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Abstract In this paper, we present algorithms for unsupervised mining of struc-
tures in video using multi-scale statistical models. Video structure are
repetitive segments in a video stream with consistent statistical charac-
teristics. Such structures can often be interpreted in relation to distinc-
tive semantics, particularly in structured domains like sports. While
much work in the literature explores the link between the observations
and the semantics using supervised learning, we propose unsupervised
structure mining algorithms that aim at alleviating the burden of la-
belling and training, as well as providing a scalable solution for gener-
alizing video indexing techniques to heterogeneous content collections
such as surveillance and consumer videos. Existing unsupervised video
structuring works primarily use clustering techniques, while the rich
statistical characteristics in the temporal dimension at different granu-
larity remain unexplored. Automatically identifying structures from an
unknown domain poses significant challenges when domain knowledge
is not explicitly present to assist algorithm design, model selection, and
feature selection. In this work, we model multi-level statistical struc-
tures with hierarchical hidden Markov models based on a multi-level
Markov dependency assumption. The parameters of the model are ef-
ficiently estimated using the EM algorithm, we have also developed a
model structure learning algorithm that uses stochastic sampling tech-
niques to find the optimal model structure, and a feature selection al-
gorithm that automatically finds compact relevant feature sets using
hybrid wrapper-filter methods. When tested on sports videos, the un-
supervised learning scheme achieves very promising results: (1) The au-
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tomatically selected feature set for soccer and baseball videos matches
the ones that are manually selected with domain knowledge, (2) The
system automatically discovers high-level structures that matches the
semantic events in the video, (3) The system achieves even slightly bet-
ter accuracy in detecting semantic events in unlabelled soccer videos
than a competing supervised approach designed and trained with do-
main knowledge.

Keywords: multimedia mining, structure discovery, unsupervised learning, video
indexing, statistical learning, model selection, feature selection, hierar-
chical hidden Markov model, hidden Markov model, MCMC

1. Introduction

In this paper, we present algorithms for jointly discovering statistical
structures, using the appropriate model complexity, and finding informa-
tive low-level features from video in an unsupervised setting. These tech-
niques addresses the challenges of automatically mining salient struc-
tures and patterns that exist in video streams from many practical do-
mains. Effective solutions to video indexing require detection and recog-
nition of structure and event in the video, where structure represents the
syntactic level composition of the video content, and event represents the
occurrences of certain semantic concepts. In specific domains, high-level
syntactic structures may correspond well to distinctive semantic events.
Our focus is on temporal structures, which is defined as the repetitive
segments in a time sequence that possess consistent deterministic or sta-
tistical characteristics. This definition is general to various domains,
and it is applicable at multiple levels of abstraction. At the lowest level
for example, structure can be the frequent triples of symbols in a DNA
sequence, or the repeating color schemes in a video; at the mid-level,
the seasonal trends in web traffics, or the canonical camera movements
in films; and at a higher level, the genetic functional regions in DNA se-
quences, or the game-specific temporal state transitions in sports video.
Automatic detection of structures will help locate semantic events from
low-level observations, and facilitate summarization and navigation of
the content.

1.1 The structure discovery problem

The problem of identifying structure consists of two parts: finding
a description of the structure (a.k.a the model), and locating segments
that matches the description. There are many successful cases where
these two tasks are performed in separate steps. The former is usually
referred to as training, while the latter, classification or segmentation.
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Among various possible models, hidden Markov model (HMM) [Rabiner,
1989] is a discrete state-space stochastic model with efficient learning al-
gorithms that works well for temporally correlated data streams. HMM
has been successfully applied to many different domains such as speech
recognition, handwriting recognition, motion analysis, or genome se-
quence analysis. For video analysis in particular, different genres in TV
programs have been distinguished with HMMs trained for each genre
in [Wang et al., 2000], and the high-level structure of soccer games (e.g.
play versus break) was also delineated with a pool of HMMs trained for
each category in [Xie et al., 2002b].

The structure detection methods above falls in the conventional cat-
egory of supervised learning - the algorithm designers manually identify
important structures, collect labelled data for training, and apply su-
pervised learning tools to learn the classifiers. This methodology works
for domain-specific problems at a small scale, yet it cannot be readily
extended to diverse new domains at a large scale. In this paper, we
propose a new paradigm that uses fully unsupervised statistical tech-
niques and aims at automatic discovery of salient structures and simul-
taneously recognizing such structures in unlabelled data without prior
domain knowledge. Domain knowledge, if available, can be used to as-
sign semantic meanings to the discovered structures in a post-processing
stage. Although unsupervised clustering techniques date back to sev-
eral decades ago [Jain et al., 1999], most of the data sets were treated
as independent samples, while the temporal correlation between sam-
ples were largely unexplored. Classical time series analysis techniques
have been widely used in many domains such as financial data and web
stat analysis [Iyengar et al., 1999], where the problem of identifying sea-
sonality reduces to the problem of parameter estimation with a known
order ARMA model, where the order is determined with prior statistical
tests. Yet this model does not readily adapt to domains with dynami-
cally changing model characteristics, as is often the case with video. New
statistical methods such as Monte Carlo sampling have also appeared in
genome sequence analysis [Lawrence et al., 1993], where unknown short
motifs were recovered by finding the best alignment among all protein
sequences using Gibbs sampling techniques on a multinomial model, yet
independence among amino acids in adjacent positions is still assumed.
Only a few instances have been explored for video. Clustering tech-
niques are used on the key frames of shots [Yeung and Yeo, 1996] or the
principal components of color histogram of image frames [Sahouria and
Zakhor, 1999], to detect the story units or scenes in the video, yet the
temporal dependency of the video was not fully explored. In the inde-
pendent work in [Clarkson and Pentland, 1999; Naphade and Huang,
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2002], several left-to-right HMMs were concatenated to identify tempo-
rally evolving events in ambulatory videos captured by wearable devices
or in films. In the former, the resulting clusters correspond to different
locations such as the lab or a restaurant; while in the latter, some of
which correspond to recurrent events such as explosion.

Unsupervised learning of statistical structures also involve automatic
selection of features extracted from the audio-visual stream. The com-
putational front end in many real-world scenarios extracts a large pool
of observations (i.e. features) from the stream, and at the absence of
expert knowledge, picking a subset of relevant and compact features
becomes a bottleneck. Automatically identifying informative features,
if done, will improve both the learning quality and computation effi-
ciency. Prior work in feature selection for supervised learning mainly
divides into filter and wrapper methods according to whether or not the
classifier is in-the-loop [Koller and Sahami, 1996]. Many existing work
address the supervised learning scenario, and evaluate the fitness of a
feature with regard to its information gain against training labels (filter)
or the quality of learned classifiers (wrapper). For unsupervised learning
on spatial data (i.e. assume temporally adjacent samples are indepen-
dent), [Xing and Karp, 2001] developed a method that iterated between
cluster assignment and filter/wrapper methods under the scenario when
the number of clusters is known; [Dy and Brodley, 2000] used scatter
separability and maximum likelihood (ML) criteria to evaluate fitness
of features. To the best of our knowledge, no prior work has been re-
ported for our particular problem of interest: unsupervised learning on
temporally dependent sequences with an unknown cluster size.

1.2 Characteristics of Video Structure

Our main attention in this paper is on the particular domain of video
(i.e. audio-visual streams), where the structures have the following prop-
erties from our observations: (1)Video structure is in a discrete state-
space, since we humans understand video in terms of concepts, and we
assume there exist a small set of concepts in a given domain; (2)The fea-
tures, i.e. observations from data are stochastic. As segments of video
seldom have exactly the same raw features even if they are conceptually
similar; (3)The sequence is highly correlated in time, since the videos
are sampled in a rate much higher than that of the changes in the scene.

In this paper, several terms are used without explicit distinction in
referring to the video structures despite the differences in their original
meanings: by structure we emphasize the statistical characteristics in
raw features. Given specific domains, such statistic structures often
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correspond to events, which represent occurrences of objects, or changes
of the objects or the current scene.

In particular, we will focus on dense structures in this paper. By dense
we refer to the cases where constituent structures can be modelled as a
common parametric class, and representing their alternation would be
sufficient for describing the whole data stream. In this case, there is no
need for an explicit background class, which may or may not be of the
same parametric form, to delineate sparse events from the majority of
the background.

Based on the observations above, we model stochastic observations
in a temporally correlated discrete state space and adopt a few weak
assumptions to facilitate efficient computation. We assume that within
each event, states are discrete and Markov, and observations are associ-
ated with states under a fixed parametric form, usually Gaussian. Such
assumptions are justified based on the satisfactory results from the previ-
ous works using supervised HMM to classify video events or genre [Wang
et al., 2000; Xie et al., 2002b]. We also model the transitions of events as
a Markov chain at a higher level, this simplification will enable efficient
computation at a minor cost of modelling power.

1.3 Our approach

In this paper, we model the temporal dependencies in video and the
generic structure of events in a unified statistical framework. Adopt-
ing the multi-level Markov dependency assumptions above for compu-
tational efficiency in modelling temporally structures, we model the re-
curring events in each video as HMMs, and the higher-level transitions
between these events as another level of Markov chain. This hierarchy of
HMMs forms a Hierarchical Hidden Markov Model(HHMM), its hidden
state inference and parameter estimation can be efficiently learned in
O(T ) using the expectation-maximization (EM) algorithm. This frame-
work is general in that it is scalable to events of different complexity; yet
it is also flexible in that prior domain knowledge can be incorporated in
terms of state connectivity, number of levels of Markov chains, and the
time scale of the states.

We have also developed algorithms to address model selection and
feature selection problems that are necessary in unsupervised settings
when domain knowledge is not used. Bayesian learning techniques are
used to learn the model complexity automatically, where the search over
model space is done with reverse-jump Markov chain Monte Carlo, and
Bayesian Information Criteria (BIC) is used as model posterior. We use
an iterative filter-wrapper methods for feature selection, where the wrap-
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per step partitions the feature pool into consistent groups that agrees
with each other with mutual information gain criteria, and the filter step
eliminates redundant dimensions in each group by finding an approxi-
mate Markov blanket, and finally the resulting groups are ranked with
modified BIC with respect to their a posteriori fitness. The approach
is elegant in that maximum likelihood parameter estimation, model and
feature selection, structure decoding, and content segmentation are done
in a single unified process.

Evaluation on real video data showed very promising results. We
tested the algorithm on multiple sports videos, and our unsupervised ap-
proach automatically discovers the high-level structures, namely, plays
and breaks in soccer and baseball. The feature selection method also
automatically discovered a compact relevant feature set, which matched
the features manually selected using domain knowledge. The new un-
supervised method discovers the statistical descriptions of high-level
structure from unlabelled video, yet it achieves even slightly higher
accuracy(75.7% and 75.2% for unsupervised vs. 75.0% for supervised,
section 6.1) when compared to our previous results using supervised clas-
sification with domain knowledge and similar HMM models. We have
also compared the proposed HHMM model with left-to-right models with
single entry/exit states as in [Clarkson and Pentland, 1999; Naphade and
Huang, 2002], and the average accuracy of the HHMM is 2.3% better
than that of the constrained models. We can see from this result that the
additional hierarchical structure imposed by HHMM over a more con-
strained model introduces more modelling power on our test domain.

The rest of this chapter is organized as follows: section 2 presents
the structure and semantics of the HHMM model; section 3 presents
the inference and parameter learning algorithms for HHMM; section 4
presents algorithms for learning HHMM strucutre; section 5 presents
our feature selection algorithm for unsupervised learning over temporal
sequences; section 6 evaluates the results of learning with HHMM on
sports video data; section 7 summarizes the work and discusses open
issues.

2. Hierarchical hidden Markov models

Based on the two-level Markov setup described above, we use two-
level hierarchical hidden Markov model to model structures in video.
In this model, the higher-level structure elements usually correspond to
semantic events, while the lower-level states represents variations that
can occur within the same event, and these lower-level states in turn
produce the observations, i.e., measurements taken from the raw video,
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with mixture-of-Gaussian distribution. Note the HHMM model is a
special case of Dynamic Bayesian Networks (DBN), also note the model
can be easily extended to more than two levels, and feature distribution is
not constrained to mixture-of-Gaussians. In the sections that follow, we
will present algorithms that address the inference, parameter learning,
and structure learning problems for general D-level HHMMs.
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Figure 1.1. Graphical HHMM representation at level d and d+1 (A)Tree-structured
representation; (B)DBN representations, with observations Xt drawn at the bottom.
Uppercase letters denote the states as random variables in time t, lowercase letters
denote the state-space of HHMM, i.e., values these random variables can take in any
time slice. Shaded nodes are auxiliary exit nodes that turn on the transition at a
higher level - a state at level d is not allowed to change unless the exiting states in
the levels below are on Ed+1 = 1.

2.1 Structure of HHMM

Hierarchical hidden Markov model was first introduced in [Fine et al.,
1998] as a natural generalization to HMM with hierarchical control struc-
ture. As shown in Figure 1.1(A), every higher-level state symbol corre-
sponds to a stream of symbols produced by a lower-level sub-HMM; a
transition at the high level model is invoked only when the lower-level
model enters an exit state (shaded nodes in Figure 1.1(A)); observations
are only produced at the lowest level states.

This bottom-up structure is general in that it includes several other
hierarchical schemes as special cases. Examples include the stacking of
left-right HMMs [Clarkson and Pentland, 1999; Naphade and Huang,
2002], where across-level transitions can only happen at the first or the



8

last state of a lower-level model; or the discrete counterpart of the jump
Markov model [Doucet and Andrieu, 2001] with top-down(rather than
bottom-up) control structure; where the level-transition probabilities are
identical for each state that belongs to the same parent state at a higher
level.

Prior applications of HHMM falls into three categories: (1) Supervised
learning where manually segmented training data is available, hence each
sub-HMM is learned separately on the segmented sub-sequences, and
cross-level transitions are learned using the transition statistics across
the subsequences. Examples include extron/intron recognition in DNA
sequences [Hu et al., 2000], action recognition [Ivanov and Bobick, 2000],
and more examples summarized in [Murphy, 2001] falls into this cate-
gory. (2) Unsupervised learning, where segmented data at any level are
not available for training, and parameters of different levels are jointly
learned; (3)A mixture of the above, where the state labels at the high
level are given (with or without sub-model boundary), yet parameters
still needs to be estimated across several levels. Few instances of (2)
can be found in the literature, while examples of (3), as a combination
of (1) and (2), abound: the celebrated application of speech recognition
systems with word-level annotation [The HTK Team, 2000], text parsing
and handwriting recognition [Fine et al., 1998].

2.2 The Complexity of Inferencing and Learning
with HHMM

Fine et. al. have shown that multi-level hidden state inference with
HHMM can be done in O(T 3) by looping over all possible lengths of sub-
sequences generated by each Markov model at each level, where T is the
sequence length [Fine et al., 1998]. This algorithm is not optimal, how-
ever, an O(T ) algorithm has later been shown in [Murphy and Paskin,
2001] with an equivalent DBN representation by unrolling the multi-level
states in time (Figure 1.1(B)). In this DBN representation, the hidden
states Qd

t at each level d = 1, . . .D, the observation sequence Xt, and
the auxiliary level-exiting variables Ed

t completely specifies the state of
the model at time t. Note Ed

t can be turned on only if all lower levels
of Ed+1:D

T are on. The inference scheme used in [Murphy and Paskin,
2001] is the generic junction tree algorithm for DBNs, and the empirical
complexity is O(DT · |Q|1.5D),1 where D is the number of levels in the
hierarchy, and |Q| is the maximum number of distinct discrete values of
any variable Qd

t , d = 1, . . . , D.

1More accurately, O(DT · |Q|d1.5De2d0.5De)
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For simplicity, we use a generalized forward-backward algorithm for
hidden state inference, and a generalized EM algorithm for parameter
estimation based on the forward-backward iterations. The algorithms
is outlined in section 3, and details can be found in [Xie et al., 2002a].
Note the complexity of this algorithm is O(DT · |Q|2D), with a similar
running time as [Murphy and Paskin, 2001] for small D and modest Q.

3. Learning HHMM parameters with EM

In this section, we define notations to represent the states and param-
eter set of an HHMM, followed by a brief overview on deriving the EM
algorithm for HHMMs. Details of the forward-backward algorithm for
multi-level hidden state inference, and the EM update algorithms for pa-
rameter estimation are found in [Xie et al., 2002a]. The scope of the EM
algorithm is the basic parameter estimation, we will assume that the size
of the model is given, and the model is learned over a pre-defined fea-
ture set. These two assumptions are relaxed using the proposed model
selection algorithms described in section 4, and feature selection criteria
in section 5.

3.1 Representing an HHMM

Denote the maximum state-space size of any sub-HMM as N , we use
the bar notation (equation1.1) to write the entire configuration of the
hierarchical states from the top (level 1) to the bottom (level D) with a
N -ary D-digit integer, with the lowest-level states at the least significant
digit:

k(D) = q1:D = (q1q2 . . . qD) =
D

∑

i=1

qi · N
D−i (1.1)

Here 1 ≤ qi ≤ N ; i = 1, . . . , D. We drop the superscript of k where there
is no confusion, the whole parameter set Θ of an HHMM then consists
of (1) Markov chain parameters λd in level d indexed by the state con-
figuration k(d−1), i.e., transition probabilities Ad

k, prior probabilities πd
k,

and exiting probabilities from the current level ed
k; (2) emission parame-

ters B that specifies the distribution of observations conditioned on the
state configuration, i.e., the means µk and covariances σk when emission
distributions are Gaussian.

Θ = (
D
⋃

d=1

{λd})
⋃

{B}
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= (

D
⋃

d=1

Nd−1

⋃

i=1

{Ad
i , π

d
i , ed

i })
⋃

(

ND
⋃

i=1

{µi, σi}) (1.2)

3.2 Overview of the EM algorithm

Denote Θ the old parameter set, Θ̂ the new (updated) parameter set,
then maximizing the data likelihood L is equivalent to iteratively max-
imizing the expected value of the complete-data log-likelihood function
Ω(·, Θ) as in equation (1.3), for the observation sequence X1:T and the D-
level hidden state sequence Q1:T , according to the general EM presented
in [Dempster et al., 1977]. Here we adopt the Matlab-like notation to
write a temporal sequence of length T as (·)1:T , and its element at time
t is simply (·)t.

Ω(Θ̂, Θ) = E[log(P (Q1:T , X1:T |Θ̂))|X1:T , Θ] (1.3)

=
∑

Q1:T

P (Q1:T |X1:T , Θ) log(P (Q1:T , X1:T |Θ̂))

= L−1
∑

Q1:T

P (Q1:T , X1:T |Θ) log(P (Q1:T , X1:T |Θ̂)) (1.4)

Generally speaking, the ”E” step evaluates this expectation based on
the current parameter set Θ, and the ”M” step finds the value of Θ̂ that
maximizes this expectation. Special care must be taken in choosing a
proper hidden state space for the ”M” step of (1.4) to have a closed-
form solution. Since all the unknowns lie inside the log(·), it can be

easily seen that if the complete-data probability P (Q1:T , X1:T |Θ̂) takes
the form of product-of-unknown-parameters, we would get summation-
of-individual-parameters in Ω(Θ̂, Θ); hence, each unknown can be solved
separately in maximization and close-form solution is possible.

4. Bayesian model adaptation

Parameter learning for HHMM using EM is known to converge to a lo-
cal maxima of the data likelihood since EM is an hill-climbing algorithm,
and it is also known that searching for a global maxima in the likelihood
landscape is intractable. Moreover, this optimization for data likelihood
is only carried out over a predefined model structure, and in order to
enable the comparison and search over a set of model structures, we will
need not only a new optimality criteria, but also an alternative search
strategy since exhausting all model topologies is super-exponential in
complexity.
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In this work, we adopt randomized search strategies to address the
intractability problem on the parameter and model structure space; and
the optimality criteria is generalized to maximum posterior from maxi-
mum likelihood, thus incorporating Bayesian prior belief on the model
structure. Specifically, we use Markov chain Monte Carlo(MCMC) method
to maximize Bayesian information criteria (BIC) [Schwarz, 1978], and
the motivation and basics structure of this algorithm are presented in
the following subsections.

We are aware that alternatives for structure learning exist, such as the
deterministic parameter trimming algorithm with entropy prior [Brand,
1999], which ensures the monotonic increasing of model priors through-
out the trimming process. However, we would have to start with a suffi-
ciently large model in order to apply this trimming algorithm, which is
undesirable for computational complexity purposes and also impossible
if we do not know a bound of the model complexity beforehand.

4.1 An overview of MCMC

MCMC is a class of algorithms that can solve high-dimensional op-
timization problems, and there has been much recent success in using
this technique to solve the problem of Bayesian learning of statistical
models [Andrieu et al., 2003]. In general, MCMC for Bayesian learn-
ing iterates between two steps: (1)The proposal step gives a new model
sampled from certain proposal distributions, which depends on the cur-
rent model and statistics of the data; (2)The decision step computes an
acceptance probability α based on the fitness of the proposed new model
using model posterior and proposal strategies, and then this proposal is
accepted or rejected with probability α.

MCMC will converge to the global optimum in probability if certain
constraints [Andrieu et al., 2003] are satisfied for the proposal distri-
butions, yet the speed of convergence largely depends on the goodness
of the proposals. In addition to parameters learning, model selection
can also be addressed in the same framework with reverse-jump MCMC
(RJ-MCMC) [Green, 1995], by constructing reversible moves between
parameter spaces of different dimensions. In particular, [Andrieu et al.,
2001] applied RJ-MCMC to the learning of radial basis function (RBF)
neural networks by introducing birth-death and split-merge moves to
the RBF kernels. This is similar to our case of learning variable num-
ber of Gaussians in the feature space that correspond to the emission
probabilities.

In this work, we deployed a MCMC scheme to learn the optimal state-
space of an HHMM model. We use a mixture of the EM and MCMC
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algorithms, where the model parameters are updated using EM, and
model structure learning uses MCMC. We choose this hybrid algorithm
in place of full Monte Carlo update of the parameter set and the model,
since MCMC update of parameters will take much longer than EM, and
the convergence behavior does not seem to suffer in practice.

4.2 MCMC for HHMM

Model adaptation for HHMM involves moves similar to [Andrieu et al.,
2003] since many changes in the state space involve changing the num-
ber of Gaussian kernels that associates states in the lowest level with
observations. We included four general types of movement in the state-
space, as can be illustrated form the tree-structured representation of
the HHMM in figure 1.1(a): (1)EM, regular parameter update without
changing the state space size. (2)Split(d), to split a state at level d.
This is done by randomly partitioning the direct children (when there
are more than one) of a state at level d into two sets, assigning one set
to its original parent, the other set to a newly generated parent state at
level d; when split happens at the lowest level(i.e. d = D), we split the
Gaussian kernel of the original observation probabilities by perturbing
the mean. (3) Merge(d), to merge two states at level d into one, by col-
lapsing their children into one set and decreasing the number of nodes
at level d by one. (4) Swap(d), to swap the parents of two states at level
d, whose parent nodes at level d − 1 was not originally the same. This
special new move is needed for HHMM, since its multi-level structure
is non-homogeneous within the same size of overall state-space. Note
we are not including birth/death moves for simplicity, since these moves
can be reached with multiple moves of split/merge.

Model adaptation for HHMMs is choreographed as follows:

1 Initialize the model Θ0 from data.

2 At iteration i, Based on the current model Θi, compute a probabil-
ity profile PΘi

= [pem, psp(1 : D), pme(1 : D), psw(1 : D)] according
to equations (1.A.1)-(1.A.4), and then propose a move among the
types {EM, Split(d), Merge(d), Swap(d)|d = 1, . . . , D}

3 Update the model structure and the parameter set by appropriate
action on selected states and their children states, as described in
the appendix;

4 Evaluate the acceptance ratio ri for different types of moves ac-
cording to equations (1.A.7)–(1.A.11) in the appendix, this ratio
takes into account model posterior, computed with BIC (equa-



Mining Statistical Video Structures 13

tion 1.5), and alignment terms that compensates for the fact that
the spaces we are evaluating the ratio between are of unequal sizes.
Denote the acceptance probability αi = min{1, ri}, we then sam-
ple u ∼ U(0, 1), and accept the this move if u ≤ αi, reject other-
wise.

5 Stop if converged, otherwise goto step 2

BIC [Schwarz, 1978] is a measure of a posteriori model fitness, it is
the major factor that determines whether or not a proposed move is
accepted.

BIC = log(P (x|Θ)) · λ −
1

2
|Θ| log(T ) (1.5)

Intuitively, BIC is a trade-off between data likelihood P (X|Θ) and model
complexity |Θ| · log(T ) with weighting factor λ. Larger models are pe-
nalized by the number of free parameters in the model |Θ|; yet the
influence of the model penalty decreases as the amount of training data
T increases, since log(T ) grows slower than O(T ). We empirically choose
the weighting factor λ as 1/16 in the simulations of this section as well
as those in section 5, in order for the change in data likelihood and that
in model prior to be numerically comparable over one iteration.

5. Feature selection for unsupervised learning

Feature extraction schemes for audio-visual streams abound, and we
are usually left with a large pool of diverse features without knowing
which ones are actually relevant to the important events and structures
in the data sequences. A few features can be selected manually if ade-
quate domain knowledge exists. Yet very often, such knowledge is not
available in new domains, or the connection between high-level struc-
tures and low-level features is not obvious. In general, the task of fea-
ture selection is divided into two aspects - eliminating irrelevant features
and redundant ones. Irrelevant features usually disturb the classifier and
degrade classification accuracy, while redundant features add to compu-
tational cost without bringing in new information. Furthermore, for
unsupervised structure discovery, different subsets of features may re-
late to different events, and thus the events should be described with
separate models rather than being modelled jointly.

Hence, the scope of our problem is to select relevant and compact
feature subset that fits the HHMM model assumption in unsupervised
learning over temporally correlated data streams.
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5.1 The feature selection algorithm

Denote the feature pool as F = {f1, . . . , fD}, the data sequence as
XF = X1:T

F , then the feature vector at time t is Xt
F . The feature selection

algorithm proceeds through the following steps, as illustrated in figure
1.2:

1 (Let i = 1 to start with) At the i-th round, produce a reference set
F̃i ⊆ F at random, learn HHMM Θ̃i on F̃i with model adaptation,
perform Viterbi decoding of XF̃i

, and obtain the reference state-

sequence Q̃i = Q̃1:T
F̃i

.

2 For each feature fd ∈ F \ F̃i, learn HHMM Θd, get the Viterbi
state sequence Qd, then compute the information gain (sec. 5.2)
of each feature on the Qd with respect to the reference partition
Q̃i. We then find the subset F̂i ⊆ (F \ F̃i) with significantly large
information gain to form the consistent feature group as union the

reference set and the relevance set : F̄i
4
= F̃i ∪ F̂i.

3 Use Markov blanket filtering in sec. 5.3, eliminate redundant fea-
tures within the set F̄i whose Markov blanket exists. We are then
left with a relevant and compact feature subset Fi ⊆ F̄i. Learn
HHMM Θi again with model adaptation on XFi

.

4 Eliminate the previous candidate set by setting F = F \ F̄i; go
back to step 1 with i = i + 1 if F is non-empty.

5 For each feature-model combination {Fi, Θi}i, evaluate their fit-
ness using the normalized BIC criteria in sec. 5.4, rank the feature
subsets and interpret the meanings of the resulting clusters.

After the feature-model combinations are generated automatically, a
human operator can look at the structures marked by these models, and
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Figure 1.2. Feature selection algorithm overview
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then come to a decision on whether a feature-model combination shall
be kept based on the meaningful-ness of the resulting structures, and
the BIC criteria.

5.2 Evaluating information gain

Step 1 in section 5.1 produces a reference labelling of the data se-
quence induced by the classifier learned over the reference feature set.
We want to find features that are relevant to this reference. One suitable
measure to quantify the the degree of agreement in each feature to the
reference labelling, as used in [Xing and Karp, 2001], is the mutual infor-
mation [Cover and Thomas, 1991], or the information gain achieved by
the new partition induced with the candidate features over the reference
partition.

A classifier ΘF learned over a feature set F generates a partition,
i.e., a label sequence QF , on the observations XF , when there are at
most N possible labels, we denote the label sequence as integers Qt

F ∈
{1, . . . , N}. We compute the probability of each label using the em-
pirical portion, by counting the samples that bear label i over time
t = 1, . . . , T (eq. 1.6). Compute similarly the conditional probability of
the reference labels Q̃i for the i-th iteration round given the new parti-
tion Qf induced by a feature f (eq.1.7), by counting over pairs of labels

over time t. Then the information gain of feature f with respect to Q̃i

is defined as the mutual information between Q̃i and Qf (eq. 1.8).

PQf
(i) =

|{t|Qt
f = i, t = 1, . . . , T}|

T
; (1.6)

PQ̃i|Qf
(i | j) =

|{t|(Q̃t
i, Q

t
f ) = (i, j), t = 1, . . . , T}|

|{t|Qt
f = j, t = 1, . . . , T}|

; (1.7)

I(Qf ; Q̃i) = H(PQ̃i
) −

∑

j

PQf
· H(PQ̃i|Qf=j) (1.8)

where i, j = 1, . . . , N

Here H(·) is the entropy function. Intuitively, a larger information
gain for candidate feature f suggests that the f -induced partition Qf

is more consistent with the reference partition Q̃i. After computing the
information gain I(Qf ; Q̃i) for each remaining feature fd ∈ F \ F̃i, we
perform hierarchical agglomerative clustering on the information gain
vector using a dendrogram [Jain et al., 1999], look at the top-most link
that partitions all the features into two clusters, and pick features that
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lies in the upper cluster as the set with satisfactory consistency with the
reference feature set.

5.3 Finding a Markov Blanket

After wrapping information gain criteria around classifiers build over
all feature candidates (step 2 in section 5.1), we are left with a subset
of features with consistency yet possible redundancy. The approach
for identifying redundant features naturally relates to the conditional
dependencies among the features. For this purpose, we need the notion
of a Markov blanket [Koller and Sahami, 1996].

Definition Let f be a feature subset, Mf be a set of random variables
that does not contain f , we say Mf is the Markov blanket of f , if f is
conditionally independent of all variables in {F ∪ C} \ {Mf ∪ f} given
Mf . [Koller and Sahami, 1996]

Computationally, a feature f is redundant if the partition C of the
data set is independent to f given its Markov Blanket FM . In prior
work [Koller and Sahami, 1996; Xing and Karp, 2001], the Markov blan-
ket is identified with the equivalent condition that the posterior proba-
bility distribution of the class given the feature set {Mf ∪ f} should be
the same as that conditioned on the Markov blanket Mf only. i.e.,

∆f = D( P (C|Mf ∪ f) || P (C|Mf ) ) = 0 (1.9)

where D(P ||Q) = ΣxP (x) log(P (x)/Q(x)) is the Kullback-Leibler dis-
tance [Cover and Thomas, 1991] between two probability mass functions
P (x) and Q(x).

For unsupervised learning over a temporal stream, however, this cri-
teria cannot be readily employed. This is because (1) The posterior
distribution of a class depends not only on the current data sample but
also on adjacent samples. (2) We would have to condition the class la-
bel posterior over all dependent feature samples, and such conditioning
quickly makes the estimation of the posterior intractable as the number
of conditioned samples grows. (3) We will not have enough data to esti-
mate these high-dimensional distributions by counting over feature-class
tuples since the dimensionality is high. We therefore use an alternative
necessary condition that the optimum state-sequence C1:T should not
change conditioned on observing Mf ∪ f or Mf only.

Koller and Sahami have also proved that sequentially removing feature
one at a time with its Markov blanket identified will not cause divergence
of the resulting set, since if we eliminate feature f and keep its Markov
blanket Mf , f remains unnecessary in later stages when more features
are eliminated. Additionally, as few if any features will have a Markov
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Blanket of limited size in practice, we sequentially remove features that
induces the least change in the state sequence given the change is small
enough (< 5%). Note this step is a filtering step in our HHMM learning
setting, since we do not need to retrain the HHMMs for each candidate
feature f and its Markov blanket Mf . Given the HHMM trained over
the set f ∪ Mf , the state sequence QMf

decoded with the observation
sequences in Mf only, is compared with the state sequence Qf∪Mf

de-
coded using the whole observation sequence in f ∪Mf . If the difference
between QMf

and Qf∪Mf
is small enough, then f is removed since Mf

is found to be a Markov blanket of f .

5.4 Normalized BIC

Iterating over section 5.2 and section 5.3 results in disjoint small sub-
sets of features {Fi} that are compact and consistent with each other.
The HHMM models {Θi} learned over these subsets are best-effort fits
on the features, yet the {Θi}s may not fit the multi-level Markov as-
sumptions in section 1.2.

There are two criteria proposed in prior work [Dy and Brodley, 2000],
scatter separability and maximum likelihood (ML). Note the former is
not suitable to temporal data since multi-dimensional Euclidean distance
does not take into account temporal dependency, and it is non-trivial to
define another proper distance measure for temporal data; while the
latter is also known [Dy and Brodley, 2000] to be biased against higher-
dimensional feature sets. We use a normalized BIC criteria(eq. 1.10)
as the alternative to ML, which trades off normalized data likelihood
L̃ with model complexity |Θ|. Note the former has weighting factor
λ in practice; the latter is modulated by the total number of samples
log(T ); and L̃ for HHMM is computed in the same forward-backward
iterations, except all the emission probabilities P (X|Q) are replaced with
P ′

X,Q = P (X|Q)1/D, i.e., normalized with respect to data dimension D,
under the naive-Bayes assumption that features are independent given
the hidden states.

B̃IC = L̃ · λ −
1

2
|Θ| log(T ) (1.10)

Initialization and convergence issues exist in the iterative partitioning
of the feature pool. The strategy for producing the random reference set
F̃i in step (1) affects the result of feature partition, as even producing the
same F̃i in a different sequence may result in different final partitions.
Moreover, the expressiveness of the resulting structures is also affected
by the reference set. If the dimension of F̃i is too low, for example, the
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algorithm tends to produce many small feature groups where features
in the same group mostly agree with each other, and the learned model
would not be able to identify potential complex structures that must
be identified with features carrying complementary information, such
as features from different modalities (audio and video). On the other
hand, if F̃i is of very high dimension, then the information gain criteria
will give a large feature group around F̃i, thus mixing different event
streams that would better be modelled separately, such as the activity
of pedestrians and vehicles in a street surveillance video.

6. Experiments and Results

In this section, we report the tests of the proposed methods in auto-
matically finding salient events, learning model structures, and identify-
ing informative feature set in soccer and baseball videos. We have also
experimented with variations in HHMM transition topology and found
that the additional hierarchical structure imposed by HHMM over an
ordinary HMM introduces more modelling power on our test domain.

Sports videos represent an interesting domain for testing the proposed
techniques in automatic structure discovery. Two main factors con-
tribute to this match in the video domain and the statistical technique:
the distinct set of semantics in one sport domain exhibit strong corre-
lations with audio-visual features; the well-established rules of games
and production syntax in sports video programs poses strong temporal
transition constraints. For example, in soccer videos, plays and breaks
are recurrent events covering the entire time axis of the video data. In
baseball videos, transitions among different perceptually distinctive mid-
level events, such as pitching, batting, running, indicate the semantics
of the game.

Clip Name Sport Length Resolution Frame rate Source

Korea Soccer 25’00” 320 × 240 29.97 MPEG-7

Spain Soccer 15’00” 352 × 288 25 MPEG-7

NY-AZ Baseball 32’15” 320 × 240 29.97 TV program

Table 1.1. Sports video clips used in the experiment.

All our test videos are in MPEG-1 format, their profiles are listed
in table 1.1. For soccer videos, we have compared with our previous
work using supervised methods on the same video streams [Xie et al.,
2002b]. The evaluation basis for the structure discovery algorithms are
two semantic events play and break, defined according to the rules of soc-
cer game. These two events are dense since they cover the whole time
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scale of the video, and distinguishing break from play will be useful for
efficient browsing and summarization, since break takes up about 40%
of the screen time, and viewers may browse through the game play by
play, skipping all the breaks in between, or randomly access the break
segments to find player responses or game announcements. For baseball
videos, we conducted the learning without having labelled ground truth
or manually identified features a priori, and an human observer(the first
author) reports observations on the selected feature sets and the result-
ing structures afterwards. This is analogous to the actual application of
structure discovery to an unknown domain, where evaluation and inter-
pretation of the result is done after automatic discovery algorithms are
applied.

It is difficult to define general evaluation criteria for automatic struc-
ture discovery results that are applicable across different domains, this is
especially the case when domain-specific semantic labels are of interest.
This difficulty lies in the gap between computational optimization and
semantic meanings: the results of unsupervised learning are optimized
with measures of statistical fitness, yet the link from statistical fitness to
semantics needs a match between general domain characteristics and the
computational assumptions imposed in the model. Despite the difficulty,
our results have shown support for constrained domains such as sports.
Effective statistic models built over statistically optimized feature sets
have good correspondence with semantic events in the selected domain.

6.1 Parameter and structure learning

We first test the automatic model learning algorithms with a fixed
feature set manually selected based on heuristics. The selected features,
dominant color ratio and motion intensity, have been found effective in
detecting soccer events in our prior works [Xu et al., 2001; Xie et al.,
2002b]. Such features are uniformly sampled from the video stream every
0.1 second. Here we compare the learning accuracy of four different
learning schemes against the ground truth.

1 Supervised HMM: This is developed in our prior work in [Xie et al.,
2002b]. One HMM per semantic event (i.e., play and break) is
trained on manually chunks. For test video data with unknown
event boundaries, the videos are first chopped into 3-second seg-
ments, where the data likelihood of each segment is evaluated with
each of the trained HMMs. The final event boundaries are re-
fined with a dynamic programming step taking into account the
model likelihoods, the transition likelihoods between events, and
the probability distribution of event durations.
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2 Supervised HHMM: Individual HMMs at the bottom level of the
hierarchy are learned separately, essentially using the models trained
in scheme 1; across-level and top level transition statistics are also
obtained from segmented data; then, segmentation is obtained by
decoding the Viterbi path from the hierarchical model on the entire
video stream.

3 Unsupervised HHMM without model adaptation: An HHMM is
initialized with known size of state-space and random parameters;
the EM algorithm is used to learn the model parameters; and
segmentation is obtained from the Viterbi path of the final model.

4 Unsupervised HHMM with model adaptation: An HHMM is ini-
tialized with arbitrary size of state-space and random parameters;
the EM and RJ-MCMC algorithms are used to learn the size and
parameters of the model; state sequence is obtained from the con-
verged model with optimal size. Here we will report results sepa-
rately for (a) model adaptation in the lowest level of HHMM only,
and (b) full model adaptation across different levels as described
in section 4.

For supervised schemes 1 and 2, K-means clustering and Gaussian
mixture fitting is used to randomly initialize the HMMs. For unsuper-
vised schemes 3 and 4, as well as all full HHMM learning schemes in
the sections that follow, the initial emission probabilities of the initial
bottom-level HMMs are obtained with K-means and Gaussian fitting;
then, the multi-level Markov chain parameters are estimated using a
dynamic programming technique that groups the states into different
levels by maximizing the number of within-level transitions, while min-
imizing inter-level transitions among the Gaussians. For schemes 1-3,
the model size is set to six bottom-level states per event, corresponding
to the optimal model size that schemes 4a converges to, i.e., six to eight
bottom-level states per event. We run each algorithm for 15 times with
random start and compute the per-sample accuracy against manual la-
bels. The median and semi-interquartile range 2 across multiple rounds
are listed in table 1.2.

Results showed that the performance of the unsupervised learning
schemes are comparable to the supervised learning, and sometimes it
achieved even slightly better accuracy than the supervised learning coun-
terpart. This is quite surprising since the unsupervised learning of HH-

2Semi-interquartile as a measure of the spread of the data, is defined as half of the distance
between the 75th and 25th percentile, it is more robust to outliers than standard deviation.
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Learning Supervised? Model Adaptation? Accuracy
Scheme type Bottom-level High-levels Median SIQ

(1) Y HMM N N 75.5% 1.8%

(2) Y HHMM N N 75.0% 2.0%

(3) N HHMM N N 75.0% 1.2%

(4a) N HHMM N Y 75.7% 1.1%

(4b) N HHMM Y Y 75.2% 1.3%

Table 1.2. Evaluation of learning schemes (1)-(4) against ground truth using on clip
Korea

MMs is not tuned to the particular ground-truth. The result maintain
a consistent accuracy, as indicated by the low semi-interquartile range.
Also note the comparison basis using supervised learning is actually con-
servative since (1) unlike [Xie et al., 2002b], the HMMs are learning and
evaluated on the same video clip and results reported for schemes 1
and 2 are actually training accuracies; (2) the models without structure
adaptation are assigned the a posteriori optimal model size.

For the HHMM with full model adaptation (scheme 4b), the algorithm
converges to two to four high-level states, and the evaluation is done by
assigning each resulting cluster to the majority ground-truth label it
corresponds to. We have observed that the resulting accuracy is still in
the same range without knowing how many interesting structures there
is to start with. The reason for this performance match lies in the fact
that the additional high level structures are actually a sub-cluster of
play or break, they are generally of three to five states each, and two
sub-clusters correspond to one larger, true cluster of play or break (refer
to a three-cluster example in section 6.2).

6.2 With feature selection

Based on the good performance of the model parameter and structure
learning algorithm, we test the performance of the automatic feature
selection method that iteratively wraps around, and filters (section 5).
We use the two test clips, Korea and Spain as profiled in table 1.1. A
nine-dimensional feature vector sampled at every 0.1 seconds are taken
as the initial feature pool, including:

Dominant Color Ratio (DCR), Motion Intensity (MI), the least-
square estimates of camera translation (MX, MY), and five audio
features - Volume, Spectral roll-off (SR), Low-band energy (LE),
High-band energy (HE), and Zero-crossing rate (ZCR).
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We run the feature selection method plus model learning algorithm
on each video stream for five times, with one or two-dimensional feature
set as the as initial reference set in each iteration. After eliminating
degenerate cases that only consist of one feature in the resulting set,
we evaluate the feature-model pair that has the largest Normalized BIC
value as described in section 5.4.

For clip Spain, the selected feature set is {DCR, Volume} The model
converges to two high-level states in the HHMM, each with five lower-
level children states. Evaluation against the play/break labels showed a
74.8% accuracy. For clip Korea, the final selected feature set is {DCR,
MX}, with three high-level states and {7, 3, 4} children states respec-
tively. If we assign each of the three clusters to the semantic event that
it agrees with for the most amount of times (which would be {play,
break, break} respectively), per-sample accuracy would be 74.5%. The
automatic selection of DCR and MX as the most relevant features ac-
tually confirm the two features DCR and MI, manually chosen in our
prior work [Xie et al., 2002b; Xu et al., 2001]. MX is a feature that
approximates the horizontal camera panning motion, which is the most
dominant factor contributing to the overall motion intensity (MI) in soc-
cer video, as the camera needs to track the ball movement in wide angle
shorts, and wide angle shots are one major type of shot that is used to
reveal overall game status [Xu et al., 2001].

The accuracies are comparable to their counterpart (scheme 4) in
section 6.1 without varying the feature set (75%). Yet the small dis-
crepancy may due to (1) Variability in RJ-MCMC (section 4), for which
convergence diagnostic is still an active area of research [Andrieu et al.,
2003]; (2)Possible inherent bias may exist in the normalized BIC criteria
(equation 1.10), as we will need ways to further calibrate the criteria.

6.3 Testing on a different domain

We have also conducted a preliminary study on the baseball video
clip described in table 1.1. The same 9-dimensional features pool as in
section 6.2 are extracted from the stream also at 0.1 second per sample.
The learning of models is carried out without having labelled ground
truth or manually identified features a priori. Observations are reported
based on the selected feature sets and the resulting structures of the test
results. This is a standard process of applying structure discovery to an
unknown domain, where automatic algorithms serve as a pre-filtering
step, and evaluation and interpretation of the result can only be done
afterwards.
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HHMM learning with full model adaptation and feature selection is
conducted, resulting in three consistent compact feature groups: (a) HE,
LE, ZCR; (b) DCR, MX; (c) Volume, SR. It is interesting to see audio
features falls into two separate groups, and the visual features are also
in a individual group.

The BIC score for the second group, dominant color ratio and hor-
izontal camera pan, is significantly higher than that of the other two.
The HHMM model in (b) has two higher-level states, each has six and
seven children states at the bottom level, respectively. Moreover, the
resulting segments from the model learned with this feature set have
consistent perceptual properties, with one cluster of segments mostly
corresponding to pitching shot and other field shots when the game is in
play, while the other cluster contains most of the cutaways shots, score
boards and game breaks, respectively. It is not surprising that this re-
sult agrees with the intuition that the status of a game can mainly be
inferred from visual information.

6.4 Comparing to HHMM with simplifying
constraints

In order to investigate the expressiveness of the multi-level model
structure, we compare unsupervised structure discovery performances
of the HHMM with a similar model with constrains in the transitions
each node can make.

The two model topologies being simulated are visualized in figure 1.3:

(a) The simplified HHMM where each bottom-level sub-HMM is a
left-to-right model with skips, and cross level entering/exiting can
only happen at the first/last node, respectively. Note the right-
most states serving as the single exit point from the bottom level
eliminates the need for a special exiting state.

(b) The fully connected general 2-level HHMM model used in
scheme 3, section 6.1, a special case of the HHMM in figure 1.1).
Note the dummy exiting cannot be omitted in this case.

Topology (a) is of interest because the left-to-right and single en-
try/exit point constraints enables the learning the model with the al-
gorithms designed for ordinary HMMs by collapsing this model to an
ordinary HMM. The collapsing can be done because unlike the general
HHMM case 2, there is no ambiguity in whether or not a cross-level
has happened in the original model given the last state and the cur-
rent state in the collapsed model, or equivalently, the flattened HMM
transition matrix can be uniquely factored back to recover the multi-
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level transition structure. Note the trade-off here for model generality
is that parameter estimation of the flattened HMMs is of complexity
O(T |Q|2D), while HHMMs will need O(DT |Q|2D), as analyzed in sec-
tion 2.2. With the total number of levels D typically a fixed small
constant, this difference does not influence the scalability of the model
to long sequences.

(a) HHMM with left-right transition constraint (b) Fully-connected HHMM

Figure 1.3. Comparison with HHMM with left-to-right transition constraints. Only
3 bottom-level states are drawn for the readability of this graph, models with 6-state
sub-HMMs are simulated in the experiments.

Topology (a) also contains models in two prior work as special cases:
[Clarkson and Pentland, 1999] uses a left-to-right model without skip,
and single entry/exit states; [Naphade and Huang, 2002] uses a left-to-
right model without skip, single entry/exit states with one single high-
level state, i.e. the probability of going to each sub-HMM is independent
of which sub-HMM the model just came from, thus eliminating one more
parameter from the model than [Clarkson and Pentland, 1999]. Both of
the prior cases are learned with HMM learning algorithms.

The learning algorithm is tested on the soccer video clip Korea. It
performs parameter estimation with a fixed model structure of six states
at the bottom level and two states at the top level, over the pre-defined
features set of DCR and MI (section 6.1). Results showed that over 5
runs of both algorithms, the average accuracy of the constrained model
is 2.3% lower than that of the fully connected model.

This result shows that adopting a fully connected model with multi-
level control structures indeed brings in extra modelling power for the
chosen domain of soccer videos.
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7. Conclusion

In this paper we proposed algorithms for unsupervised discovery of
structure from video sequences. We model the class of dense, stochastic
structures in video using hierarchical hidden Markov models, the models
parameters and model structure are learning using EM and Monte Carlo
sampling techniques, and informative feature subsets are automatically
selected from a large feature pool using an iterative filter-wrapper al-
gorithm. When evaluated on TV soccer clips against manually labelled
ground truth, we achieved comparable results as supervised learning
counterpart; when evaluated on baseball clips, the algorithm automati-
cally selects two visual features, which agrees with our intuition that the
status of a baseball game can be inferred from visual information only.

It is encouraging that in constrained domains such as sports, effective
statistic models built over statistically optimized feature sets without
human supervision have good correspondence with semantic events. We
believe this success lends major credit to the correct choice in general
model assumptions and the selected test domain that matches this as-
sumption. This unsupervised structure discovery framework leaves much
room for generalizations and applications to many diverse domains, and
it also raises further theoretical issues that will enrich this framework
if successfully addressed: modelling sparse events in domains such as
surveillance videos; online model update using new data; novelty detec-
tion; automatic pattern association across multiple streams; a hierarchi-
cal model that automatically adapts to different temporal granularity;
etc.

Appendix

Proposal probabilities for model adaptation.

psp(k, d) = c∗ · min{1, ρ/(k + 1)}; (1.A.1)

pme(k, d) = c∗ · min{1, (k − 1)/ρ}; (1.A.2)

psw(k, d) = c∗; (1.A.3)

d = 1, . . . , D;

pem(k) = 1 − ΣD
d=1[psp(k, d) + pme(k, d) + psw(k, d)]. (1.A.4)

Here c∗ is a simulation parameter, and k is the current number of states. ρ is the
hyper-parameter for the truncated Poisson prior of the number of states [Andrieu
et al., 2003], i.e., ρ would be the expected mean of the number of states if the maximum
state size is allowed to be +∞, and the scaling factor that multiplies c∗ modulates
the proposal probability using the resulting state-space size k ± 1 and ρ.

Computing different moves in RJ-MCMC. EM is one regular
hill-climbing iteration as described in section 3; once a move type other than EM is se-
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lected, one (or two) states at a certain level are selected at random for swap/split/merge,
and the parameters are modified accordingly:

Swap the association of two states:
Choose two states from the same level, each of which belongs to a different
higher-level state; swap their higher-level association.

Split a state:
Choose a state at random. The split strategy differs when this state is at
different position in the hierarchy:

– When this is a state at the lowest level (d = D), perturb the mean of its
associated Gaussian observation distribution as follows

µ1 = µ0 + usη
µ2 = µ0 − usη

(1.A.5)

where us ∼ U [0, 1], and η is a simulation parameter that ensures re-
versibility between split moves and merge moves.

– When this is a state at d = 1, . . . , D − 1 with more than one children
states, split its children into two disjoint sets at random, generate a new
sibling state at level d associated with the same parent as the selected
state. Update the corresponding multi-level Markov chain parameters
accordingly.

Merge two states:
Select two sibling states at level d, merge the observation probabilities or the
corresponding child-HHMM of these two states, depending on which level they
are located in the original HHMM:

– When d = D, merge the Gaussian observation probabilities by making
the new mean as the average of the two.

µ0 =
µ1 + µ2

2
, if |µ1 − µ2| ≤ 2η (1.A.6)

here η is the same simulation parameter as in .

– When d = 1, . . . , D − 1, merge the two states by making all the children
of these two states the children of the merged state, and modify the
multi-level transition probabilities accordingly.

The acceptance ratio for different moves in RJ-MCMC. The
acceptance ratio for Swap simplifies into the posterior ratio since the dimension of
the space does not change. Denote Θ as the old model and Θ̂ as the new model :

r
4
= (posterior ratio) =

P (x|Θ)

P (x|Θ)
=

exp(B̂IC)

exp(BIC)
(1.A.7)

When moves are proposed to a parameter space with different dimension, such
as split or merge, we will need two additional terms in evaluating the acceptance
ratio [Green, 1995]: (1) a proposal ratio term to compensate for the probability that
the current proposal is actually reached to ensure detailed balance; (2) a Jacobian
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term is used to align the two spaces. As shown in equations (1.A.8)–(1.A.11).

rk
4
= (posterior ratio) · (proposal ratio) · (Jacobian) (1.A.8)

rsplit =
P (k + 1, Θk+1|x)

P (k, Θk|x)
·
pme(k + 1)/(k + 1)

p(us)psp(k)/k
· J (1.A.9)

rmerge =
P (k, Θk|x)

P (k + 1, Θk+1|x)
·
p(us)psp(k − 1)/(k − 1)

pme(k)/k
· J−1 (1.A.10)

J =

∣

∣

∣

∣

∂(µ1, µ2)

∂(µ0, us)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 η
1 −η

∣

∣

∣

∣

= 2η (1.A.11)

Here psp(k) and pms(k) refers to the proposal probabilities as in equations (1.A.1) and
(1.A.2), with the extra variable d omitted since split or merge moves do not involve
any change across levels.
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