
Automatic Closed Caption Alignment

Based on Speech Recognition Transcripts

By Chih-wei Huang
cwh@ee.columbia.edu

Abstract

Time lagging problem is needed to be solved when using closed caption as a source of
features in video indexing. One of solution is aligning closed caption to transcripts then
take the time code from transcripts as new references for closed caption. This paper
describes a work using limited resources to generate decent alignment results.

1. Introduction

In video processing, both video and audio dimensions of content are intuitively helpful.
Recently, lots of video features are applied for better performance, but research about
valuable audio features, also believed containing significant information, is relatively
much less then video ones. We believe that the speech transcript is a feature carrying
most of semantic information among lots of features produced from audio streams.
Instead of taking advantage of transcripts from machine, transcripts are also available
from human especially on TV programs with more reliability in many dimensions, such
as names, new terms, and accuracy. Moreover, special markers and punctuation could be
valuable references also. These close captions, available in almost all programs, however,
usually suffer lag problems constraining its application in video indexing especially when
the program is broadcasted lively. In order to provide a good feature for video processing,
the project solves the lag problem in closed caption of live news programs – by doing
alignment.

In this project, two kinds of word streams, automatic speech recognition (ASR) output
and closed caption (CC), from the same spoken document are put to alignment. After that,
CC words are affiliated with new time codes from corresponding ASR words. There are
two main contributions in this paper: 1) Proving the possibility using the speech
recognizer embedded in Windows XP system to do alignment even though it is capable
of mediocre performance only, and the free SDK on the official site [7] provides enough
power to handle what the work needs. This is valuable for other groups or individuals to
replicate the alignment work. 2) Fusing temporal and structural attributes in alignment
process based on classic dynamic programming algorithm since using simply the word
identity comparison method cannot handle the entire document especially on commercial
and fast spoken parts. The improved scoring system indeed leads to better results. At the
end, a modified version of the alignment system is applied to TREC 2003 corpus and
shows it is a non-trivial work. With the cue word extracting approach near story

boundaries, the cue word sets extracted from closed caption of TRECVID 2003 are
helpful according to some ongoing tests [8].

A related work is presented in [1] by CMU. They use aligned closed caption as the text
source for story segmentation. To do alignment, they use dynamic programming based on
the degree of initial sub-string match, and mention that even for very low recognition
accuracy; the alignment provides sufficiently accurate timing information, but no further
details are addressed. However, some issues such as if commercials are included in
alignment, if any data other than words are used as support, and etc. are found important
according to experiments in this paper.

In [3], on the contrary to our work, AT&T Lab uses alignment to provide time codes of
CC to nearly perfect manual transcripts. They utilize transcripts posted on the websites of
some program providers, usually without time information, as the final reference for
indexing. Since their alignment work is based on two streams with very high word
accuracy, it is easier to have good performance than our work using erroneous ASR
output to cover more general cases without manual transcripts.

2. Automatic Closed Caption Alignment System

2.1 System Overview

The automatic closed caption alignment system contains two main parts, speech
recognizer and alignment engine. The recognizer takes speech audio of the target video as
input and generates transcription with time code for each word as output. After
recognition, alignment engine uses original closed caption and outputs of recognizer to
perform alignment algorithm, which reassign time code for each word in closed caption
to proper time spot that the word was actually read in video streams.

2.2 Speech Recognizer

The ideal recognizer is with very high accuracy then we do not have to use CC. Presently,
however, the recognizers with enough accuracy to beat closed captions are available in
very few labs only or cost a lot of money. Even with sufficient accuracy, the power of
special markers like “>>>” and “>>” in CC cannot be replaced. Therefore, using not-
perfect recognizer combining CC alignment is one of the best ways to take advantage of
CC to compensate the lack of inaccurate ASR. After series of survey, Microsoft speech
recognizer with SDK is selected. It is the most convenient one to get under windows
platform because it is already in it. After the experiments below, its accuracy is proved
adequate for alignment. The SDK package can be freely downloaded from the official
website, and it is capable of outputting word level transcription and time codes by some
additional programming works. Moreover, if the alignment work could be done on this
recognizer, it could be done on almost any other one.

The performance of recognizer should be an important factor influencing alignment
performance; it must be evaluated as the basic information of this system. The word error
rate (WER) is defined as combination of insertion, deletion, and substitution rates. For
example, if an audio stream “It is mostly sunny in Central Park” is recognized as “It is
almost leading sun near Central Park”. There are three substitutions “almost”, “sun”, and
“near”, and one insertion “leading”, so the WER is 4 out of 7 words of original stream, i.e.
4/7 ~57%.

In order to evaluate the recognizer performance, the anchor part of a half-hour-long CNN
news video clip, totally 3742 words, was manually transcribed. To do the transcription
efficiently, a freeware – Transcriber from LDC (Linguistic Data Consortium) [5] is used.

Table 1 shows the WER of different cases. The WER of MS Speech SDK is 60.44% for
30 min CNN news without commercial. Comparing to CMU Sphinx-III system [6] has
~35% WER for 30 min CNN news in 30 times real time.

Type of Speech Data Recognition System Word Error Rate
News Text Spoken in Lab Sphinx-II ~10% - ~17%

Sphinx-II ~50%
Sphinx-III (30xRT) ~35%

Evening News (30 min)

Sphinx-III (300xRT) ~24%
Commercials Sphinx-III ~85%

CNN news (30 min) MS Speech SDK ~60%
Table 1: Word error rates in different cases.

In alignment, a word in closed caption might be correctly, or closely, assigned a time
code even its corresponding word in transcription is erroneously recognized. Obviously,
higher recognition accuracy results in higher alignment accuracy, because two identical
words in closed caption and speech have strong probability to occur at the same time spot.
If erroneously recognized words can be located and matched to closed captions
appropriately along time axis, word error rate could be tolerated to some extent.

Some advanced issues are also taken into considerations. The first one is training
capability. In speech recognition, training is the most efficient way to boost up the
accuracy. If acoustic and linguistic models are more specific for the corpus type used,
better transcription results could be generated. The default setting for the recognizer
embedded in Windows XP is for dictation with carefully speaking, not for spontaneous
speech inputs like anchors do in news programs. The second, a one-hour-long spoken
document is going to be treated as input, so the recognizer should be able to handle this
input size and finish the recognition in reasonable time length. Therefore, a testing
program was implemented and the outcome was quite satisfying. The recognizer may
self-training by iteratively recognizing the same corpus, and the improvement is very
obvious between the first and the second time applying to a new sort of audio. The time
consuming is also acceptable in this recognizer, it needs only even a little bit less real-
time on machine with two Intel Xeon 1.8 GHz CPU and 1GB of RAM.

2.3 Alignment Algorithm

2.3.1 Dynamic Programming

There are two word streams, ASR and CC, in the matching work. The kernel of
alignment program is based on dynamic programming [2] technique. This best path
finding procedure iterates word-by-word along both streams and ends when both streams
reach the last words. It is very similar to determining the minimum number of word edit
required to convert one string into another [3][4]. The differences are using words as
basic elements rather than characters and using distance, carefully measured floating
numbers, as score measurement rather than integers, the count of word edit. During the
alignment, the score of a word depends only on possible paths to it. The paths could be a
match, substitution, insertion, or deletion from previous words, and scores are the sum of
previous scores and transition scores to current ones.

If we use distance instead of score for alignment, and the distance matrix is D, i is the
index of ASR words, and j is the index of CC words. Therefore, D(i, j) is the minimum
distance accumulated from the first ASR and CC words to the ith ASR word and the jth
CC word. Because both word streams can only iterate forward word-by-word and the
nature of dynamic programming that the minimum distance of one state (word) can be
evaluated from possible states right before it only, D(i, j) can be represented as below:








+−−
+−
+−

=
),()1,1(

),()1,(
),(),1(

min),(
jimsjiD

jideljiD
jiinsjiD

jiD (1)

where ins(i,j), del(i,j), and ms(i,j) are one-step transition distances of three possible cases,
insertion, deletion, and match or substitution respectively. When the insertion case is
chosen as minimum distance path, a word need to be inserted into CC stream to match
ASR stream, but we keep CC unchanged and just insert a blank in that time spot. In the
same way, when deletion is the case, a word in CC stream should be deleted; we leave
that word without a matching ASR word. Note that insertion cases are much more
possible than deletion ones because there are always misses in CC. When the remaining
one is the case, a match or a substitute of words should be the best path here.

2.3.2 Scoring

Several scoring sets are tested in this work. The first kind of set tested is the simplest and
straight forward one with binary scores only for each word pair. When perfect match
occurs, ms(i, j) is set to 0. Otherwise, transition distances are set to 1. In my program, the
final alignment will be the case with most matched words and unmatched words will
follow matched words then insertions as shown in Table 2.

Obviously, the main drawback of this simple scoring set is taking no control of
substituted and inserted words. When erroneous sections, all sections other than matched

ones, are long or overlapped with any long missing section in CC, e.g. commercials, the
performance will decay seriously. For example, if there is no, or few, CC during
commercials, which is often the practical case, and beginning words of the next story
section are incorrectly recognized, CC words corresponding to this section might be
aligned to the previous story section leading to large alignment errors in a range of
several minutes. Consequently, a new scoring set which can maintain the CC structure
and it’s relation to ASR should be applied to well distribute unmatched words. This is the
most important problem I dealt with and the detail will be addressed below.

ASR CC Aligned Type
the THE Match

fires FIRE Match
are WAS Sub

nearby STILL Sub
woods BURNING Sub

is ----------- Ins
done ----------- Ins

during ----------- Ins
an ----------- Ins

hours HOURS Match
after AFTER Match

it IT Match
started STARTED Match

Table 2: Alignment results using binary scoring only.

2.3.3 Prefix Processing

Except for distributing issue, the determination of match is needed to be revised, too.
Since ASR output contains lots of error words with close pronunciation to correct ones, if
the scoring set can determine this situation as partial match and assign lesser distance to
closely pronounced words between ASR and CC, the result might be improved. Some
approaches are tested. The first one is using word edit distance to give two words a match
score from 0 to one. Though it is not judging by pronunciation, similarly spelled words
are very likely having similar pronunciations. Its computing cost, however, is extremely
large when combining with alignment algorithm, because it is a dynamic programming
process, too. The data of one-hour-long video stream needs one day to align on a machine
with two Intel Xeon 1.8 GHz CPU and 1GB of RAM in Matlab code.

The final approach I used is comparing only prefix of words, and assign a constant score
for these partial matched words if their prefixes are identical. Though this approach is
simple, it dose matches the nature of language that words start in identical characters
might have close pronunciations in the beginning. Therefore, to simplify, the prefix here
is the first constant number of characters of words and the match/substitution distance,

ms(i, j) in Eq.(1), will get a constant value between 0 and 1 when ith ASR word and the
jth CC word are not identical but the first 2 or 3 characters of them are.

Of course, another possible approach is compare ASR and CC directly in phoneme
domain, but it is more complicated and needs additional information for word-phoneme
transform. This approach was not implemented.

2.3.4 Exponential Decaying Function

In order to maintain the structure of CC, an exponential decaying function depending on
time code in CC is included in distance measure during alignment. The word “structure”
here means the distribution of CC words along the time axis. For example, words should
be very close when the anchor speaks fast, and be very sparse when it is in commercial
for its usually being ignored by CC typer. In ASR, however, word gaps are quite uniform
because the recognizer generates transcript words continuously no matter what the
content of spoken document is. Since the testing CC data also provide time codes for
each line of CC, the time code of each word could be estimated by simply using
interpolation referencing to lengths of words. After getting the time code for each word,
the time gaps between two successive words can be evaluated and used as a parameter in
decaying function.

Because of the relative behavior between insertion distance and word time gaps in CC,
the exponential function is applied to model it. When the time gap is very small, there is
lesser possibility to have an insertion, shown as a blank in results, in CC stream, and the
distance should be large. When the time gap is very large, probably occur in commercial
parts, many insertions should be allowed between CC words because there are still lots of
words in ASR corresponding to this time slot. The new insertion distance with decaying
function is in the form of:

)(1

1
),(

jj ttbe
a

ajiins −× +

−
+= (2)

where 0 ≤ a ≤ 1, b is a constant parameter, tj+1 and tj are time codes of j+1th and jth CC
words in seconds. When the time gap, tj+1 – tj ,is small, the exponential term will be close
to 1 and ins(i, j) will be close to 1 also, which means here should not allow easy
insertions. When the time gap is large, the exponential term will getting small and ins(i, j)
will be close to a, which allows insertion more easily.

2.3.5 Closed Caption Distribution Modeling

Another important properties in given data is the relation between two, ASR and CC,
streams. Evidently, original times of CC words should have lags in a reasonable range,
couple of seconds in general, comparing to ASR words with which CC words should be
matched. If we can obtain the lagging likelihood distribution along time axis in advance,

some impossible paths in dynamic programming could be avoided or paths with different
possibility could be given proper distance values.

To implement this idea, two experiments are performed. The first one is just constraining
the original CC timing in reasonable range, 0 to 10 seconds for example, and then CC
words will have very little probabilities to be aligned to ASR words outside of the range.

The advanced one is to actually apply probability distribution function of CC. To get CC
distribution, histogram of CC lag times is counted first; then applies a moving average
filter to do smoothing. At the end, an additional distance value coming from the pdf will
be added to all three possible paths, insertion, deletion, and match of substitution, to the
word which is being aligned to express proper distance increases due to less probability
to have the CC lag value. The new distance, D′(i, j), of the ith ASR word and the jth CC
word is:

)(log(),(),(dCSpdcjiDjiD ××+=′ (3)

where D(i, j) is whatever distance value without distribution modeling, which is usually
the value after applying binary scoring, prefix processing, and decaying function. c and d
are parameters to do adjustment. p(dCS) is the probability of time gap dCS between the
ith ASR word and the jth CC word.

2.4 Visualization of Alignment Results

Except for alignment algorithms, a convenient way to demonstrate the aligned and
unaligned CC is also put in use. After transform words and its corresponding time
into .srt formate, a format used by a freeware, Vobsub, which can attach real-time
subtitles to video when it is played on windows media player, we can easily judge if the
CC is aligned well. This demonstration is very effective and impressive.

Figure 1: Snapshot of alignment visualization

3. Experimental Results

3.1 Experiment Overview

Labeled testing database is one-hour-long CNN news with CC. After machine
recognition, complete word and time information with sentences determined by pauses
can be obtained. In CC data, words are listed in lines same as they showed on television
and time codes are attached for each line. Interpolation is performed to generate time
code for every word.

All alignment results are represented by distributions of time difference between aligned
time and actual time of selected words. For video indexing based on news stories might
be the future use of this project, and sentence boundaries are also story boundaries for
most cases, sentence beginning words are chosen for evaluation. In this project, 376
sentence beginning words in one-hour-long CNN news with time codes are manually
marked.

For commercial parts, the most difficult part need to be dealt with, in both ASR and CC
data, no additional pre-process applied. It is nearly impossible to kill all commercial
automatically and precisely in such noisy ASR transcripts. Though commercial killing is
more reliable in this CC corpus, it is still a little bit less than perfect due to lots of
different format of commercial boundaries result from different typers. Therefore, the
commercial killing algorithm for a series of video clips may not work on another. To
generalize my experiment, the original CC content is used no matter how much of
commercial is transcribed.

The x-axis in word distribution charts below are time differences in seconds. Positive
values are corresponding to cases that words in closed caption are assigned to time spots
after they are actually pronounced in video; negative values are on the contrary.
Obviously, the more concentration around “zero” of x-axis, the better alignment result it
is. If alignment errors are larger than 10 seconds, all of them are represented as +/- 10
second instead. The y-axis is the percentage of selected words in each time slot. Each
time slot covers 0.5 second, for example, if there is a bar at 0 in x-axis and 0.53 tall in y-
axis, means there is 53% of 376 sentence beginning words are aligned to less then 0.25
seconds before or after the exact time it should be. Besides time difference distribution
charts, percentages of aligned words within +/- 0.75, +/- 1.25, +/- 5 seconds, and outside
of +/- 10 seconds, mean, and standard deviation are also collected.

3.2 Results

3.2.1 Original Closed Caption

Original CC, just as we see on TV everyday, has several seconds lag from we hear the
words. The lags are mainly between 1 to 5 seconds as shown in Figure 2. From Table 3,
we can see it has mean delay around 3.7 seconds, small standard deviation, and only
1.6% of words are in the out side of 10 seconds range.

-10 -5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Unaligned Closed Caption

Time Distance (Second)

Percenta ge (%)

Figure 2: Word distribution chart for original closed caption.

3.2.2 Aligned Closed Caption

The outcome of aligned closed caption is shown in Table 3. Different experiments are
separated by double horizontal lines, and the best data in each column are marked as bold
and italic type.

The first experiment, treated as the baseline test of all experiments, uses only binary
scoring approach. This straight forward approach does generate the result with most
matched words but does nothing to unmatched words. Low centralization degree,
50.798% in +/- 1.25 s, and a lot of extreme cases, 22.074%, are noticeable. From Figure
3(a), we can see lots of word aligned to the minus region which illustrates the property
shown in Table 2 – substitutions take place before insertions in consecutive unmatched
word streams. Thus, unmatched words have a tendency to be aligned earlier, and results
in minus values in time distances.

After adding prefix processing to the scoring system, data in the rows of B+P(2) and
B+P(3) show better performance than the baseline in all aspects except for the mean
values. The number of characters counted as partial match is set as 2 and 3 respectively,
and the distance when partial match occur is set as 0.5. According to Figure 3(b), mean
values change from -3.4 to higher than 7 because of the reduction of extremely early
aligned words while late aligned words remain in almost the same amount.

When apply binary scoring and decaying function to dynamic programming, all statistical
data show very significant improvements comparing to the baseline. Parameter a in Eq.
(2) is set as 0.5 while b is set as 0.5, 1, and 2 respectively. ~20% more words have less
then +/- 1.25 seconds of alignment errors, and words with extreme errors decrease ~20%
of total words. Notice that because of the nature of exponential decaying functions, if
parameter b in Eq. (2) is getting larger, the decaying behavior increases dramatically,
same amount of time distance between two nearby words result in smaller insertion
distance, which means easier to insertion, with larger b. Thus, with lager b, the closer

words in original will be closer in aligned result; the farer ones will be farer. Some words
were pushed too far in these experiments, which can be seen from mean and standard
deviation columns from B+DF(0.5)/(1)/(2) cases in Table 3. However, the sensitive
functions, i.e. with larger b, increase the percentage of words within +/- 1.25 seconds
slightly, ~0.7%, because correct aligned words, usually not close to story boundaries,
have more probabilities to stay closer. Figure 3(c) is the results of B+DF(0.5) which is
consider as the best performed in this part of experiment one for its better mean and
standard deviation values.

 Mean

(s)
Std (s) +/- 0.75 s

(%)
+/- 1.25 s

(%)
+/- 5 s

(%)
> +/- 10 s

(%)
Original CC 3.712 1.992 1.596 6.117 85.11 1.6

B only (Baseline) -3.413 59.249 35.904 50.798 73.138 22.074
B+P(2) 7.646 40.82 39.362 56.383 76.33 19.947
B+P(3) 10.336 48.059 38.564 54.521 76.33 19.947

B+DF(0.5) -0.916 3.8249 50 69.947 92.287 2.66
B+DF(1) -3.336 24.192 50.266 70.745 92.553 3.457
B+DF(2) -5.161 42.451 50.532 70.745 92.287 4.255

B+P(2)+DF(0.5) -0.882 3.769 51.064 71.809 92.287 2.128
B+P(2)+DF(1) -0.93 4.357 52.128 72.872 93.351 2.926

B+DM 12.06 46.395 37.5 54.255 80.585 15.691
B+P(2)+DM 15.876 55.203 39.894 59.043 79.521 17.553

B+DF(1)+DM -0.383 2.252 51.064 72.074 95.745 0.532
B+P(2)+DF(0.5)+DM -0.338 2.229 51.33 73.404 95.745 0.532
B+P(2)+DF(1)+DM -0.366 2.165 51.862 73.67 96.011 0.266

B+P(2)+DF(1)+DM(1) -3.358 26.453 20.213 39.362 95.479 1.064
Table 3: Statistical data of experiments. The left most column shows techniques applied

for the data on its right side. “B” represents “Binary scoring”, P(n) represents prefix
processing with n characters counted, and DF(m) represents decaying function using m as
it’s b parameter in Equation (2). DM without parameter represents distribution modeling
with range constraining only. The parameter l in DM(l) represents parameter c in Eq. (3).

Combining binary scoring, prefix processing, and decaying function, results are even
better in all aspects, row B+P(2)+DF(1) and B+P(2)+DF(0.5) in Table 3. Remarkably,
with the support of prefix processing, mean and standard deviation values in highly
sensitive decaying functions catch up with b=0.5. Though the difference from Figure 3(c)
is not much, it dose show more concentration and less bad alignments in Figure 3(d).

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2
B only (Baseline)

Time Distance (Second)

Percenta ge (%)

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2
B+P(2)

Time Distance (Second)

Percenta ge (%)

 (a) (b)

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2
B+DF(0.5)

Time Distance (Second)

Percenta ge (%)

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2
B+P(2)+DF(0.5)

Time Distance (Second)

Percenta ge (%)

 (c) (d)

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2
B+P(2)+DF(1)+DM

Time Distance (Second)

Percenta ge (%)

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2
B+P(2)+DF(1)+DM(1)

Time Distance (Second)

Percenta ge (%)

 (e) (f)

Figure 3: Word distribution charts after aligned in different cases.

When further applying range constraining, 0 to 10 seconds, to limit final alignment path,
I find that it only works well with decaying function; otherwise, the improvement is not
much. The reason is if the constraining is added to a case with lots of extremely aligned
words, like B only or B+P(2), it only has power to force the path to go along the edges of
reasonable range which is still probably have around 10 seconds of error. However,
adding constraining to the cases with decaying function not only improves all aspect of
data but also diminishes the extreme bad cases from 3.457% to 0.532%, comparing row

B+DF(1) to B+DF(1)+DM in Table 3. As I expect, the performance gains more with all
scoring techniques as shown in row B+P(2)+DF(1)/DF(0.5)+DM in Table 3 and Figure
3(e). Not like previous cases, the DF(1) case here outperformed DF(0.5) case in all data
except ~0.03 second worse on its mean value.

The last experiment is to use Eq. (3) for scoring. Parameter d is set to let the pdf value of
time slot with maximum pdf to be 1, i.e. result in 0 after log operation to cost the least
distance. In my experiment, 2.25 to 2.75 is the most possible time slot of CC lags, and the
values of second terms of 7 slots nearing the maximal one in Eq. (3) is under 0.01, which
means they would not cost too much distance also. However, from Table 2, the last row
is not the best performed one. Figure 3(f) shows the result. The distribution is shifted to
the minus part, but not like Figure 3(a), its distribution in minus part is quite flat which
should be caused by distribution modeling. The scoring method forces some word to be
aligned by distribution probability, not by identity of words especially on the words
originally more than 5 seconds away from the actual spoken spot. The logged distance
value raises too fast after 5 seconds and make words hard to aligned to where it should
have be. Some better functions need to be developed for this problem.

4. Modification for TRECVID 2003 Corpus

The first successful application of this alignment project is for TRECVID 2003 corpus. A
modified version of alignment algorithm addressed above is applied on it and results in
decent outcome to be provided back to NIST and other groups. Furthermore, combining
the cue word extracting algorithm developed on fall 2002, we can even extract cur words
near story boundaries from CC to be a feature for indexing. The feature could support the
performance to some degree when ASR recognition accuracy is low or the term we want
is new and does not exist in dictionary.

The corpus, provided by NIST to TRECVID members for international video indexing
evaluation, includes ASR and CC of 250-hour video clips. The ASR transcripts are
obviously more accurate than those generated by Microsoft Speech SDK in my project,
but CC parts are with word tokens and punctuation marks only, no time information on
them. Consequently, the decaying function and distribution modeling, which need time
codes in CC, could not be applied here. Besides binary scoring and prefix processing, a
new idea to control unmatched words is developed.

The first approach implemented is based on period marks in CC. Because two words
belong to the same sentence should not have too large time gap between them, different
distance values are assigned to different conditions, in or not in the same sentence, during
dynamic programming process. When two words belong to different sentence, the
distance of insertion will be smaller to let insertion easier to occur and vice versa. This is
the 1.0 version of aligned CC published on the website. Even didn’t apply decaying
function on it, this version has apparently better accuracy then MS SDK one for it’s
higher ASR accuracy.

Besides period marks, pause marks and time codes in ASR could be useful in alignment,
too. For pause marks, we might model it’s relation to the sentence ends or beginnings.
For ASR time codes, we might revise distances give to each word to maintain CC
structure better especially near commercial boundaries. These two idea are not yet
implemented and going to be tested in the future.

5. Conclusion and Future Works

In addition to the words itself, pronunciations, relative time gaps, and original
distribution in CC are all have its power in ASR-CC alignment. This paper indeed proves
the performance gain of introducing these elements is significant. Because fine tuning
and improve the accuracy of ASR system is a really tough work and highly depends on
the background of speech, letting aligned CC to compensate recognition errors is efficient
and could be done as experiments shown above.

In the future, more corpus should be tested and evaluate their performances to make
experiments more general. The TREC 2003 corpus, at this moment, might be the best
database to do further researches of this topic. Therefore, a scoring system for dynamic
programming which take fully advantage of information provided by TREC should be
developed and systematically evaluated.

6. Reference

[1] Alexander G. Hauptmann, Michael J. Witbrock, Story Segmentation and Detection
of Commercials in Broadcast News Video, Advances in Digital Libraries, 1998

[2] Nye, H., The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition, IEEE Transactions on Acoustics, Speech, and Signal
Processing, 1984

[3] David C. Gibbon, Generating Hypermedia Documents from Transcriptions of
Television Programs Using Parallel Text Alignment, Continuous-Media Databases
and Applications. Eighth International Workshop on, 23-24 Feb. 1998

[4] R.A. Wagner and M.J. Fischer, The String-to-string Correction Problem, Journal
of the ACM, 21(1):168-173, January 1974

[5] http://www.ldc.upenn.edu/mirror/Transcriber/

[6] http://www.informedia.cs.cmu.edu/dli2/talks/Oct30_99/sld026.htm

[7] http://www.microsoft.com/speech/download/sdk51/

[8] Winston Hsu, Shih-Fu Chang, Chih-Wei Huang, Lyndon Kennedy, Ching-Yung Lin,
and Giridharan Iyengar, "Discovery and Fusion of Salient Multi-modal Features towards
News Story Segmentation," to appear in SPIE/Electronic Imaging, Jan. 18-22, 2004, San
Jose, CA.

