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Abstract

Structure elements in a time sequence are repetitive segments that bear consistent deterministic

or stochastic characteristics. While most existing work in detecting structures follow a super-

vised paradigm, we propose a fully unsupervised statistical solution in this paper. We present

a unified approach to structure discovery from long video sequences as simultaneously finding

the statistical descriptions of structure and locating segments that matches the descriptions. We

model the multilevel statistical structure as hierarchical hidden Markov models, and present ef-

ficient algorithms for learning both the parameters, as well as the model structure including the

complexity of each structure element and the number of elements in the stream. We have also

proposed feature selection algorithms that iterate between a wrapper and a filter method to par-

tition the large feature pool into consistent and compact subsets, upon which the hierarchical

hidden Markov model is learned. When tested on a specific domain, soccer video, the unsu-

pervised learning scheme achieves very promising results: the automatically selected feature set

includes the manually identified intuitively most significant feature, and the system automatically

discovers the statistical descriptions of high-level structures, and at the same time achieves even

slightly better accuracy in detecting discovered structures in unlabelled videos than a supervised

approach designed with domain knowledge and trained with comparable hidden Markov models.

Keywords: video structure, statistical learning, unsupervised learning, feature selection, hierar-

chical hidden Markov model, hidden Markov model, model selection, MCMC
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1 Introduction

In this paper, we present algorithms for jointly discovering statistical structures, identifying model

orders, and finding informative low-level features from video in an unsupervised setting. Effective

solutions to video indexing require detection and recognition of structure and event in the video,

where structure represents the syntactic level composition of the video content, and event repre-

sents the occurrences of certain semantic concepts. We define structure as the repetitive segments

in a time sequence that possess consistent deterministic or stochastic characteristics. This defini-

tion is general to various domains, and structures exist at multiple levels of abstraction. At the

lowest level for example, structure can be the frequent triples of symbols in a DNA sequence, or

the repeating color schemes in a video; at the mid-level, the seasonal trends in web traffics, or the

canonical camera movements in films; and at a higher level, the genetic functional regions in DNA

sequences, or the game-specific state transitions in sports video. Automatic detection of struc-

tures will help locate semantic events from low-level observations, and facilitate summarization

and navigation of the content.

1.1 The structure discovery problem

The problem of identifying structure consists of two parts: finding a description of the structure

(a.k.a the model), and locating segments that matches the description. There are many successful

cases where these two tasks are performed in separate steps. The former is usually referred to as

training, while the latter, classification or segmentation. Among various possible models, hidden

Markov model (HMM) [Rab89] is a discrete state-space stochastic model with efficient learning

algorithms that works well for temporally correlated data streams. HMM has been successfully

applied to many different domains such as speech recognition, handwriting recognition, motion

analysis, or genome sequence analysis. For video analysis in particular, different genres in TV

programs were distinguished with HMMs trained for each genre [WLH00], and the high-level

structure of soccer games (e.g. play versus break) was also delineated with a pool of HMMs

trained for each category [XCDS02].

The structure detection methods above falls in the conventional category of supervised learn-

ing - the algorithm designers manually identify important structures, collect labelled data for

training, and apply supervised learning tools to learn the classifiers. This methodology works for

domain-specific problems at a small scale, yet it cannot be readily extended to diverse domains

at a large scale. In this paper, we propose a new paradigm that uses fully unsupervised statistical

techniques and aims at automatic discovery of salient structures and simultaneously recognizing

such structures in unlabelled data without prior expert knowledge. Domain knowledge, if avail-

able, can be used to relate semantic meanings to the discovered structures in a post-processing
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stage. Although unsupervised learning techniques dates back to several decades ago [JMF99],

most of the data sets were treated as independent samples, while the temporal correlation be-

tween neighboring samples are largely unexploded. Classical time series analysis techniques has

been widely used in many domains such as financial data and web stat analysis [ISZ99], where the

problem of identifying seasonality reduces to the problem of parameter estimation in known order

of ARMA model, and the order is determined with statistical tests on the correlation functions,

yet this model does not readily adapt to domains with frequent discontinuities. New statistical

methods such as Monte Carlo sampling has also appeared in genome sequence analysis [LAB+93],

where unknown short motifs were recovered by finding a best multiple alignment among all pro-

tein sequences using Gibbs sampling techniques on a multinomial model, yet independence among

amino acids in adjacent positions is still assumed. Only a few instances has been explored for

video, however. Clustering techniques are used on the key frames of shots [YY96] or the principal

components of color histogram [SZ99] to discover the story units in a TV drama, yet the tem-

poral dependency of video was not formally modelled. In an independent work of Naphade and

Huang [NH02], several HMMs were concatenated to identify temporally evolving events in films

such as explosion and crashing, yet no specific quantitative results were reported.

Moreover, the computational front end in many real-world scenarios extracts a large pool of

observations (i.e. features) from the stream, and at the absence of expert knowledge, picking

a subset of relevant and compact features becomes a bottleneck. And automatically identifying

informative features, if done, will improve both the learning quality and computation efficiency.

Prior work in feature selection for supervised learning mainly divides into filter and wrapper

methods according to whether or not the classifier is in-the-loop [KS96]. Many existing work

address the supervised learning scenario, and evaluate the fitness of feature with regard to its

information gain against training labels (filter) or the quality of learned classifiers (wrapper). For

unsupervised learning on spatial data (i.e. assume samples are independent), Xing et. al. [XK01]

iterated between cluster assignment and filter/wrapper methods for known number of clusters; Dy

and Brodley [DB00] used scatter separability and maximum likelihood (ML) criteria to evaluate

fitness of features. To the best of our knowledge, no prior work has been reported for our problem

of interest: unsupervised learning on temporally dependent sequence with unknown cluster size.

1.2 Our approach

In this paper, we model the temporal dependencies in video and the generic structure of events in

a unified statistical framework. Under certain dependency assumptions, we model the individual

recurring events in a video as HMMs, and the higher-level transitions between these events as

another level of Markov chain. This hierarchy of HMMs forms a Hierarchical Hidden Markov

Model(HHMM), its hidden state inference and parameter estimation can be efficiently learned
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using the expectation-maximization (EM) algorithm. This framework is general in that it is scal-

able to events of different complexity; yet it is also flexible in that prior domain knowledge can

be incorporated in terms of state connectivity, number of levels of Markov chains, and the time

scale of the states. In addition, Bayesian learning techniques are used to learn the model com-

plexity automatically, where the search over model space is done with reverse-jump Markov chain

Monte Carlo, and Bayesian Information Criteria is used as model prior. We use a combination

of filter and wrapper methods for feature selection. The first step is to wrap information gain

criteria around HHMM learning, and discover relevant feature groups that are more consistent

to each other within the group than across the group; the second step is to find an approximate

Markov blanket for each group, thus eliminating redundant features that does not contribute to

uncovering the structure from sequence given its Markov Blanket; and the last step is to evaluate

each condensed feature group with a normalized BIC, and rank the resulting models and feature

sets with respect to their a posteriori fitness.

Evaluation against real video data showed very promising results: Evaluation against real video

data showed a very promising result - the unsupervised approach automatically discovers the high-

level structures, their statistical descriptions, and at the same time achieves even slightly better

accuracy in detecting discovered structures in unlabelled videos than a supervised approach using

domain knowledge and comparable HMM models. On two MPEG-7 soccer videos, the number

of clusters that the algorithm converges to is mostly two or three, matching manually labelled

classes with comparable accuracies in [XCDS03]; the optimal feature set includes the dominant

color ratio, the intuitively the most distinctive feature.

The rest of this report is organized as follows: section 2 discusses the properties of structures in

video and lists the assumptions used in modelling; section 3 presents the structure and semantics of

the HHMM model; section 4 presents the inference and parameter learning algorithms for HHMM;

section 5 presents algorithms for learning HHMM strucutre; section 6 presents our feature selection

algorithm for unsupervised learning over temporal sequences; section 7 evaluates the results of

learning with HHMM on soccer video data; section 8 summarizes the work and discusses open

issues.

2 Modelling Video Structure

Our main attention in this paper, is on the particular domain of video, where the structures

has the following properties: (1)Video structure is in a discrete state-space, since we humans

understand video in terms of concepts, and concepts are discrete in nature; (2)The observations

are stochastic, since segments of video seldom have exactly the same raw features even if they are

conceptually similar ; (3)The sequence is highly correlated in time, since the videos are sampled
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in a rate much higher than that of the changes in the scene.1 In particular, we will focus our

attention on the subset of dense structure for this paper. By dense we refer to the cases where

competing structure elements can be modelled as the same parametric class, and representing

their alternation would be sufficient for describing the whole data stream, i.e. there is no need for

an explicit background model that delineates sparse events from the majority of the background.

Hence, we model stochastic observation in a temporally correlated discrete state space, and

use a few weak assumptions to facilitate efficient computation. We assume that within each

concept, states are discrete and Markov, and observations are associated with states under a

fixed parametric form, usually Gaussian. Such assumptions are justified based on the satisfactory

results from the previous works using supervised HMM of similar forms [WLH00,XCDS02]. We

also model the transitions of concepts as a Markov chain at a higher level, this simplification

will bring computational convenience at a minor cost of modelling power. In the basic algorithm

described in section 4, we will also assume that the size of the model is given, and the model is

learned over a pre-defined feature set. These two assumptions can be relaxed using the proposed

model selection algorithms described in section 5, and feature selection criteria in section 6.

3 Hierarchical hidden Markov models

Base on the two-level Markov setup described above, we use two-level hierarchical hidden Markov

model to model structures in video. In this model, the higher-level structure elements usually

correspond to semantic concepts, while the lower-level states represents variations that can occur

within the same concept, and these lower-level states in turn produce the observations, i.e.,

measurements taken from the raw video, with mixture-of-Gaussian distribution.

3.1 Structure of HHMM

Hierarchical hidden Markov model was first introduced by Fine, Singer and Tishby [FST98] as

a natural generalization to HMM with hierarchical control structure. As shown in Figure 1(A),

every higher-level state symbol correspond to a stream of symbol produced by a lower-level sub-

HMM; a transition on the higher-level model is invoked only when the lower-level model enters

an exit state (shaded nodes in Figure 1(A)); observations are only produced by the lower level

states.

This bottom-up structure is general in that it includes several other hierarchical schemes as spe-

cial cases. Examples include the discrete counterpart of the jump Markov model [DA01] with top-

down(rather than bottom-up) control structure, or parallel stacking of left-right HMMs [NH02].
1In a soccer video for example, the high-level concept of a ”goal” and the lower-level concept of a ”close-up shot”

exemplify themselves in the motion or color observations obtained from the video stream. The concept of ”close
up” is among the set of potential concepts {global, zoom-in, close-up}, and the color histogram of two close-up
shots would be similar but not identical.
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Figure 1: Graphical HHMM representation at level d and d+1 (A)Tree-structured representation; (B)DBN
representations, with observations Xt draw at the bottom. Uppercase letters denote the states as random
variables in time t, lowercase letters denote the state-space of HHMM, i.e. values these random variables
can take in any time slice. Shaded nodes are auxiliary exit nodes that turns on the transition at a higher
level, a state at level d is not allowed to change unless the corresponding Ed+1 = 1.

The original work have also shown that the state inference can be done in O(T 3) where T is

the sequence length [FST98]. Equivalently, HHMM can be unrolled in time and represented as a

Dynamic Bayesian Network (DBN) [MP01] (Figure 1(B)). In the DBN representation, the hidden

states Qd
t at each level d = 1, . . . D, the observation sequence Xt, and the auxiliary level-exiting

variables Ed
t completely specifies the state of the model at time t. Note Ed

t can be turned on only

if all lower levels of Ed+1:D
T are on. It is also shown that inference is empirically O(T ) using the

junction tree algorithm for DBNs.

Prior applications of HHMM falls into two categories: (1) Supervised learning where man-

ually segmented training data is available, hence each sub-HMM are learned separately on the

segmented sub-sequences, and cross-level transitions and learned on the transition statistic across

the subsequences. For example, extron/intron recognition in DNA sequences [HIS+00] and ac-

tion recognition [IB00], and more examples summarized in [Mur01] falls into this category. (2)

Unsupervised learning, where segmented data are not available for training, and parameters of

different levels are jointly learned; (3)A mixture of the above, where alignment at a higher level

is given, yet parameters still needs to be estimated across several levels. Existing instances of

(2) is rare, yet (3) can be regarded as a generalization of (1) and (2), and examples abound: the

celebrated application of building a speech recognition system with word-level annotation [Dep],

text parsing and handwriting recognition [FST98].
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4 Learning HHMM with EM

In this section, we first introduce convenient notations to represent the states and parameter set of

an HHMM, followed by a brief overview on deriving the EM algorithm for HHMMs, and then we

present the EM algorithms that compute the state inference and parameter estimation in O(T ).

4.1 Representing an HHMM

Denote the maximum state-space size of any sub-HMM as Q, we use the bar notation (equation1)

to write the entire configuration of the hierarchical states from the top (level 1) to the bottom

(level D) with a Q-ary D-digit integer, with the lowest-level states at the least significant digit:

k(D) = q1:D = (q1q2 . . . qD) =
D∑

i=1

qi ·QD−i (1)

Here 1 ≤ qi ≤ Q; i = 1, . . . , d. We drop the superscript of k where there is no confusion, the

whole parameter set Θ of an HHMM then consists of (1) Markov chain parameters λd in level

d indexed by the state configuration k(d−1), i.e., transition probabilities Ad
k, prior probabilities

πd
k, and exiting probabilities from the current level ed

k; (2) emission parameters B that specifies

the distribution of observations conditioned on the state configuration, i.e., the means µk and

covariances σk when emission distributions are Gaussian.

Θ = (
D⋃

d=1

{λd}) ∪ {B}

= (
D⋃

d=1

Qd−1⋃

i=1

{Ad
i , π

d
i , ed

i }) ∪ (
QD⋃

i=1

{µi, σi}) (2)

4.2 Outline of the EM algorithm

Denote Θ the old parameter set, Θ̂ the new (updated) parameter set, then maximizing the data

likelihood L is equivalent to iteratively maximizing the expected value of the complete-data log-

likelihood Q:

Q(Θ̂, Θ) = E[log(P (QT
1 , XT

1 |Θ̂))|XT
1 , Θ] (3)

=
∑

QT
1

P (QT
1 |XT

1 , Θ) log(P (QT
1 , XT

1 |Θ̂)) (4)

= L−1
∑

QT
1

P (QT
1 , XT

1 |Θ) log(P (QT
1 , XT

1 |Θ̂)) (5)

Specifically, the ”E” step evaluates this expectations, and the ”M” step finds the value of Θ̂

that maximizes this expectation. So if we choose a proper hidden state space, and write out the
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summation in equation (5) properly, then each of the unknowns will be delineated into separate

summation term. Then when we take the partial derivative of eq. (5), each unknowns can be

solved in closed form.

In order for the summation in eq. (5) to be separable for HHMMs, we need to define hyper-

initial probabilities π̃(k) and transition probabilities ã(k′, k, d)

π(k) =
D−1∏

d=1

πd
qd

(6)

ã(k′, k, d) =
d∏

i=D−1

ei
q′i

πi
qi
· ad(q′d, qd) (7)

The reason why we need an extra parameter d instead of just writing ã(k′, k) is that we want

ã to be in product-of-parameters form so when we take the logarithm in equation 5 it becomes

sum-of-individual-parameters and only then the unknowns can be delineated when we take the

partial derivative.

4.3 The forward-backward algorithm

Similar to the inference of HMMs, we define forward variables αt(k) as the probability of the

observations up to time t and HHMM in state k under the current model Θ(equation 8). And the

data likelihood L can be computed iteratively using the forward variables, as shown in equations

(9)-(11).

αt(k)
4
= P (X1:t, Qt = k|Θ) (8)

Initialization: α1(k) = π̃kbk(x1); (9)

k = 1, . . . , QD

Iteration: αt+1(k) = bk(xt+1)
∑

k′ αt(k′)ã(k′, k, d); (10)

t = 1, . . . , T − 1; k = 1, . . . , QD

Termination: L = P (X1:T |Θ) =
∑

k αT (k) (11)

Similarly, we can define and compute the backward variables βt(k), and they will become

useful in parameter estimation.

βt(k)
4
= P (Xt+1:T |Qt = k, Θ) (12)
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Initialization: βT (k) = 1; (13)

k = 1, . . . , QD

Iteration: βt(k) =
∑

k′
∑

d βt+1(k′)bk′(xt+1)ã(k, k′, d); (14)

t = T − 1, . . . , 1; k = 1, . . . , QD

(15)

4.4 The Viterbi algorithm

The Viterbi algorithm for decoding the optimum state sequence is very similar to the forward

algorithm. The changes involved are: 1. Replace the summation with maximum in (10); 2. Keep

track of the backpointers ψt(k) = (k∗, e∗) where k∗ is the ”best-likelihood” states at t − 1 that

leads to state k at time t, and e∗ is the corresponding exit level taking values from D to 2; 3. Do

back tracing after the forward path, pick the ”best-likelihood” from time T , and trace back to

t = 1 according to ψ, recover the optimum path (Q∗
t , E

∗
t )T

t=1.

Initialization: ψ1(k) = 0; δ1(k) = π̂kbk(x1); (16)

k = 1, . . . , QD

Iteration: ψt+1(k) = arg max
1≤k′≤QD

1≤d≤D

δt(k′)â(k′, k, d) (17)

δt+1(k) = bk(xt+1) · max
1≤k′≤QD

1≤d≤D

δt(k′)Â(k′, k, d); (18)

t = 1, . . . , T − 1; k = 1, . . . , QD

Back Trace: Q∗
T = arg maxk(δT (k)); E∗

T = 1; (19)

(Q∗
t , E

∗
t ) = ψt+1(Q∗

t+1); t = T − 1, . . . , 1; (20)

4.5 Parameter estimation

Parameter learning for HHMM is done by maximizing the model likelihood given the observation

sequence X1:T , using the EM algorithm in the augmented hidden state-space {Qt, Et}T
t=1 We

define the state-occupancy variables γt(k) and the auxiliary transition variables ξt(k′, k, d) for

this purpose:

γt(k)
4
= P (Qt = k|XT

1 , Θ)

= L−1 · αt(k)βt(k); t=1,...,T (21)

ξt(k′, k, d)
4
= P (Qt = k′, Qt+1 = k, F 1:d

t = 0, F d+1:D
t = 1|X1:T , Θ)

= L−1αt(k′)Â(k′, k)bk(xt+1)βt+1(k); t=1,...,T−1 (22)
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Then the parameter estimates can be obtained by marginalizing and normalizing the correspond-

ing auxiliary variables. Estimation for parameters in equation (2) are as follows.

Prior probability π̂d
q (j) =

T−1∑

t=1

∑

q′

∑

q′′

∑

i

ξt((qiq′), (qjq′′), d)

T−1∑

t=1

∑

q′

∑

q′′

∑

i

∑

j

ξt((qiq′), (qjq′′), d)

(23)

Within-level transition probability âd
q(i, j) =

T−1∑

t=1

∑

q′

∑

q′′
ξt((qiq′), (qjq′′), d)

T−1∑

t=1

∑

q′

∑

q′′

∑

j

ξt((qiq′), (qjq′′), d)

(24)

Level-exiting probability êd
q(i) =

T−1∑

t=1

∑

q′

∑

k′
ξt((qiq′), k′, d)

T∑

t=1

γt(k)

(25)

(26)

Note for the d− 1-digit Q-ary number q, the constraint q = Q1:d−1
t = Q1:d−1

t+1 is inherent since we

are only interested in the transitions made at level d, and q′ = Qd+1:D
t and q′′ = Qd+1:D

t+1 are the

states at levels lower than d. Also note the temporal dimension of γ and ξ are always marginalized

out, so we only compute γ̃(k) =
∑

t γt(k) and ξ̃(k, k′, d) =
∑

t ξt(k, k′, d) in implementation and

use them instead.

Assume each observation xt is a row vector, then the means and covariances of state k at the

bottom level can be estimates as:

The mean µ̂k =

T∑

t=1

xt · γt(k)

T∑

t=1

γt(k)

(27)

The covariance Σ̂k =

T∑

t=1

xT
t xt · γt(k)

T∑

t=1

γt(k)

(28)

4.6 Complexity of this algorithm

Complexity of this algorithm is in fact O(T ·Q2D), since:

11



1. The size of the collapsed state-space of an HHMM is at most QD.

2. Each round of the forward (or Viterbi or backward) iterations involves going through each

of the T time slices; and for each of the QD states in each time slice, the likelihood (or best

incoming path or backward probability) is obtained by going through all possible previous

(or the next) node. Hence the complexity of each round is O(T ·Q2D).

3. Parameter estimation takes constant times forward/backward iterations, while computing

likelihood and Viterbi decoding takes once and twice forward iterations, respectively. Hence

the complexity of the EM algorithm is still O(T ·Q2D), although the multiplicative constant

does make a difference in implementation.

5 Bayesian model adaptation

In the HHMM learning algorithms described in Section 4, EM is known to converge to a local

maxima of data likelihood, and the model size is predefined. And since searching for a global max-

ima in the likelihood landscape or searching through all possible model structure is intractable, we

adopt randomized search strategies to address these issues. Markov chain Monte Carlo(MCMC) is

a class of such algorithms that has been successfully used to solve high-dimensional optimization

problems, especially the problem of Bayesian learning of model structure and model parame-

ters [AdFDJ03]. Moreover, model selection can also be addressed in the same framework with

reverse-jump MCMC (RJ-MCMC) [Gre95], by constructing reversible moves between parame-

ter spaces of different dimensions. In particular, Andrieu et.al. [AdFD01] applied RJ-MCMC

to the learning of radial basis function (RBF) neural networks by introducing birth-death and

split-merge moves to the RBF kernels. This is similar to our case of learning variable number

of Gaussians in the feature space that correspond to the emission probabilities. In this work,

we deployed a MCMC scheme to learn the correct state-space size of the HHMM models, where

the major random steps are jumping between different number of Gaussians, different number of

upper-level states, and swapping the state association relationships of two children states.

5.1 Overview of MCMC for HHMM

MCMC for learning statistical models usually iterates between two steps: (1)The proposal step

comes up with a new set of structure and model parameters based on the data and the current

model(the Markov chain) according to certain proposal distributions (Monte Carlo); (2)The de-

cision step computes acceptance probability α of the proposed new model using model posterior

and proposal strategies, and then this proposal is accepted or rejected with probability α. MCMC

will converge to the global optimum in probability if certain constraints [AdFDJ03] are satisfied
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for the proposal distribution and if the acceptance probability are evaluated accordingly, yet the

speed of convergence largely depends on the goodness of the proposals.

Model adaptation for HHMMs is choreographed as follows: (1)Based on the current model

Θ, compute a probability profile Pθ = [pem, psw, pst, psb, pmt, pmb], then propose a move among

the types {EM, swap, split-top, split-bottom, merge-top, merge-bottom} according to the profile

Pθ. EM is regular parameter update; Swap involves swapping the parents of two lower level

states associated with different higher-level nodes; split/merge-bottom means splitting the emission

probability of one of the current bottom level states or merging two of them into one; and split-

top would randomly partition one higher level state into two and assign its children to either

one of the new high-level state, while merge-top would collapse two higher-level states into one.

(2)Acceptance probability is then evaluated based on model posterior, computed with the Bayesian

Information Criteria; for split and merge, the proposal likelihood and model space alignment also

need to be taken into account.

Note we are using a mixture of the EM and MCMC, in place of full Monte Carlo update of the

parameter set and the model, since EM is more efficient than full MCMC, and the convergence

behavior doesn’t seem to suffer in practice. In the following subsections, we will present the model

adaptation algorithm in more detail.

5.2 The Model adaptation algorithm

In HHMM, model adaptation also involves similar moves such as the split/merge of Gaussian

kernels that associates states in the lowest level with observations, we are not including birth/death

moves since these moves can be reached with multiple moves of split/merge. Due to the multi-level

structure of HHMM, however, we will need an additional swap move that changes the association

of lower level states with its higher level parents, and split/merges of parent states that also incur

appropriate actions in their children states. Here are the main steps:

1. Initialization, choose maximum sub-model size Q. set the entire set of model parameters

ΘK (with clustering and heuristic grouping).

2. At iteration i, as there are Q Gaussian kernels at the lower level. Use equations (29)–(34)

to compute proposal probabilities Pθ = [pem, psw, pst, psb, pmt, pmb] for {EM, swap, split-

top, split-bottom, merge-top, merge-bottom} respectively, according to preset simulation

parameters: c∗, the maximum probability of proposing a particular type of move other than

EM; Q̂0 and Q̂1 as the hyper-parameter for priors on the number of states at the higher

and lower levels, respectively. Denote the current total number of states in the higher and

lower levels as Q0 and Q1, respectively.

psb = c∗ ·min{1, Q̂1/(Q1 + 1)}; (29)
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pst = c∗ ·min{1, Q̂0/(Q0 + 1)}; (30)

pmb = c∗ ·min{1, (Q1 + 1)/Q̂1}; (31)

pmt = c∗ ·min{1, (Q0 − 1)/Q̂0}; (32)

psw = c∗; (33)

pem = 1− (psw + pst + psb + pmt + pmb). (34)

(a) propose a move type from {EM, swap, split-top, split-bottom, merge-top, merge-bottom}
according to probability profile Pθ = [pem, psw, pst, psb, pmt, pmb];

(b) Update the model size and the parameter set according to Section 5.3;

(c) Compute the acceptance ratio rk according to 5.4, and accept/reject this move with

probability αk = min{1, rk}.

3. Stop if converged, otherwise go to step 2

5.3 Computing different moves

EM is one regular hill-climbing iteration as described in section 4; and once a move type other than

EM is selected, one (or two) states at a certain level are selected at random for swap/split/merge,

and the parameters are modified accordingly:

• Swap the association of two states:

Choose two states from the same level, each belongs to a different higher-level state, swap

their higher-level association and the corresponding children states.

• Split a bottom state:

Choose a state at random, perturb its mean as follows, where us U [0, 1], and η is a simulation

parameter that ensures reversibility between split and merge moves.

µ1 = µ0 + usη
µ2 = µ0 − usη

(35)

• Merge two bottom states:

Within the same higher-level states, choose two states at random, merge them by assigning

the new mean as the average of the two.

µ0 =
µ1 + µ2

2
, if |µ1 − µ2| ≤ 2η (36)

• Split one higher-level state (that has more than one children):

Choose the state to split at random, split its children into two disjoint sets at random,

update the corresponding multi-level Markov chain parameters accordingly.
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• Merge two higher-level states:

Randomly choose two states at the same level (that also belong to the same parents), merge

them by making all the children of these two states the children of the merged state, and

modify the transition probabilities according.

5.4 Computing the acceptance ratio

When moves are proposed to a space with identical size as the original, such as EM or state-

swapping, the acceptance ratio is calculated as the ratio of posteriors after and before the move.

When we use Bayesian information criteria (BIC, Eq. 37) [Sch78] as the posterior, the acceptance

ratio simplifies into likelihood ratio.

BIC = log(P (x|Θ)) · λ +
1
2
|Θ| log(T ) (37)

Intuitively, BIC is a trade-off between data likelihood P (X|Θ) and model complexity |Θ| · log(T )

with weighting factor λ. Larger models are penalized by the number of free parameters in the

model |Θ|; yet the influence of the model penalty decreases as the amount of training data T

increases, since log(T ) grows slower than O(T ). The weighting factor λ is taken as 1/16 in the

simulations of this section as well as those in section 6.

r
4
= (posterior ratio) =

exp(B̂IC)
exp(BIC)

=
P (x|Θ̂k)
P (x|Θk)

(38)

When moves are proposed to a parameter space with different dimension, such as split or

merge, we also need a proposal ratio term and a Jacobian term to align the spaces, and ensure

detailed balance [Gre95], as shown in equations (39)–(42).

rk
4
= (posterior ratio) · (proposal ratio) · (Jacobian) (39)

rsplit =
P (k + 1, Θk+1|x)

P (k, Θk|x)
· mk+1/(k + 1)

p(us)sk/k
· J (40)

rmerge =
P (k, Θk|x)

P (k + 1, Θk+1|x)
· p(us)sk−1/(k − 1)

mk/k
· J−1 (41)

J =
∣∣∣∣
∂(µ1, µ2)
∂(µ0, us)

∣∣∣∣ =
∣∣∣∣

1 η
1 −η

∣∣∣∣ = 2η (42)

6 Feature selection for unsupervised learning

Feature extraction schemes for audio-visual streams abound, and we are usually left with a large

pool of diverse features without knowing which ones are relevant to the concepts in the data. A

few features can be selected manually if expert domain knowledge exits, but more often we lack

adequate domain knowledge, or the connection between high-level expert knowledge and low-level
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features are not obvious. Moreover, the task of feature selection is divided into eliminating ir-

relevant features and redundant ones, where the former may disturb the classifier and degrade

classification accuracy, the latter adds to computational burden without bringing in new informa-

tion. Furthermore, in the unsupervised structure discovery scenario, different subsets of features

may well represent different concepts, and they should be described with separate models rather

than modelled jointly.

Hence the scope of our problem, is to select structurally relevant and compact feature subset

that fits the HHMM model assumption in unsupervised learning over temporally highly correlated

data streams.

6.1 The feature selection algorithm

Denote the feature pool as F = {f1, . . . , fD}, the data sequence as XF = X1:T
F , the feature

selection algorithm proceeds through these general steps:

1. (Let i = 1 to start with) At the i-th round, produce a reference set F̃i ⊆ F at random, learn

HHMM Θ̃i on F̃i with model adaptation, perform Viterbi decoding of XF̃i
, get the reference

state-sequence Q̃i = Q̃1:T
F .

2. For each feature fd ∈ F \ F̃i, learn HHMM Θd of size |Θ̃i|, get the Viterbi state sequence

Qd compute the information gain (sec. 6.2) of each feature on the Qd with respect to the

reference partition Q̃i. Find the subset F̂i ⊆ (F \ F̃i) with significantly large information

gain, and keep the union of our reference set and the relevance set F̄i
4
= F̃i ∪ F̂i for further

processing.

3. Use Markov blanket filtering in sec. 6.3, eliminate redundant features within the set F̄i

whose Markov blanket exists. We’re then left with a relevant and compact feature subset

Fi ⊆ F̄i. Learn HHMM Θi again with model adaptation on XFi .

group of

features

generate

feature seed

wrapper

around

EM+MCMC

Markov

blanket

filtering (feature,model)

pairs

empty?

feature

pool

end

feature

all remaining features

evaluate

with BIC

Figure 2: Feature selection algorithm overview
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4. Eliminate the previous candidate set by setting F = F \ F̄i; go back to step 1 with i = i + 1

if F is non-empty.

5. For each feature-model combination {Fi,Θi}i, evaluate their fitness using the normalized

BIC criteria in sec. 6.4, rank the feature subsets, and interpret the meanings of the resulting

clusters.

6.2 Evaluating information gain

Information gain [XK01] measures the degree of agreement of each feature to the reference par-

tition. We label a partition Q of the original set XF = X1:T
F as integers Qt

F ∈ {1, . . . , N}, let the

probability of each part be the empirical portion (eq. 43), and define similarly the conditional

probability of the reference partition Q0 given the partition Qf induced by a feature f (eq.44).

The information gain of feature f with respect to Q0 is defined as eq. 45.

PQ(i) =
|{t|qt = i}|

T
; i = 1, . . . , N (43)

PQ0|Qf
(i | j) =

|{t|(qt
0, q

t
f ) = (i, j)}|

|{t|qt
f = j}| ; i, j = 1, . . . , N (44)

Ig
4
= H(PQ0)−

∑

f

PQf
·H(PQ0|Qf

) (45)

Where H(·) is the entropy function. Intuitively, a higher information gain value for feature f

suggests that the f -induced partition Qf is more consistent with the reference partition Q0.

6.3 Finding a Markov Blanket

After the previous wrapper step, we are left with a subset of features with consistency yet possible

redundancy. A feature f is said to be redundant if the partition of the data set is independent to

f given its Markov Blanket FM . In prior works [KS96,XK01], Markov blanket is identified with

the equivalent condition that the expected KL-divergence between class-posterior probabilities

with or without f should be zero.

For unsupervised learning over a temporal stream however, this criteria cannot be readily

employed since the temporal correlation prevents us from estimating the posterior distributions

by just counting over every feature-label pair. Thus results in two difficulties: (1)The dependency

between adjacent observations and class-labels makes the distribution of features and posterior

distribution of classes multi-dimensional, and summing over them quickly becomes intractable;

(2)We will not have enough data to estimate these high-dimensional distributions. We therefore
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use an alternative necessary condition that the optimum state-sequence C1:T should not change

conditioned on observing FM ∪ f or FM only. Additionally, as few if any features will have a

Markov Blanket of limited size in practice, we sequentially remove features that induces the least

change in state sequence given the change is small enough (< 5%).

Note the sequential removal will not cause divergence of the resulting set [KS96]; and this step

is a filtering step since we do not need to retrain the HHMMs for each FM ∪ f , Viterbi decoding

on only the dimensions of interest would suffice.

6.4 Normalized BIC

Iterating over section 6.2 and section 6.3 results in disjoint small subsets of features {Fi} that are

compact and consistent with each other. The HHMM models {Θi} learned over these subsets are

best-effort fits on the features, yet the {Θi}s may not fit the multi-level Markov assumptions in

section 2.

There are two criteria proposed in prior work [DB00], scatter separability and maximum like-

lihood (ML). Note the former is not suitable to temporal data since multi-dimensional Euclidean

distance does not take into account temporal dependency, and it is non-trivial to define another

proper distance measure for temporal data; while the latter is also known [DB00] to be biased

against higher-dimensional feature sets. We use a normalized BIC criteria(eq. 46) as the alterna-

tive to ML, which trades off normalized data likelihood L̃ with model complexity |Θ|. Note the

former has weighting factor λ in practice; the latter is modulated by the total number of sample

values log(DT ); and L̃ for HHMM is computed in the same forward-backward iterations, except

all the emission probabilities P (X|Q) are replaced with P ′
X,Q = P (X|Q)1/D, i.e. normalized with

respect to data dimension D, under the naive-Bayes assumption that features independent given

the hidden states.

B̃IC = L̃ · λ− 1
2
|Θ| log(DT ) (46)

Initialization and convergence issues exist in the iterative partitioning of the feature pool.

The strategy for producing the random reference set F̃i in step (1) affects the result of feature

partition, as different F̃i may result in different final partitions. If the dimension of F̃i is too low

for example, the resulting structure may not be significant and it tends to result in many small

feature clusters; on the other hand, if F̃i is too large, structures may become too complex, feature

subsets maybe too few, and the the result will be hard to interpret.
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7 Experiments and Results

Two TV soccer video clips taken from mpeg-7 CD are used to test the algorithm, clip Korean is

25 minutes long, 320x240 resolution, 29.97 frames per second; clip Spain is 15 minutes long at

352x288, 25 frames per second.

The evaluation basis for the unsupervised structure algorithm, including learning HHMM pa-

rameters and structure (section 3 and 5) are two semantic events labelled are play and break [XCDS02],

defined according to the rules of soccer game. These two events are dense since they covers the

whole time scale of the video, and distinguishing break from play will be useful for the viewers

since break takes up about 40% of the screen time. Two manually selected features, dominant

color ratio and motion intensity [XCDS02], uniformly sampled from the video stream every 0.1

seconds, are used.

Here we compare the learning accuracy of four different learning schemes against the ground

truth. (1)Supervised HMM [XCDS02]: One HMM per semantic event is trained on manually

segmented chunks; and then the video data with unknown boundary are first chopped into 3-

second segments, where the data likelihood of each segment is evaluated with each of the trained

HMMs; and final segmentation boundary is obtained after a dynamic programming step taking

into account the model likelihoods and the transition likelihoods of the short segments from the

segmented data. (2)Supervised HHMM: Individual HMMs at the bottom level of the hierarchy are

learned separately, essentially using the models trained in (1); across-level and top level transition

statistics are also obtained from segmented data; and then segmentation is obtained by decoding

the Viterbi path from the hierarchical model on the entire video stream. (3)Unsupervised HHMM

without model adaptation: An HHMM is initialized with known size of state-space and random

parameters; the EM algorithm is used to learn the model parameters; and segmentation is obtained

from the Viterbi path of the final model. (4)Unsupervised HHMM with model adaptation: An

HHMM is initialized with arbitrary size of state-space and random parameters; the EM and RJ-

MCMC algorithms are used to learn the size and parameters of the model; state sequence is

obtained from the converged model with optimal size.

For algorithms (1)-(3), the model size is set to the optimal model size that algorithms (4) con-

verges to, i.e. 6-8 bottom-level states per event. For supervised algorithms (1) and (2), K-means

clustering and Gaussian mixture fitting is used to randomly initialize the HMMs; for unsupervised

algorithms(3)(4), inital bottom-level HMMs are obtained with K-means and Gaussian fitting fol-

lowed by a grouping algorithm based on temporal proximity. We run each algorithm for 15 times

with random start, and compute the per-sample accuracy against manual labels. The median and

semi-interquartile range 2 across multiple rounds are listed in table 7.
2Semi-interquartile as a measure of the spread of the data, is defined as half of the distance between the 75th

and 25th percentile, it is more robust to outliers than standard deviation.
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super- model adap- accuracy
no. vised? type tation? median siq 2

(1) Y HMM N 75.5% 1.8%
(2) Y HHMM N 75.0% 2.0%
(3) N HHMM N 75.0% 1.2%
(4) N HHMM Y 75.7% 1.1%

Table 1: Evaluation of learning results against ground truth using learning schemes (1)-(4) on clip Korea

Results showed that the unsupervised learning achieved very close results as the supervised

learning case, this is quite surprising since the unsupervised learning of HHMMs is not tuned to

the particular ground-truth. Yet the reason for this performance match can be attributed to the

carefully selected feature set that well represents the events. Also note the comparison basis using

supervised learning is actually a loose bound since unlike [XCDS02], the HMMs are learning and

evaluated on the same video clip and results reported for (1)(2) are actually training accuracies.

The feature selection algorithm is tested on both Korea and Spain. A nine-dimensional feature

vector sampled at every 0.1 seconds are taken as the initial feature pool, this include: Dominant

Color Ratio (DCR) and Motion Intensity (MI), the least-square estimates of camera translation

(MX, MY), and five audio features - Volume, Spectral roll-off (SR), Low-band energy (LE), High-

band energy (HE), and Zero-crossing rate (ZCR). We run the feature selection + model learning

algorithm on each video stream for five times, with one randomly selected initial reference feature.

After eliminating degenerate cases such as there are only one feature in the resulting set, we look

at the feature-model pair that has the largest Normalized BIC value as described in section 6.4.

For clip Spain, the selected feature set is {DCR, Volume}, there are two high-level states in

the HHMM, each with five lower-level children. Evaluation against the play/break labels showed

74.8% accuracy. For clip Korea, the selected feature set is {DCR, MX}, with three high-level

states and {7, 3, 4} children states respectively. If we assign each of the three clusters the

majority ground-truth label it corresponds to (which would be {play, break, break} respectively),

per-sample accuracy would be 74.5%. This three-cluster results actually matches the previous

results [XCDS03] with fixed two clusters and manually-selected feature set {DCR, MI}, since

the horizontal camera panning contribute to a majority of the whole motion intensity in soccer

video, especially when the camera is tracking the ball movement in wide angle. The accuracies

are comparable to their previous counterparts [XCDS03] without varying the cluster order or the

feature set (75%). Yet the small discrepancy may due to:(1) Variability in EM, or the algorithm

is yet to converge when maximum iteration is reached; (2)Possible inherent bias may still exist in

equation 37 although we are using the same λ value for both algorithms.

20



8 Conclusion

In this paper we proposed algorithms for unsupervised discovery of structure from video sequences.

We model the class of dense, stochastic structures in video using hierarchical hidden Markov

models, the models parameters and model structure are learning using EM and Monte Carlo

sampling techniques, and informative feature subsets are automatically selected from a large

feature pool. When evaluated on a TV soccer clip against manually labelled ground truth, we

achieved comparable results as supervised learning counterpart. Many open issues in stochastic

structure discovery using HHMM remains, however: we would like to see the fitness of this model

applied to other video domains; and it is very desirable to model sparse events within the current

framework as well.
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