effect of 90o phase bias. The fact 
that the feature using the specific 90o phase bias fails to achieve noticeable improvement 
indicates the weakness of the phase bias effect, which is linked to the high estimation 
variance that commonly plagues the estimation of higher order statistics such as 
bicoherence. 
 
 



5 Properties of Bicoherence Features on Different Image Features 
 
In this section, we would like to explore the properties of bicoherence features in relation 
to various image features. We will first relate the bicoherence magnitude to the edge 
configuration or the texturedness of an image. Then, we will look at the empirical 
properties of the bicoherence features on three different types of object interface, i.e. 
smooth-smooth, textured-textured, and smooth-textured object interface, which are 
among the subcategories in the data set. 
 
5.1 Relationship between Edge Configuration and Bicoherence Feature 
 
One aspect of the edge configuration of an image is the edge sparsity. The relationship 
between the edge configuration of an image and its bicoherence features can be 
illustrated using an impulse train. Let )(tx  be a discrete-time signal of length N with K 
evenly-spaced impulses at every N/K samples: 
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The DFT of this signal is given by: 
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Upon normalization, the 3h  will be divided off. Then, the bicoherence becomes: 
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Then, the bicoherence magnitude feature (Definition 4) satisfies the following 
relationship: 
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1
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As the bicoherence magnitude feature is proportional to 1/K2, it implies that the denser 
the evenly spaced impulses, the lower the magnitude of the bicoherence, and vice versa. 
Note that the magnitude of the impulse, h, does not affect the magnitude of the 



bicoherence. In this case, the phase of the non-zero bicoherence component is always 
zero, independent of the number of impulses, K. 
 
However, the evenly spaced impulses with equal amplitude could not model the real 
world image signal well, but the above illustration provides a hint on the relationship 
between the sparsity of edge and the mean of the bicoherence magnitude. The 
relationship is observation in the empirical result shown below. 
 
We use the edge percentage in an image block as a measure of edge sparsity, where edge 
pixels are detected using Canny edge detection algorithm. Edge percentage is just one of 
the many measures for edge density. Coincidentally, the different types of object 
interface (i.e. textured-textured, smooth-smooth and textured-smooth) can be 
characterized by edge percentage as shown in Section 5.2. 
 
5.2 Properties of Bicoherence Features on Different Object Interface Types 
 
We are interested in investigating the performance of bicoherence features in detecting 
spliced images on the three object interface types for which such performance varies 
over, i.e. smooth-smooth, textured-textured, and smooth-textured. Figure 14 shows the 
scatter plot of the bicoherence magnitude feature (fM) of the authentic and spliced image 
blocks with a particular object interface type. The plots also show how well the edge 
percentage (y-axis) captures the characteristics of different interface types. The edge 
pixels are obtained using Canny edge detector. The edge percentage is computed by 
counting the edge pixels within each block. The plots for bicoherence phase feature (fP)  
are qualitatively similar to Figure 14.  
 

 

 
 

Figure 14: Bicoherence magnitude feature for different object interface types (x-axis is the 
bicoherence magnitude feature) 



 
 
We observe that the performance of the bicoherence feature in distinguishing spliced 
images varies for different object interface types, with textured-textured object interface 
type being the worst case. Figure 13 shows the distribution of the features for the authentic 
and spliced image categories. We can observe that the distributions of the two image 
block categories are greatly overlapped, although there are noticeable differences in the 
peak locations and the heavy tails. Hence, we would expect poor classification between 
the two categories if the features were to be used directly. 



6 Methods for Improving the Performance of Bicoherence Features 
 
Our investigation on the properties of bicoherence features for images leads to two 
methods for augmenting the performance of the bicoherence features in detecting image 
splicing: 
1. By measuring the discrepancy between a given image and its estimated authentic 

counterpart in terms of the bicoherence magnitude and phase features. In this case, 
authentic counterpart is the embodiment of the splicing-invariant features. 

2. By incorporating image features that capture the image characteristics, which have an 
effect on the performance of the bicoherence features. For example, edge pixel 
percentage feature (fE) was shown in Section 5.1 and 5.2 to have an effect on the 
bicoherence magnitude  

 
6.1 Estimating Authentic Counterpart Bicoherence Features 
 
Assume that for every spliced image, there is a corresponding authentic counterpart, 
which is similar to the spliced image except that it is authentic. The rationale of the 
approach, formulated as below, is that if the bicoherence features of the authentic 
counterpart can be estimated well, the elevation in the bicoherence features due to 
splicing could be more detectable. 
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where  Bicf  represents a bicoherence feature, ΛI is a set of splicing-invariant features 
while ΛS is a  set of features induced by splicing, s is a splicing indicator and ε is the 
estimation error.  
 
In this formulation, g1 corresponds to an estimate of the bicoherence feature of the 
authentic counterpart, denoted as fAuthentic and g2 corresponds to the elevation of the 
bicoherence feature induced by splicing, denoted as ∆fSplicing. The splicing effect, ∆fSplicing, 
would be more observable if the significant interference from the splicing-invariant 
component, fAuthentic, can be removed. In this case, ∆fSplicing can be estimated with fBic– 
fAuthentic, which we call prediction residual. The fAuthentic estimation performance would be 
determined by two factors, i.e., how much we capture the splicing-invariant features and 
how well we map the splicing-invariant features to the bicoherence features.  
 
A direct way to arrive at a good estimator is through an approximation of the authentic 
counterpart obtained by depriving an image of the splicing effect. As a means of 
‘cleaning’ an image of its splicing effect, we have chosen the texture decomposition 
method based on functional minimization [42], which has a good edge preserving 
property, which is important for we have observed the sensitivity of the bicoherence 
features to edges. In other words, we want the estimated authentic counterpart to be as 
close to an image as possible in terms of the value of bicoherence features. 



 
6.2 Texture Decomposition with Total Variation Minimization and a Model of 

Oscillating Function 
 
In functional representation, an image, f, can be decomposed into two functions, u and v, 
within a total variation minimization framework with a formulation [42]:  

 

 
where the u component, also know as the structure component of the image, is modeled 
as a function of bounded variation while the v component, representing the fine-texture or 
noise component of the image, is modeled as an oscillation function. ||·||G is the norm of 
the oscillating function space and λ is a weight parameter for trading off variation 
regularization and image fidelity. 
 
The minimization problem can be reduced to a set of partial differential equations known 
as Euler-Lagrange equations and solved numerically with finite difference technique. As 
the structure component could contain arbitrarily high frequencies, conventional image 
decomposition by filtering could not attain such desired results.  
 
For the texture decomposition, our assumption is that the splicing artifact, which can be 
model as a bipolar perturbation, would be captured by the fine-texture component, and 
the structure could be considered as being splicing-invariant. In general, there are two 
approaches for detecting the splicing artifact: 
 

1. Detecting the presence of splicing artifact in the fine-texture component: Due 
to the noise-like characteristics of the fine-texture component, we empirically find 
that this approach does not work well because the value of the bicoherence 
features for the fine-texture component of both the authentic and spliced image 
block vary in a very narrow range and indistinguishably overlapped (figure not 
shown). Hence, these features are not discriminative at all. 

2. Detecting the absence of the splicing artifact in the structure component: The 
absence of the splicing artifact can be detected by comparing the bicoherence 
features of the structure component against those of the undecomposed image. 
This approach exactly corresponds to the idea of detecting image splicing through 
its authentic counterpart as described in Section 6.1. 

 
We adopt the second approach. In this case, the structure component can serve as an 
approximation for the authentic counterpart, hence, the estimator for the bicoherence 
magnitude feature of the authentic counterpart, fMAuthentic and its phase features, fPAuthentic 
are respectively structureAuthentic fMMf =ˆ  and structureAuthentic fPPf =ˆ . 
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Figure 15: Examples of texture decomposition 

 
For the linear prediction discrepancies between the bicoherence features of an image and 
those of its authentic counterpart, i.e., ˆ

AuthenticfM fM fMα∆ = −  and ˆ
AuthenticfP fP fPβ∆ = − , 

the scale parameters α and β, without being assumed to be unity, are learnt by Fisher 
Linear Discriminant Analysis in the 2-D space (fM, ˆ

AuthenticfM ) and (fP, ˆ
AuthenticfP ) 

respectively, to obtain the subspace projection where the between-class variance is 
maximized relative to the within-class variance, for the authentic and spliced categories. 
This idea of linear subspace projection is shown in Figure 16. 

Figure 16 The illustration of linear subspace project using Fisher Discriminant Analysis 

 
We would like to evaluate the effectiveness of the prediction residual features as shown 
in Figure 17. Our objective is to show that the prediction residual features (∆fM, ∆fP) 
have a stronger discrimination power between authentic and spliced compared to the 
original features (fM, fP). This objective is partially supported by observing the 
difference between Figure 17 and Figure 13. (In Figure 17, two distributions are more 
separable) 

Prediction 
Discrepancy/Residual 
feature 

Image 
bicoherence 
feature 

Authentic Counterpart 
bicoherence feature 



 
 
 

 
Figure 17: The distribution of prediction residual of the bicoherence magnitude (Left) and phase 
(Right) features 



 
7 SVM Classification Experiments for Bicoherence Features Performance 

Evaluations 
 
We herein evaluate the effectiveness of the features, which are derived from the proposed 
method (i.e., the prediction residual features and the edge percentage feature), by SVM 
classifications with radial basis function (RBF) kernel, performed our data set. We used 
SVM implementation from [43] and the SVM parameters (i.e., the error penality 
parameter, C, and the RBF kernel parameter, γ ) are chosen with an exhaustive grid 
search strategy as proposed by [44], such that the average classification accuracy (i.e., the 
mean of the true positive and negative rate) of the 5-fold cross-validation test results is 
the highest. Table 3 lists a summary of all features to be evaluated and Figure 18 shows 
the SVM classification results for different combination of features in the form of 
receiver operating characteristic (ROC) curve obtained from the 5-fold cross-validation 
test results. Table 4 shows the best average classification accuracy obtained by the above-
mentioned grid search strategy. 
 
Table 3 A summary of all features    

Feature Name Dimension Legend 
The bicoherence magnitude feature (i.e., the mean 
of the bicoherence magnitude) 1 

The bicoherence phase feature (i.e., the negative 
entropy of the bicoherence phase histogram) 1 

PlainBIC 

The prediction residual for the bicoherence 
magnitude feature 1 

The prediction residue for the bicoherence phase 
feature 1 

PredictionResidual 

Edge pixel percentage 1 EdgePercentage 
 



 
Figure 18: Receiver Operating Characteristic (ROC) curve for image splicing detection with 
different combination of features 

 
Table 4: Best average classification accuracy (i.e., the average of the true positive rate and the true 
negative rate) for SVM classification with parameters obtained by grid search 

Features Best Average Classification Accuracy 
(0.5 for random guessing) 

PlainBIC 0.6357 
PredictionResidual 0.6644 
PlainBIC+PredictionResidual 0.6866 
PlainBIC+EdgePercentage 0.7041 
PredictionResidual+EdgePercentage 0.6953 
PlainBIC+PredictionResidual+EdgePercentage 0.7233 
 
 
Below are the observations from the classification results in terms of the best average 
classification accuracy shown in Table 4: 

1. Prediction residual features alone obtain 2.9% improvement the plain bicoherence 
features.  

2. Edge percentage improves the performance of the bicoherence features by 6.8 %. 
3. The best performance (last row) obtained by incorporating all the proposed 

features is 72%, which is 8.8% better than the baseline method (first row). 



 
Figure 19: (Above) The fraction of image blocks over different edge percentage. (Below) The 

distribution of SVM 5-fold cross-validation test error over different edge percentage 

 
As expected from the observation of Figure 14, Figure 19 shows that for the SVM 
classification error using plain bicoherence features is increasing with the edge 
percentage of the image blocks, with the error rate being greater than the random 
guessing error rate when the edge percentage is larger than 14%. The prediction residual 
features and the edge percentage feature help to greatly reduce the error rate at the high 
edge percentage region. Interestingly, although the prediction residual features do not 
perform well at the high edge percentage region but when it is combined with the plain 
bicoherence features, the error rate drops significantly at that particular region. It is also 
observed that the combination of all features obtain lower error rate compared to the plain 
bicoherence feature error rate at all edge percentage. 
 
The results are encouraging as it shows the initial promise of the authentic counterpart 
estimation. The block level detection results can be combined in different ways to make 
global decision about the authenticity of a whole image or its sub-regions. For example, 
Figure 20 shows localizing the suspected splicing boundary. 

 



           
Figure 20: Examples of block-level detection on spliced images. The golfer with his shadow (in Left 

image) and the truck with shadow (in Right image) were cut-and-pasted from other images. The red 
boxes mark the suspicious blocks. The detection was controlled at a 10% false positive rate. 



8 Conclusions and Further Work 
 
8.1 Summary 
 
In this report, we related our initial attempt on detecting image splicing using bicoherence 
features. We began with an introduction to bicoherence and then proposed an image-
splicing model based on the idea of bipolar perturbation of an authentic signal. With the 
image-splicing model, we performed a theoretical analysis for the response of the 
bicoherence magnitude and phase features to splicing based on the proposed model. The 
analysis leads to the final propositions that image splicing increases the value of the 
bicoherence magnitude and phase features and a prediction of ±90o phase bias, which 
both are shown to be consistent with the empirical observations based on our data set. 
The proposed model has founded the use of bicoherence magnitude and phase features 
for image splicing detection on a sound theoretical ground. 
 
We have also empirically shown how the performances of the bicoherence features 
depending on the different object interface types. Further on, we show that the plain 
bicoherence features do not serve well for image splicing detection. Two methods are 
proposed for improving the capability of the bicoherence features in detecting image 
splicing. The first exploits the dependence of the bicoherence features on the image 
content such as edge percentage and the second offsets the effect of splicing-invariant 
component on bicoherence features. As a result, we obtain improved features in terms of 
discrimination power. Finally, we observe improvements in SVM classification after the 
derived features are incorporated.  
 
In short, the plain/baseline bicoherence features do not perform well for image splicing 
detection and the proposal of incorporating image characteristics and the splicing-
invariant (with respect to bicoherence) component has resulted in an improvement in the 
classification accuracy from the 62% obtained by using only the plain bicoherence 
features to 72% obtained by incorporating the three new features (i.e., the prediction 
residual for the plain magnitude and phase features, and the edge percentage feature). 
 
 
8.2 Future Work 
 
There is still extensive room for improvement based on this work. Possible directions 
could be to explore cross-block fusion and incorporate image structure in fusion. 
 
The approach adopted in this report can be considered as a signal processing approach. 
We can combine the signal processing approach with the computer graphics/computer 
vision approach to automatically or semi-automatically examine the scene-level internal 
inconsistencies within an image. Lastly, we can explore beyond bicoherence for other 
discriminative features for image splicing (in particular) or photomontage (in general) 
detection. 
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APPENDIX – Classification of Image Processing Operations 
 
In [32], Higher-order statistics (HOS) of both the wavelet coefficients and the linear 
prediction error of the wavelet coefficients are used for classification for 

1. natural images vs. artificial images. Artificial images is composed of three 
categories, i.e. noise images (scrambled version of natural images – retaining 
intensity histogram), fractal images (have power spectrum similar to natural 
images) and disc images (have similar phase statistics as natural images) 

2. between images with and without hidden message. Four different steganography 
algorithms are used: Jsteg (Information is hidden in the JPEG image by 
modulating the rounding choices either up or down in the DCT coefficients), 
EzStego (modulating the LSB of the sorted color palette index in 8-bit GIF 
images), OutGuess+/- (also modulating the DCT coefficients of JPEG images, 
with/without statistical correction) 

3. natural images vs. computer graphics. The computer graphics are generated from 
3D Studio Max, Maya, SoftImage 3D, Lightwave 3D, Imagine and Alias 
PowerAnimation. 

4. original images vs. the recaptured version of the original images. Original images 
are printed on a laser printer and then scanned with a flat-bed scanner, both at 
72dpi. 

 
The higher-order statistics is herein referring to the mean, variance, skewness and 
kurtosis. The prediction error is the difference between the magnitude of the wavelet 
coefficients and prediction of them from a linear predictor based on the adjacent 
coefficients in the neighboring spatial, orientation and scale subbands. 
 
The classification performance is impressive except for the classification between 
computer graphics and natural images.  
 
We have using the some features for classifying images with have undergone different 
types of image processing operations: 

• Low pass (lp) - Gaussian low pass with kernel support size 5x5 and standard 
deviation 8 

• Jpeg (jpeg) – jpeg compression with quality factor 60 
• Insertion of noise (noise) – Gaussian noise with mean 0 and standard deviation 18 
• High pass (hp) – Gaussian high pass with cutoff frequency at 0.025 times 

sampling frequency, compensated with the original image 
• Histogram equalization (histeq) – uniform histogram with 64 bins 
• Median filtering (medfilt) – with filter kernel size 9x9 
• Wiener filtering (wiener) – with filter kernel size 9x9 
• Brightening (bright) – with 0.6 gamma pixel intensity mapping  
• Simulated Image splicing (splice) – swapping the upper-right quadrant and the 

lower-left quadrant. 
 
We selected 186 images with the approximated size of 512x768 pixels from the 
Calphotos image data set [33] and the Kodak research image data set. The set of images, 



which is considered as original in our case, has already been JPEG compression with 80-
quality factor. We performed the above-mentioned image processing operations on the 
186 images independently. As a result, the number of images for each operation is 186.  
 
We performed a 10-class SVM classification with the radial basis function (RBF) kernel. 
For this experiment, we used the OSU SVM Classifier Matlab Toolbox (ver 3.00) which 
makes use of the LIBSVM implementation [43]. The results shown below are the 
averaged testing error obtained from 10-folds cross-validation. 
 
Table 5 shows the classification results. The blank cells represent zero. Each row of the 
table sums up to one. The number in each cell represent the ratio of images having 
undergone the operation of an row being classified as having undergone the operation of 
an column. From the table, we observe that: 
 

1. The original image is mostly mistakenly classified as images of JPEG, 
brightening and image splicing. As the original are originally JPEG compressed, 
its being confused with images of JPEG compression is expected. Its confusion 
with the brightening and image splicing indicated that the classifier is having 
problems distinguishing these operations.  

2. The rest of the operations are very well distinguished by looking at the small 
confusion among them. 

 
Table 5 10-class SVM classification results for different types of image processing operations 

 Classified As 
 Lp Jpeg Noise Hp Histeq Medfilt Wiener Bright Splice Orig 
Lp 1.0000          
Jpeg  0.9076  0.0111 0.0325    0.0211 0.0278 
Noise   1.0000        
Hp  0.0056  0.8798 0.0164   0.0108 0.0599 0.0275 
Histeq    0.0439 0.9126   0.0053 0.0272 0.0111 
Medfilt      0.9836 0.0164    
Wiener       0.9836 0.0164   
Bright  0.0105  0.0164 0.0222  0.0053 0.5368 0.2401 0.1687 
Splice  0.0901  0.0266 0.0371 0.0056 0.0053 0.1640 0.5272 0.1442 
Orig  0.1047  0.0433 0.0380  0.0053 0.3491 0.2132 0.2465 
 
This experiment leads to one important conclusion that the wavelet HOS features are 
very weak in distinguishing between spliced images and authentic images. 
 


