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Abstract

Attributed Relational Graph (ARG) is a useful model for representing many real-world re-
lational patterns. Computing the similarity of ARGs is a fundamental problem for ARG based
modelling. This report presents a novel stochastic framework for computing the similarity of
ARGs, which defines the ARG similarity as the likelihood ratio of the stochastic process that
transforms one ARG to the other. We show that the transformation likelihood can be factorized
and approximately calculated using variational approximation and Loopy Belief Propagation.
Furthermore, we show that the similarity measure can be learned from training data using a
variational E-M process in an unsupervised manner by using graph-level annotations. We ap-
ply the technique to visual scene matching and establish a part-based similarity measure for
detecting Near-Duplicate Images in video database.



1 Introduction

Attributed Relational Graph (ARG) generalizes the ordinary graph by attaching discrete or con-
tinues feature vectors to its vertexes and edges. Many real-world entities can be represented as
ARG. For example, visual scenes can be modelled as the composition of the objects with specific
spatial/attribute relationship. Molecular compounds can be represented as ARG with atoms as ver-
texes and bonds as edges. A web site can be represented as an ARG with web pages as vertexes
and URL links as edges. A fundamental problem of the ARG based modelling is to compute the
similarity of two ARGs, which is important for retrieval and mining applications.

Research on ARG matching can be dated back to the seminal work of Barrow [3]. In the
past decades, there have been much research work on defining ARG similarities and the develop-
ment of the computational schemes. The major methodologies for matching ARGs include energy
minimization framework, spectral method, MRF labelling and basysian approach.

Energy minimization framework [3] attempts to construct a cost function for matching two
ARGs. Minimizing this cost function over all possible vertex matching configurations leads to the
distance of two ARGs as the minimum energy. computation is usually approximated by heristics or
random algorithms such as genetic algorithms. Energy minimization framework treats every vertex
equally and does not consider the uncertainty of the vertex correspondences between the input
graphs, although the attribute extraction process in practice often involves noise contamination.
This type of technique also lacks a principled approach to incorporating human knowledge and
learning the similarity from training data.

Recently, spectral method has gained attention in the machine learning communities for graph
partitioning [9]. Spectral method for ARG matching[8] can be considered a computation scheme
for energy minimization formulation. Spectral method is realized by the spectral decomposition of
the attribute matrix and constructing the minimum energy solution using eigen vectors. Since re-
searchers have done substantial work on the efficient algorithms for finding eigen vectors, spectral
method can achieve efficient computation by taking advantage of those fast algorithms.

Markov Random Field (MRF) labelling [5] is a probabilistic formulation for the ARG matching
problem. Essentially, MRF framework converts the energy function used in the energy minimiza-
tion framework to the Gibbs distribution. Matching problem is thereby reduced to finding the
maximum likelihood matching configuration. The similarity measure is finally aggregated from
the similarity measure of the individual vertexes by utilizing the labelling results. Since the aggre-
gation process and labelling process performs in separate stages, there is no principled approach
to penalize the mismatched vertexes for computing ARG similarity. Moreover, learning potential
functions has to be realized by annotating vertex pairs, resulting in expensive human costs.

Baysian framework proposed by Wilson and Hancock [7] is another probabilistic formulation
for the ARG matching problem. Baysian framework poses the matching problem as calculat-
ing and maximizing the Maximum A posterior Probability (MAP) of the vertex correspondences.
Graph similarities is not addressed in the paper, but may be calculated by aggregating the vertex
similarities after MAP maximization. The conditional probability involved in MAP calculation is
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designed manually without a learning process to adjust the parameters.
There are also other works on topological graph matching without attributes attached to graphs.

Topological graph matching is known as graph isomorphism problem if two graphs are of equal
sizes and subgraph isomorphism problem if they are not. Subgraph isomorphism problem was
proven to be NP-complete, and therefore needs approximate algorithms for efficient computation.
One common approach is to reduce the subgraph isomorphism problem to the Maximum Clique
problem, which is then solved by heuristic algorithms. Interested readers are referred to [6].

In this report, we establish a novel stochastic framework for matching two ARGs, which defines
the ARG similarity as the likelihood or likelihood ratio of the stochastic process that transforms
one ARG to the other. The stochastic approach offers a principled way to define the ARG sim-
ilarity that accounts for both the attribute and topological differences of the two ARGs. More
importantly, this framework allows the similarity measure to be learned from training data in both
supervised (using vertex pair annotation) and unsupervised manner (using graph pair annotation).
The stochastic transformation process is represented as a graphical model on top of the product
graph constructed from two input ARGs. Exactly computing the likelihood of the stochastic pro-
cess is intractable in that we need to sum over all possible vertex correspondence configurations.
Yet we take the advantage of the recent development on variational approximation and the Loopy
Belief Propagation algorithm to approximate the exact likelihood. The loopy belief propagation
is further simplified by taking advantage of the particular topology of the product graph to realize
more efficient computation. Unsupervised learning using graph pair annotation is realized by a
variational Expectation-Maximization process.

We studied the use of ARG matching technique for part-based visual scene similarity measure.
A visual scene is considered as the composition of visual objects or salient parts with specific rela-
tions. Such a part-relation model can be represented as an Attributed Relational Graph. Matching
two visual scene is thereby reduced to the ARG similarity problem. We apply the part-based simi-
larity model to detect near-Duplcate images in the image database. Promising results are observed
by using the proposed ARG matching technique.

2 Stochastic Framework for ARG similarity

Attributed Relational Graph (ARG) is an extension of the ordinary graph by associating discrete or
real-valued attributes to its vertexes and edges. The use of attributes allows ARG not only be able
to model the topological structure of an entity but also its non-structural properties, which often
can be represented as feature vectors. ARG is defined as following

Definition 1 An attributed relational graph is a triple G = (V,E,A), where V is the vertex set ,
E is the edge set, and A is the attribute set that contains unary attribute ai attaching to each node
ni ∈ V , and binary attribute aij attaching to each edge ek = (ni, nj) ∈ E.

Figure 1 shows an example of using ARG for part-based modelling in computer vision.

3



ARG

Part

Part relations

ARG

Part

Part relations

Figure 1: Attributed Relational Graph for Part-based Modelling

In order to match two ARGs, we use a stochastic process to model the transformation from
one ARG to the other. The similarity is measured by the likelihood ratio of the stochastic trans-
formation process. We refer such a definition of data similarity as the transformation principle of
similarity(TPS).

Let H denotes the binary random variable corresponding to two hypotheses relating to the
similarity: H = 1, the target graph Gt is similar to Gs; H = 0, the two images are not similar.
Let Y s = {{Y s

i }; {Y s
ij}|i, j ≤ N} denotes the unary and binary features of the source graph

Gs; Y t = {{Y t
u}; {Y t

uv}|u, v ≤ M} the features of the target graph Gs . Then we have the
transformation likelihood p(Y t|Y s, H = 1), and p(Y t|Y s, H = 0) respectively. The similarity
between Gs and Gt is then defined as the likelihood ratio

S(Gs, Gt) =
p(Y t|Y s, H = 1)

p(Y t|Y s, H = 0)
(1)

Note that in general N �= M . We decompose the transformation process p(Y t|Y s, H) into two
steps. The first step copies the vertexes from Gs to Gt and establishes the correspondence between
the vertexes of Gs and Gt, referred to as vertex copy process (VCP). The second step transforms
the attributes of the copied vertexes, referred to as attribute transformation process(ATP). This
cascade stochastic process is illustrated in Figure 2. The transformation process requires an inter-
mediate variable to specify the correspondences between the vertexes in Gs and Gt. We denote
it as X , referred to as correspondence matrix, which is a random 0-1 matrix taking value from
χ = {0, 1}N×M . xiu = 1 means the ith vertex in Gs corresponds to the uth vertex in Gt. This is
illustrated in the Figure 3. For the case of one-to-one correspondences of vertexes in Gs and Gt,

VCP ATP

Figure 2: Stochastic Transformation Process for ARG similarity
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Figure 3: Vertex correspondences of two ARGs and the correspondence matrix

we need to have the following constraints
∑

i

xiu ≤ 1;
∑

u

xiu ≤ 1 (2)

By introducing X , the transformation process then can be factorized as following:

p(Y t|Y s, H) =
∑
X∈χ

p(Y t|Y s, X,H)p(X|Y s, H) (3)

p(X|Y s, H) characterizes the VCP and p(Y t|Y s, X,H) represents the ATP. The stochastic trans-
formation process can be represented as a generative graphical model shown in Figure 4. In order
to satisfy the constraints in the Eq.(2), we let VCP be represented as a Markov Random Field
(MRF) (referred to as prior MRF) with a two-node potential that ensures the one-to-one constraint
being satisfied. The MRF model has the following form

p(X|Y s, H = h) =
1

Z(h)

∏
iu,jv

ψiu,jv(xiu, xjv)
∏
iu

φh(xiu)

where Z(h) is the partition function. h ∈ {0, 1} is the hypothesis. Note here we use notations
iu and jv as the indices of the elements in the correspondence matrix X and vertexes of the MRF.
The MRF model in fact is built upon the product graph of graph Gs and Gt (Figure 5). Each vertex
of the product graph is attached with a state variable xiu that signifies one possible matching

X

H

tYsY
X

H

tYsY

Figure 4: The generative model for ARG matching
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Figure 5: The product graph upon which prior MRF is defined. The repulsive constraint ensures
that x11 and x12 will not equals one simultaneously, i.e. the vertex 1 can only be matched with one
vertex in the target graph

between the vertexes in Gs and Gt. For instance, if xiu = 1, then the ith vertex in Gs is matched
to the uth vertex in Gt. The product graph is a fully connected graph.

For simplifying the model, we assume that X is independent on Y s given H . The 2-node po-
tential functions are defined as

ψiu,jv(0, 0) = ψiu,jv(0, 1) = ψiu,jv(1, 0) = 1, ∀iu, jv

ψiu,jv(1, 1) = 0, for i = j or u = v; ψiu,jv(1, 1) = 1, otherwise

The second line of the above equations is the repulsive constraint to enforce one-to-one correspon-
dence listed in Eq.(2).The 1-node potential function is defined as

φ0(0) = p0 φ0(1) = q0; φ1(0) = p1 φ1(1) = q1

where p0, q0, p1, q1 controls the probability that the vertexes in the source graph are copied to
the target graph under hypothesis H = 0, H = 1. Due to the partition function, any ph, qh with
identical ratio ph/qh would result in the same distribution. Therefore, we can set ph as 1, and let
qh be learned from training data.

It is not difficult to show that the partition function has the form Z(h) =
∑N

i=1

(
N
i

)(
M
i

)
i!qi

h.
For efficient learning and likelihood calculation, we use the asymptotic approximation of Z(h) as
shown in the following theorem

Theorem 1 Let N ≤ M . When N → ∞, and M − N < ∞ The log partition function log(Z(h))

tends to
N

[
log(qh) + c

]
(4)

where c is a constant having the following form

c = lim
N→∞

1

N
log

[ N∑
i=1

(
N

i

)(
N

i

)
i!
]
≈4.1138

which is calculated numerically.
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Proof of this theorem is realized by representing the partition function as a generalized hy-
pergeometric function 2F0(.), then applying asymptotic analysis on its corresponding Ordinary
Differential Equation. The details can be found in the Appendix.

For the ATP, we use naı̈ve Bayes assumption to let all unary and binary features independent
given Y s and H . Therefore the ATP is fully factorized as

p(Y t|X,Y s, H) =
∏
iu,jv

p(yt
uv|xiu, xjv, y

s
ij)

∏
iu

p(yt
u|xiu, y

s
i )

We assume that the Attribute Transformation Process is governed by Gaussian distributions with
different parameters. Accordingly, we have conditional density functions for unary attributes

p(yt
u|xiu = 1, ys

i ) = N (ys
i , Σ1);

p(yt
u|xiu = 0, ys

i ) = N (ys
i , Σ0) (5)

And conditional density functions for binary attributes

p(yt
uv|xiu = 1, xjv = 1, ys

ij) = N (ys
ij, Σ11)

p(yt
uv|(xiu ∩ xjv) = 0, ys

ij) = N (ys
ij, Σ00) (6)

The parameters Σ1,Σ11,Σ0,Σ00 are covariance matrices that need to be learned from training data.

3 Induced Markov Random Field

According to these setups, the term inside the equation (3) can be written as

p(Y t|Y s, X,H = h)p(X|Y s, H = h)

=
1

Z(h)

∏
ij,uv

ψ′
iu,jv(xiu, xjv; y

t
ij, y

s
uv)

∏
ij

φ′
h(xiu, y

s
i , y

t
u)

Where

ψ′
iu,jv(xiu, xjv; y

s
ij, y

t
uv) = ψiu,jv(xiu, xjv)p(yt

uv|xiu, xjv, y
s
ij)

φ′
h(xij, y

s
i , y

t
u) = φh(xiu)p(yt

u|xiu, y
s
i )

Therefore, the transformation likelihood becomes

p(Y t|Y s, H = h) = Z ′(Y t, Y s, h)/Z(h) (7)

where
Z ′(Y t, Y s, h) =

∑
X∈χ

∏
ij,uv

ψ′
iu,jv(xiu, xjv; y

t
ij, y

s
uv)

∏
ij

φ′
h(xiu, y

s
i , y

t
u)
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which in fact is the partition function of the following induced MRF defined upon the product
graph (Figure 5)

p(X|Y s, Y t, H = h)

=
1

Z ′(Y t, Y s, h)

∏
ij,uv

ψ′
iu,jv(xij, xuv; y

t
ij, y

s
uv)

∏
ij

φ′
h(xiu, y

s
i , y

t
u)

The potential function of the induced MRF combines the potential function of the prior MRF and
the attribute density functions. From these derivation, we therefore reached the following important
conclusion

Proposition 1 The ARG transformation likelihood is the ratio of the partition function of the in-
duced MRF and the partition function of the prior MRF, i.e.

p(Y t|Y s, H = h) =
Z ′(Y t, Y s, h)

Z(h)
(8)

The partition function Z(h) can be approximately computed from Eq.(4). The following sec-
tion provides the approximate computation scheme for Z ′(Y t, Y s, h).

4 Computing the Transformation Likelihood

The computation of the exact induced partition function Z ′(Y t, Y s, h) is intractable, since we have
to sum over all possible X in the set χ, whose cardinality grows exponentially with respect to NM .
Therefore we have to compute the likelihood using certain approximation.

4.1 Approximation of the Exact Likelihood

By applying the Jensen’s inequality on the log partition function logZ ′(Y t, Y s, h), we can find its
variational lower bound as following. The lower bound can be used for approximating the partition
function of the induced MRF
Using short-hand

l(X; Y s, Y t, h) =
∏
ij,uv

ψ′
iu,jv(xiu, xjv; y

t
ij, y

s
uv)

∏
ij

φ′
h(xiu, y

s
i , y

t
u)
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and introducing an approximate probability distribution function q(X) over χ, we have

logZ ′ = log
∑
X

l(X; Y s, Y t, h)

= log
∑
X

q(X)
l(X; Y s, Y t, h)

q(X)

≥ max
q(X)

∑
X

q(X) log
l(X; Y s, Y t, h)

q(X)

= max
q(X)

∑
X

q(X)logl(X; Y s, Y t, h) + H(q(X))

=
∑
X

q̂(X)logl(X; Y s, Y t, h) + H(q̂(X))

=
∑
iu,jv

q̂(xiu, xjv) log ψ′
iu,jv(xiu, xjv; y

s
ij, y

t
uv)

+
∑
iu

q̂(xiu) log φ′
h(xiu, y

s
i , y

t
u) + H(q̂(X)) (9)

where

q̂(X) = argmaxq(X)

∑
X

q(X)logl(X; Y s, Y t, h) + H(q(X)) = argminq(X)KL(q(X)||l(X))

is the best approximated probability distribution function in the sense of KL divergence KL(q̂(X)||l(X))

. q̂(xiu) and q̂(xiu, xjv) are the one-node and two-node marginals of q̂(X), also known as beliefs.
H(q̂(X)) is the entropy of q̂(X), which does not have tractable decomposition for loopy graphical
model (here our MRF is fully connected graph). Yet the entropy H(q̂(X)) can be approximated
using Bethe/Kikuchi approximation [10], by which [10] has shown that the q̂(xiu) and q̂(xiu, xjv)

can be obtained by a set of fixed point equations, known as Loopy Belief Propagation (LBP). The
entropy for the Bethe approximation in our case is

H(q̂(X)) = −
∑

(iu,jv)

∑
(xiu,xjv)

q̂(xiu, xjv) log q̂(xiu, xjv) +
∑
iu

(MN − 2)
∑
xiu

q̂(xiu) log(q̂(xiu))

4.2 Modified Loopy Belief Propagation

The speed bottleneck of this algorithm is the Loopy Belief Propagation. Without any speedup,
the complexity of BP is O

(
(N × M)3

)
, which is formidable for computation. However, for fully

connected graph, the complexity of BP can be reduced by introducing an auxiliary variable. The
BP message update rule is modified as follows

m
(t+1)
iu,jv (xjv) = k

∑
xiu

ψiu,jv(xiu, xjv)φh(xiu)M
(t)
iu (xiu)/m

(t)
jv,iu(xiu)

M
(t+1)
iu (xiu) = exp

(
Σkw �=iulog(m

(t+1)
kw,iu(xiu))

)
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Where Miu is the introduced auxiliary variable, t is the iteration index. After the message update
converges, the one node and two node beliefs q̂(xi) and q̂(xiu, xjv) can be computed as following

q̂iu(xiu) = kφh(xiu)Miu(xiu)

q̂(xiu, xjv) = kψiu,jv(xiu, xjv)φh(xiu)φh(xjv)Miu(xiu)Mjv(xjv)/
(
mjv,iu(xiu)(miu,jv(xjv)

)

Where k is the normalization constant. This modification results in O
(
(N × M)2

)
computation.

To further speed up the likelihood computation, early determination of the node correspon-
dences (i.e.xiu) before LBP can be conducted by removing the vertexes whose potential function
is above certain threshold. This operation reduces the vertex number of the induced MRF model,
resulting in less computation cost. Another speed-up scheme may be to use naive mean field ap-
proximation [4] instead of Bethe approximation. However, its accuracy may be worse than that of
Bethe approximation.

5 Learning the Parameters

Learning ARG matching can be performed at two levels: vertex-level and graph-level. For the
vertex level, the annotators annotate the correspondence of every vertex pair. This process is very
expensive, since in computer vision application, an image typically has 50-200 vertexes. In order
to reduce human supervision, graph-level learning can be used, where annotators only indicate
whether two ARGs are similar or not without identifying specific corresponding vertexes .

For learning at the vertex-level, maximum likelihood estimation results in the direct calcula-
tion of the mean and variance of Gaussian functions in the Eq.(5)(6) from the training data. The
resulting estimates of the parameters are thereby used as the initial parameters for the graph-level
learning.

For learning at the graph-level, we can use the following variational Expectation-Maximization
(E-M) scheme:

E Step: Compute q̂(xiu) and q̂(xiu, xjv) using Loopy Belief Propagation.

M Step: Maximize the lower bound in Eq.(9) by varying parameters. This can be realized by
differentiating the lower bound with respect to the parameters, resulting in the following update
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equations

ξiu = q̂(xiu = 1); ξiu,jv = q̂(xiu = 1, xjv = 1)

Σ1 =

∑
k

∑
iu (yt

u − ys
i )(y

t
u − ys

i )
T ξiu∑

k

∑
iu ξiu

Σ0 =

∑
k

∑
iu (yt

u − ys
i )(y

t
u − ys

i )
T (1 − ξiu)∑

k

∑
iu (1 − ξiu)

Σ11 =

∑
k

∑
iu,jv (yt

uv − ys
ij)(y

t
uv − ys

ij)
T ξiu,jv∑

k

∑
iu,jv ξiu,jv

Σ00 =

∑
k

∑
iu,jv (yt

uv − ys
ij)(y

t
uv − ys

ij)
T (1 − ξiu,jv)∑

k

∑
iu,jv (1 − ξiu,jv)

Where k is the index for the instances of the training graph pairs.
For the prior parameter qh, the larger ratio q1/q0 would result in the more contribution of the

prior model to the overall transformation likelihood ratio. Currently, we use a gradient descent
scheme to gradually increase the value of q1 (start from 1) until we achieve the optimal discrimi-
nation of IND classification in the training data. The discriminative criterion function is defined in
the following equation

D(q1) =
[ ∑

i∈T+

S(Gs
i , G

t
i) −

∑
j∈T−

S(Gs
j , G

t
j)

]
/

∑
i∈T+

S(Gs
i , G

t
i)

Where T+ is the set consisting of positive training pairs, and T− is the set consisting of negative
training pairs.

6 Application to Image Near-Duplicate Detection

In order to test the algorithm, we apply the ARG matching technique to find Image Near-Duplicate
(IND) in video database. Image Near-Duplicate refers to two images that are close to exact du-
plicate but with variations due to content changes, camera parameter changes, and digitization
conditions. Figure 6 shows several examples of IND.

The transformation between one image to the other in IND usually cannot be accommodated
by linear transform such as affine transformation. We represent the image scene using ARG based
modelling, where each part of the visual scene corresponds to one vertex in ARG. The parts are
extracted by using interest point detector (SUSAN corner detector), afterwards local descriptor
around the interest points are calculated to represent the appearance of the part. We use an eleven
feature vector consisting of RGB colors, spatial locations and Gabor filter coefficients. There are
also relational features being defined at the edges of the ARGs. We use the spatial coordinate dif-
ferences to form two dimensional feature vectors for relational features defined at edges. Currently,
all ARGs are fully connected graphs.
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Figure 6: Examples of Image Near-Duplicate

6.1 Implementation Issues of ARG matching

From the approximate likelihood equations, we observe that the likelihood ratio is not invariant to
the sizes of the input graphs. To reduce the sensitivity of the size variation. We use the averaged
likelihood ratio S(Gs, Gt)/(MN) instead of S(Gs, Gt). Furthermore, we assume that under neg-
ative hypothesis H = 0, there is no vertex correspondence between Gs and Gt. Therefore, all xiu

and xiu,jv are set to 0 with probability 1. And the Gaussian parameters for H = 0 are the same
as those for H = 1. To reduce the computational cost, we use the early determination scheme by
a thresholding process. As a result, the maximum size of the induced MRF is 150 vertexes. The
average computation time of matching two images is about 0.4 second. However, if two images are
Near-Duplicate, the computation time could be as high as 60 seconds. The speed may be further
boosted using more sophisticated fast Belief Propagation schemes.

6.2 Experiments of Image Near-Duplicate Detection

The benchmark data are collected from the TREC-VID 2003 corpus. TREC-VID is an open bench-
mark for evaluating visual concept (objects, scenes and events) detection and semantic video re-
trieval. TREC-VID 2003 consisting of news videos broadcasted from January 1998 to June 1998.
The news videos are from two major US broadcast channels: CNN and ABC.

The IND detection data set consists of 150 IND pairs (300 images) and 300 non-duplicate im-
ages extracted from TREC-VID 2003 video frames. The entire data set is partitioned into training
set and testing set. The training set consists of 30 IND pairs and 60 non-duplicate images.

Learning process consists of two phases. In the first phase, we apply the supervised vertex-level
learning, where the correspondences of interest points are marked by the annotator. The number
of interest points varies from 50 to 200 per image. Only 5 near-duplicate pairs and 5 non-duplicate
pairs are used in vertex-level learning. In the second phase, we conduct the graph-level learning.
E-M scheme is carried out using 25 IND pairs and 25 Non-IND pairs.

The performance of the developed method (GRAPH) is compared with color histogram (CH),
local edge descriptor (LED), averaged features distance of interest points (AFDIP) and graph
matching with manual parameter setting (GRAPH-M). Local edge descriptor has been demon-
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strated as the best feature for image copy detection in the previous work [2]. For color histogram,
we use HSV color space with 64 bins of H, 8 bins of S, and 4 bins of V. AFDIP is the summation of
all possible cosine distances between the unary feature vectors of the interest points in Gs and Gt

divided by NM . GRAPH-M is the graph matching likelihood ratio under the manually selected
Guassian parameters. The parameters are obtained by manually adjusting the covariance matrices
until we observe the best interest point matching results (by binarizing the belief q̂(xiu)). The
parameters are initialized using vertex-level learning with two IND pairs. recall is defined as the
number of the correctly detected IND pairs divided by the number of all ground truth IND pairs.
Precision is defined as the number of the correctly detected IND pairs divided by the number of all
detected IND pairs. The results are shown in figure 7.
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Figure 7: The performance of IND detection using ARG matching

7 Conclusion

We presented a stochastic framework for calculating the similarity of two Attributed Relational
Graphs. Such a stochastic framework offers a principled definition of ARG similarity and allows
the similarity to be learned from training data in supervised or unsupervised manner. Future work is
to further reduce the computational complexity of the matching process using different variational
approximation schemes.

8 Appendix

We provide the proof of theorem 1 as following.
We note that the partition function Z(h) can be represented as a generalized hypergeometric

function

Z(h) =
N∑

i=0

(
N

i

)(
M

i

)
i!zi = 2F0(−N ;−M ; ; z) (10)
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Here we use z to substitute qh. 2F0(a; b; ; z) is a generalized hypergeometric function [1]:

2F0(a; b; ; z) =
∞∑

n=0

(a)n(b)n
zn

n!
(11)

where (a)p, (b)p are rising factorials, or Pochhammer symbols, with (a)p = a(a + 1)· · ·(a + p).

2F0(a; b; ; z) is the solution of the following Ordinary Differential Equation (ODE):

z2y′′ + [(a + b + 1)z − 1]y′ + aby = 0 (12)

Therefore the partition function is the solution of the following ODE:

z2y′′ + [(1 − N − M)z − 1]y′ + MNy = 0 (13)

To solve it, we make a change of variable to let y = eNw, then we have

y′ = eNwNw′

y′′ = Nw′′eNw + N2(w′)2eNw

plug into Eq. (13), we get

z2Nw′′ + z2N2(w′)2 + (1 − N − M)zNw′ + MN = 0

Devide the above equation by N2, then when N → ∞ and M → ∞, the 2nd-order ODE degener-
ates to the following 1st-order ODE

z2(w′)2 − 2zw′ + 1 = 0

which gives w′ = ±1
z
. But since y has to be monotonically increasing, w′ has to be positive.

Therefore we have solution w = ln(z) + λ, where λ is a constant. Accordingly, we have

y = eNλzN

To obtain the constant λ, we let z = 1, then

λ = lim
N→∞

1

N
log

[ N∑
i=1

(
N

i

)(
N

i

)
i!
]

Therefore, when N → ∞, the log partition function tends to

N [ln(z) + λ]

�
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