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ABSTRACT

We present algorithms for automatic feature selection for unsu-
pervised structure discovery from video sequences. Feature selec-
tion in this scenario is hard because of the absence of class labels
to evaluate against, and the temporal correlation among samples
that prevents the direct estimation of posterior probabilities of the
cluster given the sequence. The overall problem of structure dis-
covery [1] is formulated as simultaneously finding the statistical
descriptions of structure and locating segments that matches the
descriptions. Under Markov assumptions among events, struc-
tures in the video are modelled with hierarchical hidden Markov
models, with efficient algorithms to jointly learn the model param-
eters and the optimal model complexity. Feature selection iter-
ates between a wrapper step that partitions the large feature pool
into consistent subsets, and a filter step that eliminate redundancy
within these subsets, respectively. The feature subsets are then
ranked according to the normalized Bayesian Information criteria,
and the learning results from these ranked subsets can be evalu-
ated and interpreted by a human observer. Results on soccer and
baseball videos show that the automatically selected feature set co-
incides with those selected with domain knowledge and intuition,
while achieving a correspondence comparable to that of supervised
learning against manually labelled ground truth.

1. INTRODUCTION

In this paper, we present algorithms for feature selection in un-
supervised discovery of statistical temporal structures from video.
We define the structure of a time sequence as the repetitive seg-
ments that possess consistent deterministic or stochastic charac-
teristics. Though this definition is general to various domains,
here we are mainly concerned with the particular domain of video
wherestructurerepresent the syntactic level composition of the
video stream. Automatic detection of structures is an inseparable
part of video indexing, since it will not only help locate semantic
eventsfrom low-levelobservations, but also facilitate summariza-
tion and navigation of the content.

1.1. The structure discovery problem
Given a set of observations, the problem of identifying structure
consists of two parts: finding a description of the structure (a.k.a
the model), and locating segments that matches the description.
There are many successful cases under the supervised learning
scenario where these two tasks are performed in separate steps -
at thetraining step, the algorithm designers manually identify im-
portant structures, collect labelled data for training, and apply su-
pervised learning tools to learn a model to describe the structures;

at theclassificationstep, segments that matches the description are
identified. This methodology works for domain-specific problems
at a small scale, yet it cannot be readily extended to large-scale
data sets in heterogenous domains, as is the case for many video
archives.

In our previous work [1], we proposed a unified framework
that uses fully unsupervised statistical techniques for automati-
cally discovering salient structures and simultaneously recogniz-
ing such structures in unlabelled data. Under certain dependency
assumptions, we model the individual recurring events in a video
as HMMs, and the higher-level transitions between these events as
another level of Markov chain. This hierarchy of HMMs forms a
Hierarchical Hidden Markov Model (HHMM), its hidden state in-
ference and parameter estimation are efficiently learned using the
expectation-maximization (EM) algorithm. In addition, Bayesian
techniques are employed to learn the model complexity, where the
search over model space is done with Reverse-Jump Markov Chain
Monte Carlo (RJ-MCMC). It archives even slightly better accuracy
in recognizing play/break events from soccer video than its super-
vised counterpart.

1.2. Feature selection for structure discovery
The computational front end in many real-world scenarios extracts
a large pool of observations (i.e. features) from the stream, and at
the absence of expert knowledge, identifying a subset of relevant
and compact features becomes a bottleneck for improving both
the learning quality and computation efficiency. Prior work in fea-
ture selection for supervised learning mainly divides into filter and
wrapper methods according to whether or not the classifier is in-
the-loop [2]. For unsupervised learning on spatial data (i.e. assume
samples are independent), Xing et. al. [3] iterated between cluster
assignment and filter/wrapper methods for known number of clus-
ters. To the best of our knowledge, no prior work has been reported
for our specific problem of interest: feature selection for unsuper-
vised learning on temporally dependent sequences with unknown
cluster size.

We use a iterative combination of a filter and a wrapper method
for feature selection. The first step wraps information gain crite-
ria around HHMM learning, and discover relevant feature groups
that are more consistent to each other within the group than across
the group; the second step eliminate redundant features that have
an approximate Markov blanket within the group; and the last
step evaluates each condensed feature group with a normalized
BIC, and rank the resulting models and corresponding feature sets
with respect to theira posteriorifitness. Note this feature selec-
tion scheme is independent of the particular learning algorithm,
although it is currently implemented around HHMM.



Evaluation on real video data showed very promising results:
on soccer and baseball videos, the resulting small number of clus-
ters has a good correspondence with manually labelled classes
comparable to those reported in [1]; the highest-scored feature set
includes the most distinctive feature by intuition.

The rest of this paper is organized as follows, section 2 dis-
cusses the discovery of video structure using HHMM with model
adaptation, section 3 presents our feature selection scheme for un-
supervised learning on temporal sequences; section 4 includes the
test results on several sports videos; section 5 summarizes the work
and discusses open issues.

2. LEARNING HIERARCHICAL
HIDDEN MARKOV MODELS

We look at videos as temporally highly correlated streams with
stochastic observations in discrete event space. Based on obser-
vations on the video sequence [1] we adopt a multi-level Markov
assumption where each concept is modelled as an HMM and tran-
sitions among concepts as another level of Markov chain. These
assumptions leads us to HHMM, for which the model structure,
the parameter learning and inference, and the model order identi-
fication algorithms are summarized in the rest of this section.

2.1. Hierarchical hidden Markov models

HHMM was first introduced [4] as a natural generalization to HMM
with hierarchical control structure. As shown in figure 1A, ev-
ery higher-level state symbol corresponds to a stream of symbols
produced by a lower-level sub-HMM; a transition in the higher-
level is invoked only when the lower-level model enters anexit
state (shaded nodes in figure 1A); observations are only produced
by the lowest level states. HHMM is also a specialization of Dy-
namic Bayesian network (DBN), and Figure 1B shows its equiv-
alent DBN representation. In this representation, the state of the
model at timet is completely specified by the hidden statesQd

t at
levelsd = 1, . . . D from top to bottom, the observation sequence
Xt, and the auxiliarylevel-exitingvariablesEd

t . NoteEd
t can be

turned on only if all lower levels ofEd+1:D
T are on.

It is easy to see that the whole parameter setΘ of a D-level
HHMM consists of within-level across-level transition probabili-
ties and emission parameters that specifies the distribution of ob-
servations conditioned on the state configuration, In our case, the
emission parameters are specified by the meansµ and covariances
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Fig. 1. Graphical HHMM representation at leveld andd + 1 (A)Tree-
structured representation; (B)DBN representation, with observationsXt

drawn at the bottom. Uppercase letters denote the states as random vari-
ables in timet; lowercase letters denote the state-space of HHMM, i.e.
values these random variables can take in any time slice. Shaded nodes are
auxiliaryexit nodes that turns on the transition at a higher level.

σ as emission distributions are Gaussian. The inference and pa-
rameter estimation of an HHMM is done through forward-backward
iterations similar to those of the HMM, taking into account addi-
tional transition and control constraints. The complexity of the al-
gorithm isO(T ). Details of the model structure and the estimation
algorithm can be found in [1, 5].

2.2. Bayesian model selection

In order to automatically determine the complexity of eachevent
and the number ofeventsin the entire sequence, which maps to
the size of the state-space of the HHMM at different levels, we
employ Markov chain Monte Carlo(MCMC) algorithm for learn-
ing the HHMM structure. In this framework, the optimal size of
the HHMM model at all levels is jointly learned with parameter
estimation.

MCMC for learning statistical models usually iterates between
two steps: (1)The proposal step generates a new structure and a
new set of model parameters based on the data and the current
model(Markov chain) according to certainproposal distributions
(Monte Carlo). In HHMM, the new structure is generated by
adding or removing one state in the state hierarchy, or modifying
the topological structure while holding the number of states fixed.
(2)The decision step computes an acceptance probabilityα of the
proposed new model based on model posterior and proposal strate-
gies, and then this proposal isacceptedor rejectedwith probability
α. MCMC will converge to the global optimumin probability if
certain constraints are satisfied for the proposal distribution and if
the acceptance probability are evaluated accordingly, yet the speed
of convergence largely depends on thegoodnessof the proposals.
Here we are using a mixture of the EM and MCMC, in place of a
full Monte Carlo update of the parameter set and the model size.
This brings significant computational savings since EM is more
efficient than full MCMC, and the convergence behavior does not
seem to suffer in practice. Due to space constraint, the Bayesian
model selection algorithm is detailed in [5].

3. FEATURE SELECTION FOR UNSUPERVISED
LEARNING

The task of feature selection generally divides into two aspects -
eliminatingirrelevant features andredundantones. Irrelevant fea-
tures usually disturb the learner and degrade the accuracy, while
redundant features add to computational cost without bringing in
new information. Furthermore, for unsupervised structure discov-
ery, different subsets of features may relate to different events, and
thus the events should be described with separate models rather
than being modelled jointly.

3.1. The feature selection algorithm
Denote the feature pool asF = {f1, . . . , fD}, the feature se-
quence asXF = X1:T

F , and the feature vector at timet asXt
F . The

feature selection algorithm proceeds through the following steps,
as illustrated in figure 2:

(1) (Let i = 1 to start with) At thei-th round, produce arefer-
ence setF̃i ⊆ F at random, learn HHMMΘ̃i on F̃i with
model adaptation, perform Viterbi decoding ofXF̃i

, and

obtain thereference state-sequencẽQi = Q̃1:T
F̃i

.

(2) For each featurefd ∈ F \ F̃i, learn HHMM Θd, get the
Viterbi state sequenceQd, and then compute the informa-
tion gain (sec. 3.2) ofQd with respect to the reference se-
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Fig. 2. Feature selection algorithm overview

quenceQ̃i. We then find the subset̂Fi ⊆ (F \ F̃i) with sig-
nificant information gain, and form the consistent feature
group as the union of thereference setand therelevance

set: F̄i
4
= F̃i ∪ F̂i.

(3) Use Markov blanket filtering in sec. 3.3, eliminate redun-
dant features within the set̄Fi whose Markov blanket ex-
ists. We are then left with a relevant and compact feature
subsetFi ⊆ F̄i. Re-estimate HHMMΘi onXFi .

(4) Exclude the previous candidate set by settingF = F \ F̄i;
go back to step 1 withi = i + 1 if F is non-empty.

(5) For each feature-model combination{Fi, Θi}i, evaluate their
fitnessusing the normalized BIC criteria in sec. 3.4, rank the
feature subsets and interpret the meanings of the resulting
clusters.

After the feature-model combinations are generated automati-
cally, a human operator can look at the structures marked by these
models, and then come to a decision on whether a feature-model
combination shall be kept based on the meaningful-nessof the re-
sulting structures, and the BIC criteria.

3.2. Evaluating information gain
Step 1 in section 3.1 produces a reference labelling of the data se-
quence induced by the classifier learned over the reference feature
set. One suitable measure to quantify the the degree ofagreement
in each feature to the reference labelling, as used in [3], is the
mutual information, or theinformation gainachieved by the new
partition induced with the candidate features over the reference
partition.

I(Qf ; Q̃i) = H(Q̃i) − H(Q̃i|Qf ) i = 1, . . . , N (1)

HereH(Q) is the entropy function over the random variable
Q. Intuitively, a larger information gain for candidate featuref
suggests that thef -induced partitionQf is more consistent with
the reference partitioñQi. After computing the information gain
I(Qf ; Q̃i) for each remaining featurefd ∈ F \ F̃i, we perform hi-
erarchical agglomerative clustering on the information gain vector
using a dendrogram [6], look at the top-most link that partitions
all the features into two clusters, and pick features that lies in the
upper cluster as the set with satisfactory consistency with the ref-
erence feature set.

3.3. Finding a Markov Blanket

After wrapping information gain criteria around classifiers built
over all feature candidates (step 2 in section 3.1), we are left with
a subset of features with consistency yet possible redundancy. The
approach for identifying redundant features naturally relates to the
conditional dependencies among the features. For this purpose, we
need the notion of a Markov blanket[2].

Definition [2] Let F be the set of all features,Q be the class la-
bel, f be a feature subset,Mf be a set of random variables that
does not containf , we sayMf is the Markov blanket off , if f is
conditionally independent of all variables in{F ∪Q} \ {Mf ∪ f}
givenMf .

Computationally, a featuref is redundant if the partitionQ of
the data set is independent tof given itsMarkov BlanketFM . In
prior work [2, 3], the Markov blanket is identified with the equiva-
lent condition that the posterior probability distribution of the class
given the feature set{Mf ∪ f} should be the same as that condi-
tioned on the Markov blanketMf only. i.e.,

∆f = D( P (Q|Mf ∪ f) || P (Q|Mf ) ) = 0 (2)

whereD(P1||P2) = ΣxP1(x) log(P1(x)/P2(x)) is the Kullback-
Leibler distance between two probability mass functionsP1(x)
andP2(x).

For unsupervised learning over a temporal stream, however,
this criteria cannot be readily employed. This is because the pos-
terior distribution of a class depends not only on the current data
sample but also on adjacent samples, and conditioning on a neigh-
borhood quickly makes the estimation of the posterior intractable
and unreliable. Therefore we use an alternative necessary con-
dition that the optimum state-sequenceQ1:T should not change
conditioned on observingMf ∪ f or Mf only.

Koller and Sahami have also proved that sequentially remov-
ing feature one at a time with its Markov blanket identified will
not cause divergence of the resulting set, since if we eliminate fea-
turef and keep its Markov blanketMf , f remains unnecessary in
later stages when more features are eliminated. In practice, there
is few if any feature will have a Markov Blanket of limited size,
we therefore remove features that induces the least change in the
state sequence given the change is small enough. Note comput-
ing Markov blanket is a filtering step, since we do not need to
retrain the HHMMs for each candidate featuref and its Markov
blanketMf . Given the HHMM trained over the setf ∪ Mf , the
state sequenceQMf

decoded with the observation sequences in
Mf only, is compared with the state sequenceQf∪Mf

decoded
using the whole observation sequence inf ∪Mf . If the difference
betweenQMf

andQf∪Mf
is small enough(we used 5% in the ex-

periments), thenf is removed andMf is declared to be a Markov
blanket off .

3.4. Normalized BIC

Iterating over section 3.2 and section 3.3 results in feature-model
pairs where the disjoint feature subsets are compact and consis-
tent within, and there is one best-effort model fit to each subset.
As an extension to using BIC as model posterior in model selec-
tion [1], we use a normalized BIC(eq. 3) to measure thefitnessof



the model to the feature subset. Intuitively, the normalized BIC
trades off a normalized data likelihood̃L with model complex-
ity |Θ|. Note L̃ for HHMM is computed in the same forward-
backward iterations, normalized with respect to data dimension
D, i.e., all the emission probabilitiesP (X|Q) are replaced with
P ′(X|Q) = P (X|Q)1/D. This normalization is done under the
naive-Bayesassumption that features are independent given the
hidden states. Note the former has weighting factorλ in practice;
the latter is modulated by the total number of sampleslog(T ).

B̃IC = L̃ · λ −
1

2
|Θ| log(T ) (3)

Note the feature selection scheme is general in that it does
not depend on a particular model. The methodology and crite-
ria presented above are model-invariant despite they are tested on
HHMM in this paper. Initialization and convergence issues exist
in the iterative partitioning of the feature pool. The strategy for
producing the randomreference set̃Fi in step (1) affects the result
of feature partition, as even producing the sameF̃i in a different
sequence may result in different final partitions.

4. EXPERIMENTS AND RESULTS

The feature selection algorithm is tested on soccer and baseball
videos. The test videos are all of MPEG-1 format, CIF resolu-
tion, 15–32 minutes long. The two soccer clipsKoreaandSpain
come from MPEG-7 content set, while the baseball clip comes
from American TV programs. The initial feature pool is a nine-
dimensional feature vector sampled at every 0.1 seconds, includ-
ing Dominant Color Ratio (DCR), Motion Intensity (MI), the least-
square estimates of camera translation (MX, MY), and five audio
features - Volume, Spectral roll-off (SR), Low-band energy (LE),
High-band energy (HE), and Zero-crossing rate (ZCR).

In this evaluation, we run the unsupervised feature selection
and model learning algorithm for each stream. Each resulting
feature-model pairs are evaluated and ranked with the modified
BIC criteria in section 3.4. Table 1 shows a result snapshot from
one sample run. Laid out in each row are the highest-scored feature
subset for each clip, the size of the model at the higher level (num-
ber of events), and the lower level (the complexity of each event).
We also compare the decoded high-level state sequence with a set
of manually labelled ground truth,playandbreak, defined accord-
ing to rules of the particular sport. Thecorrespondencepercentage
is evaluated by assigning each of the resulting cluster with its ma-
jority ground-truth label, and then compare the resulting sequence
with the ground truth.

clip feature #events #children corr.
Korea DCR,MX 3 { 3,4,7} 75.2%
Spain DCR,Volume 2 {5,5} 74.8%

Baseball DCR,MX 2 {6,7} 82.3%

Table 1. A sample run on sports videos
For the two soccer videos, the automatic selected feature set

always includes DCR, the most salient feature manually chosen
in our prior work [5]. MX approximates the horizontal camera
panning motion, which is the most dominant factor contributing to
the overall motion intensity (MI) in soccer video. The accuracies
are comparable to their counterpart [1] without varying the feature
set or even with a fixed feature set and supervised training (75%).

HHMM learning with full model adaptation and feature se-
lection on the baseball video results in three consistent compact

feature groups: (a) DCR, MX; (b) Volume, LE; (c) HE, SR, ZCR.
It is interesting to see audio features falls into two separate groups,
and the visual features are also in a individual group. The BIC
score for thebestgroup, dominant color ratio and horizontal cam-
era pan, is significantly higher than that of the other two. This
selected feature set coincides with our intuition that the status of a
baseball game can mainly be inferred from visual information, due
to the distinct production syntax of a baseball video. Moreover, the
correspondence of the resulting clusters is much higher than that
of the soccer videos, suggesting that the production syntax that
associates shots tomeaningdoes help unsupervised structure dis-
covery.

5. CONCLUSION

In this paper we propose a general feature selection algorithm for
unsupervised learning of statistical structure on temporal sequences.
The structures in video are modelled with hierarchical hidden Markov
models, and the model order at multiple levels are learned with
Monte Carlo sampling techniques. We employed an iterative wrapper-
filter algorithm that selects the subset of features that is relevant,
compact, and consists the best fit to the HHMM model assump-
tions. We evaluated this algorithm on sports videos, and results are
very promising: the clusters matches manually labelled classes, in-
tuitively the most distinctive feature is in the optimal feature set,
and evaluation against manually identified structure showed com-
parable accuracies as its supervised-learning counterpart.

Open issues abound, however: investigating the statistical sig-
nificance the results, analyzing where the unsupervised learning
and the ground truthmismatch, and modelling sparse structures
are all interesting directions for further investigation.
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