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Computable Scenes and Structures in Films
Hari Sundaram and Shih-Fu Chang

Abstract—In this paper, we present a computational scene model
and also derive novel algorithms for computing audio and visual
scenes and within-scene structures in films. We use constraints de-
rived from film-making rules and from experimental results in the
psychology of audition, in our computational scene model. Central
to the computational model is the notion of a causal, finite-memory
viewer model. We segment the audio and video data separately. In
each case, we determine the degree of correlation of the most re-
cent data in the memory with the past. The audio and video scene
boundaries are determined using local maxima and minima, re-
spectively. We derive four types of computable scenes that arise
due to different kinds of audio and video scene boundary synchro-
nizations. We show how to exploit the local topology of an image
sequence in conjunction with statistical tests, to determine dialogs.
We also derive a simple algorithm to detect silences in audio.

An important feature of our work is to introduce semantic con-
straints based on structure and silence in our computational model.
This results in computable scenes that are more consistent with
human observations. The algorithms were tested on a difficult data
set: three commercial films. We take the first hour of data from
each of the three films. The best results: computational scene de-
tection: 94%; dialogue detection: 91%; and recall 100% precision.

Index Terms—Computable scenes, film-making production
rules, joint audio-visual segmentation, structure discovery.

I. INTRODUCTION

T HIS paper deals with the problem of computing scenes
within films by fusing information from audio and visual

boundary detectors and visual structure. We also derive algo-
rithms for detecting visual structures in the film. The problem
is important for several reasons.

1) Automatic scene segmentation is the first step toward
greater semantic understanding of the film.

2) Breaking up the film into scenes will help in creating film
summaries, thus enabling a nonlinear navigation of the
film.

3) In recent work, we have used these computable scenes in
conjunction with the idea of visual complexity for gener-
ating visual skims [19].

There has been prior work on video scene segmentation using
image data alone [7], [22]. In [22], the authors derive scene tran-
sition graphs to determine scene boundaries. However, cluster
thresholds are difficult to set and must be manually tuned. In
[7], the authors use a infinite, noncausal memory model to seg-
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ment the video. We refine this idea of memory in our current
work, but in a finite, causal setting. Prior work [11], [13], [16]
concerning the problem of audio segmentation dealt with very
short-term (100 ms) changes in a few features (e.g., energy, cep-
stra). This was done to classify the audio data into several prede-
fined classes such as speech, music ambient sounds, etc. They
do not examine the possibility of using the long-term consis-
tency found in the audio data for segmentation. We shall discuss
[5] and [6] in our section on experimental results.

There has been prior work on structure detection [22], [23].
Here, the authors begin with time-constrained clusters of shots
and assign labels to each shot. Then, by analyzing the label se-
quence, they determine the presence of dialogue. This method
critically depends upon cluster threshold parameters that need
to be manually tuned.

In this paper, we develop notions of video and audio
computable scenes (v-scenes and a-scenes) by making use of
constraints stemming from rules governing camera placement,
lighting continuity, as well as due to the psychology of audition.
First, we refine the memory model found in [7], to cover both
audio and video data. Second, we make our memory model
causal and finite. In order to segment the data into audio
scenes, we compute correlations amongst the audio features
in the attention-span with the data in the rest of the memory.
The video data comprises shot key-frames. The key-frames
in the attention span are compared to the rest of the data in
the memory to determine a coherence value. This value is
derived from a color-histogram dissimilarity. The comparison
takes also into account the relative shot length and the time
separation between the two shots. We detect local maxima and
minima, respectively, to determine scene change points.

We derive four types of computable scenes (c-scenes) that
arise from different forms of synchronizations between a-scene
and v-scene boundaries. We term these scenescomputable,
since they can be reliably computed using low-level features
alone. In this paper, we do not deal with thesemanticsof a
scene. Instead, we focus on the idea of determining a com-
putable scene, which we believe is the first step in deciphering
the semantics of a scene.

We introduce a topological framework that examines the
local metric relationships between images for structure de-
tection. Since structures (e.g., dialogs) are independent of the
duration of the shots, we can detect them independent of the
v-scene detection framework. A key feature of our work is the
idea of imposing semantic constraints based structural grouping
and silence, on our computable scene model. This makes the
segmentation result more consistent with human perception.
Finally, we merge the results from segmentation, structure
analysis and silence to come up with a list of c-scenes. Our
results indicate that our approach performs well.
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The rest of this paper is organized as follows. In Section II, we
formalize the definition of a computable scene. In Section III,
we present our memory model. In Section IV, we discuss tech-
niques to determine video scene boundaries. In Section V, we
discuss our topological framework for determining visual struc-
ture, while in Section VI, we discuss audio scene boundary de-
tection. In Section VII, we discuss our technique to merge infor-
mation from audio, video scene boundaries, structure detection
and silences. In Section VIII and IX we present our experimental
results and a discussion on possible model breakdowns. Finally,
in Section X, we summarize our contribution and present our
conclusions.

II. WHAT IS A COMPUTABLE SCENE?

In this section, we shall define the notion of a computable
scene. We begin with a few insights obtained from under-
standing the process of film-making and from the psychology
of audition. We shall use these insights in creating our compu-
tational model of the scene.

A. Insights From Film Making Techniques

The line of interest is an imaginary line drawn by the director
in the physical setting of a scene [14]. During the filming of
the scene, all the cameras are placed on one side of this line
(also referred to as the 180rule). This is because we desire
successive shots to maintain the spatial arrangements between
the characters and other objects in the location. The 180rule
has interesting implications on the computational model of the
scene. Since all the cameras in the scene remain on the same
side of the line in all the shots, there is an overlap in the field
of view of the cameras (see Fig. 1). This implies that there will
be a consistency to the chromatic composition and the lighting
in all the shots. Film-makers also seek to maintain continuity in
lighting amongst shots within the same physical location. This
is done even when the shots are filmed over several days. This
is because viewers perceive the change in lighting as indicative
of the passage of time. For example, if two characters are shown
talking in one shot, in daylight, the next shot cannot show them
talking at the same location, at night.

B. The Psychology of Audition

The termauditory scene analysiswas coined by Bregman in
his seminal work on auditory organization [1]. In his psycho-
logical experiments on the process of audition, Bregman made
many interesting observations, a few of which are reproduced
as follows.

1) Related sounds seldom begin and end at the same time.
2) A sequence of sounds from the same source seem to

change its properties smoothly and gradually over a
period of time.

3) Changes that take place in an acoustic event will affect all
components of the resulting sound in the same way and
at the same time.

Bregman also noted that different auditory cues (i.e., har-
monicity, common-onset, etc.) compete for the user’s attention
and depending upon the context and the knowledge of the

Fig. 1. Showing the line of interest (thick dashed line) in a scene. We also see
the fields-of-view of the two cameras intersecting.

user, will result in different perceptions. Different computa-
tional models (e.g., [3]) have emerged in response to those
experimental observations. While these models differ in their
implementations and differ considerably in the physiological
cues used, they focus on short-term grouping strategies of
sound.

C. The Computable Scene Model

The constraints imposed by production rules in film and the
psychological process of hearing lead us to the following def-
inition of audio and video scenes. A video scene is a contin-
uous segment of visual data that showslong-termconsistency
with respect to two properties: 1) chromaticity and 2) lighting
conditions, while an audio scene exhibits a long terms consis-
tency with respect to ambient sound. We denote them to becom-
putablesince these properties can be reliably and automatically
determined using low-level features present in the audio-visual
data. The a-scene and the v-scenes represent elementary, homo-
geneous chunks of information. We define a computable scene
(abbreviated as c-scene) in terms of the relationships between
a-scene and v-scene boundaries. It is defined to be a segment be-
tween two consecutive, synchronized audio visual scenes. This
results in four cases of interest (see Table I). In this table, solid
circles indicate audio scene boundaries, while triangles indicate
video scene boundaries.

We validated the computable scene definition, which ap-
peared out of intuitive considerations, with actual film data. The
data were from three one-hour segments from three English
language films. The definition for a scene works very well in
many film segments. In most cases, the c-scenes are usually a
collection of shots that are filmed in the same location and time
and under similar lighting conditions (these are the P scenes
and Ac-V scenes).

The A-Vc (consistent audio, visuals change) scenes seem to
occur under two circumstances. In the first case, the camera
placement rules discussed in Section II-A are violated. These are
montage sequences and are characterized by widely different vi-
suals (differences in location, time of creation as well as lighting
conditions) which create a unity of theme by manner in which
they have been juxtaposed (e.g., Mtv videos). The second case
consists of a sequence of v-scenes that individually obey the
camera placement rules (and hence each have consistent chro-
maticity and lighting). We refer to the second class as tran-
sient scenes. Typically, transient scenes can occur when the di-
rector wants to show the passage of tim, e.g., a scene showing a
journey, characterized by consistent audio track.
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TABLE I
FOUR TYPES OF C-SCENESTHAT EXIST BETWEEN CONSECUTIVE,

SYNCHRONIZED AUDIO-VISUAL CHANGES

Mixed mode (MM) scenes far less frequent, and can for
example occur, when the director continues an audio theme
well into the next v-scene, in order to establish a particular
semantic feeling (joy/sadness etc.). A c-scene type break-up
of the first hour of the film (there were 642 shots)Sense and
Sensibilityreveals the following statistics—Pure: 65%, Ac-V:
21%, A-Vc:10%, and MM: 4%. The statistics from the other
films are similar.

III. T HE MEMORY MODEL

In order to segment data into scenes, we use a causal, first-in-
first-out (FIFO) model of memory (see Fig. 2). This model is
derived in part from the idea of coherence [7]. In our model of a
listener, two parameters are of interest:1) memory (this is the net
amount of information ( ) with the viewer) and 2) attention
span (this is the most recent data () in the memory of the
listener [typical values for the parameters are s and

s]). This data is used by the listener to compare against
the contents of the memory in order to decide if a scene change
has occurred.

The work in [7] dealt with a noncausal, infinite memory
model based on psychophysical principles, for video scene
change detection. We use the same psychophysical principles
to come up with a causal and finite memory model that will
more faithfully mimic the human memory-model. This is done
for bothaudio and video scene change detection.

IV. DETERMINING VIDEO SCENE BOUNDARIES

In this section, we shall describe the algorithm for v-scene
boundary detection. The algorithm is based on notions ofre-
call andcoherence. We model the v-scene as a contiguous seg-
ment of visual data that is chromatically coherent and also pos-
sesses similar lighting conditions. A v-scene boundary is said
to occur when there is a change in the long-term chromaticity
and lighting properties in the video. This stems from the film-
making constraints discussed in Section II-A. The video stream

Fig. 2. Attention span Tasis the most recent data in the memory. The memory
(Tm) is the size of the entire buffer.

is converted into a sequence of shots using a sophisticated color
and motion based shot boundary detection algorithm [9], that
produces segments that have predictable motion and consistent
chromaticity. A frame at a fixed time after the shot boundary is
denoted to be the key-frame.

A. Recall

In our visual memory model, the data is in the form of key-
frames of shots and each shot occupies a definite span of time.
The model also allows for the most recent and the oldest shots to
be partially present in the buffer. A point in time () is defined
to be a scene transition boundary if the shots that come after
that point in time, do not recall [7] the shots prior to that point.
The idea of recall between two shotsand is formalized as
follows:

(1)

where
recall between the two shots ;

color-histogram based distance between the key-
frames corresponding to the two shots;
ratio of the length of shotto the memory size ( );
time difference between the two shots.

The distance function , is computed as follows. First,
we use 232 bin histogram in the HSV space (h:18, s:4, v:3, and
16 gray levels). The use of the HSV space accomplishes two
things.

1) Perceptually close colors are close in this space.
2) The lighting changes are now easily detected (via changes

in value).

The metric is the normalized color histogram difference.
The formula for recall indicates that recall is proportional to

the length of each of the shots. This is intuitive since if a shot
is in memory for a long period of time it will be recalled more
easily. Again, the recall between the two shots should decrease
if they are further apart in time. Note that the termrecall is dif-
ferent from the one used in information retrieval (precision/re-
call).

We need to introduce the notion of a “shot-let.” A shot-let
is a fraction of a shot, obtained by breaking individual shots
into s long chunks but could be smaller due to shot boundary
conditions. Each shot-let is associated with a single shot and
its representative frame is the key-frame corresponding to the
shot. In our experiments, we find that s works well. The
formula for recall for shot-lets is identical to that for shots.
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B. Computing Coherence

Coherence is easily defined using the definition of recall

(2)

where is the coherence across the boundary atand is
just the sum of recall values between all pairs of shot-lets across
the boundary at . is obtained by setting
in the formula for recall (1) and re-evaluating the numerator of
(2). This normalization compensates for the different number of
shots in the buffer at different instants of time. Note that shot-lets
essentially fine-sample the coherence function while preserving
shot boundaries.

C. Detecting Coherence Minima

We detect the local coherence minima to determine if a
v-scene boundary exists. To this end, we need to define two
windows and . is a window of size points
and is a smaller window centered in of size . A
typical value of is 4. To determine if a minima exists, we
first check if a minimum exists within . If it does, we then
need to impose conditions on this minima with respect to the
coherence values in the larger window before we deem it
to be a v-scene boundary.

First, we need to define three parameters relating to coherence
values in . , : they are, respectively, the difference between
the maxima in the left and right half coherence windows and
the minima value. : this is the difference between the minima
and the global minima in . Then, on the basis of these three
values, we classify the minima into three categories (see Fig. 3):

Strong:
;

Normal:
;

Weak: .
The values above were determined using a 500 s training set

obtained from the filmSense and Sensibility. The two window
technique helps us detect the weak minima cases. The strong
case is good indicator a v-scene boundary between two highly
chromatically dissimilar scenes. The weak case becomes im-
portant when we have a transition from a chromatically consis-
tent scene to a scene which is not as consistent. These are the

, or (and vice-versa) type
scene transitions (see Table I).

D. Comparing Shot and v-Scene Detection

Now, we briefly comment on the differences between the
shot detection algorithm and the v-scene detection algorithm.
The shot detection algorithm [9] operates on the MPEG-1 com-
pressed stream. It uses the following features — average color
and variance, motion statistics (ratio of intra coded blocks to
motion predicted blocks, ratio of number of forward to back-
ward motion vectors). The detection is done over two short win-
dows (0.2 s and 2 s) with a decision tree to come up with a ro-
bust algorithm. The performance is excellent over a wide range

Fig. 3. Showing the (a) normal, (b) strong, and (c) weak coherence minima
cases. Thex-axis show time, while they-axis indicates coherence.

of datasets (precision 91% and recall 95%). We now highlight
the key differences.

The shot detection algorithm comparestwo frames and picks
the local minima over a small window (typically s) to
detect shots. However, the consistency of scene is a long-term
( 30 s)groupproperty, and is better determined by using the
mutual information between two video segments (approximated
by two groups of key-frames of shots).

The distance function for the v-scene detection takes into ac-
count the distance between the color-histogram two shots, the
duration of each shot, and their temporal separation. There is no
temporal weighting in the shot detection algorithm. In the next
section, we discuss techniques for structure discovery.

V. COMPUTING VISUAL STRUCTURE

In this section, we shall give an overview of some of the pos-
sible structures that exist in video sequences, an abstract repre-
sentational technique and an algorithm for computing dialogs.
The analysis that follows assumes that the video data has been
segmented into shots and that each shot is represented by a
single key-frame.

Structures (e.g., dialogs) contain important semantic infor-
mation, and also provide complimentary information necessary
to resolve v-scene boundaries. For example, in a dialog that
contains very long shots (e.g., 25 s each) showing very dif-
ferent backgrounds, the algorithm in Section IV-B will generate
v-scene boundaries after each shot. Computationally, this situa-
tion is no different from two long shots from completely chro-
matically different (but adjacent) v-scenes. Human beings easily
resolve this problem by not only inferring the semantics from
the dialogue, but also by recognizing the dialog structure and
grouping the shots contained in it into one semantic unit.

A. The Topology of Shots

Structures in video shot sequences, have an important
property that the structure is independent of the individual shot
lengths. It is the topology (i.e., the metric relationships between
shots, independent of the duration of the shots) of the shots that
uniquely characterizes the structure.

B. The Topological Graph

Let be the metric space induced by the set of all
images in the video sequence by the distance function. The
topological graph of a sequence of images,
is a fully connected graph, with the images at the vertices and
where the edges specify the metric relationship between the im-
ages. The graph has associated with it, the topological matrix

, which is the by matrix where contains
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Fig. 4. Dialogue scene and its corresponding periodic analysis transform. Note
the distinct peaks atn = 2; 4 . . ..

the value of the edge connecting nodeto node in the graph.
The idea of the topological graph is distinct from the scene tran-
sition graph [22], [23]. There, the authors cluster shots, and ex-
amine relationships between these clusters to determine scene
change points as well as dialogs. Here, we are strictly interested
in the topological property of a sequence of images and not in
determining scene transitions.

C. Detecting Dialogs

A six image length dialog A-B-A-B-A-B, is completely
specified with the following idealized topological relationship:

. A dialog has a specific local topological prop-
erty: every second frame is alike while adjacent frames differ
(Fig. 4). In the idealized topological matrix for the dialog,
this appears as the 1st off-diagonal being all ones, the second
off-diagonal being all zeros and the third off-diagonal being all
ones. Hence we need to define a periodic analysis transform
to estimate existence of this pattern in a sequence ofshot
key-frames. Let where be a time-ordered
sequence of images. Then

(3)

where
the transform;

color-histogram based distance function;
usual modulus function.

The modulus function simply creates a periodic extension of
the original input sequence. We shall use two statistical tests:
the students t-test for the means and the F-test for the variances.
These tests are used to compare two series of numbers and de-
termine if the two means and the variance differ significantly.

Detecting Dialogues:We can easily detect dialogues using
the periodic analysis transform. Let us assume that we have a
time-ordered sequence of key-frames representing different
shots in a scene. Then, we do the following.

1) Compute the series (see Fig. 4).
2) Check if and .
3) A dialogue is postulated to exist if one of two conditions

in Step 2 is at least significant at and the other

one is at least significant at . Note that for
each is the mean of numbers. We use the student’s
t-test to reject the null hypothesis that the two means are
equal.

The Sliding Window Algorithm:We use a sliding window al-
gorithm to detect the presence of a dialogs in the entire shot se-
quence for the video. Dialogs in films have an interesting rule
associated with them: showing a meaningful conversation be-
tween people requires at least 3shots [12]. Hence in a di-
alogue that shows two participants, this implies that we must
have a minimum of six shots. As a consequence, we analyze six
frames at a time starting with the first shot key-frame. The al-
gorithm is as follows.

1. Run the dialogue detector on the current window.

2. If no dialogue is detected, keep shifting the

window to the right by one key-frame to the im-

mediate right until either a dialogue has been

detected or we have reached the end of the video

sequence.

3. If a dialogue has been detected, keep shifting

the starting point of the window by two key-frames,

until we no longer have a statistically signifi-

cant dialog or if we reached the end of the video

sequence.

4. Merge all the overlapping dialog sequences just

detected.

5. Move the starting point of the window to be the

first frame after the last frame of the last suc-

cessful dialog.

The sliding window algorithm can sometimes “overshoot”
and “undershoot.” i.e., it can include a frame before (or after) as
being part of the dialog. These errors are eliminated by simply
checking if the local dialog topological property holds at the
boundaries. If not, we simply drop those frames. This results in
an algorithm that generates statistically significant dialogs, with
precise begin and end locations.

VI. DETERMINING AUDIO SCENES

In this section, we present a brief description (due to space
constraints) of our computable audio scene boundary detection
framework. Earlier work is to be found in [17] and [18], with a
detailed analysis and new results in [20]. We model the scene
as a collection of sound sources. We further assume that the
scene isdominatedby a few of these sources. These dominant
sources are assumed to possess stationary properties that can be
characterized using a few features. A scene change is said to
occur when the majority of the dominant sources in the sound
change.

We model the audio data using three types of features: 1)
scalar sequences; 2) vector sequences; and 3) single points. Fea-
tures ([11], [15], [17], [23]) are extracted per section of the
memory, and each section is s long (the length of the at-
tention span). We use six scalar features: 1) zero-crossing rate;
2) spectral flux; 3) cepstral flux; 4) energy; 5) energy variance;
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and 6) the low-energy fraction. We determine three vector fea-
tures: 1) cepstral vectors; 2) multichannel cochlear decomposi-
tion; and 3) mel-frequency cepstral coefficients. We also com-
pute two point features: 1) spectral roll off point and 2) variance
of the zero crossing rate. The point features are called so because
just one value is obtained for the duration of the entire attention
span. All other features (except for the low-energy fraction and
the energy variance, which are computed per second), are ob-
tained per 100 msframeof the attention span. The cochlear de-
composition was used because it was based on a psychophysical
ear model. The cepstral features are known to be good discrim-
inators. All the other features were used for their ability to dis-
tinguish between speech and music [11], [15], [23]. The scalar
sequence of feature values are modeled to consist of three parts:
1) a trend (in order to incorporate Bregman’s constraints); 2) a
set of periodic components; and 3) noise.

A. Determining Correlations

We determine correlations of the feature values stored in the
attention, with the data in the rest of the memory, to determine
if a scene change point has occurred at. At the end of this pro-
cedure, we have a sequence of distance values for each feature,
at discrete time intervals of i.e., at , where
is an integer. If a scene change was located at, to the imme-
diate left of the attention span we would intuitively expect the
distance values to increase rapidly as the data ought to be dis-
similar across scenes. We then compute, the rate ofincrease
of the distance at time . The local maxima of the distance
increase rate estimate , represents the scene change location
point as estimated by that feature. Finally, we use a voting pro-
cedure amongst the features, to determine scene change location
points.

B. Determining Silences

Silences become particularly useful in detecting c-scene
boundaries where v-scene boundary occurs in a relatively
silent section. There are two forms of silence in speech [15]:
1) within phrase silences and 2) between phrase silences. The
within phrase silences are due to weak unvoiced sounds like /f/
or /th/ or weak voiced sounds such as /v/ or /m/. However, such
silences are short usually ms long. In [15], the author
uses a two class classifier using Gaussian models for each
pause class, to come up with a threshold of 165 ms. However,
others have used a threshold of 647 ms [4], for distinguishing
significant pauses. In our experiments, we detect silences
greater than 500 ms duration [20].

C. Determining Weak a-Scene Boundaries

We now define the notion of a weak a-scene boundary. This
is useful when determining the rules for c-scene detection. A
weak a-scene boundary has a significant amount of silence at
the boundary. We make further distinctions based on the amount
of silence present.

Compute the fraction of silence in a symmetric window
(2 s long) around the a-scene boundary. Let and
be the left and right silence fractions. i.e., the amount of silence

in the left and right windows. Using the computed values of
and , we make the following distinctions:

Pure Silence : ;
Silent : ;
Conversation :

This is just a test of significant silence in speech (see Sec-
tion VI-B).

VII. I NTEGRATING AUDIO, SILENCE, VIDEO, AND STRUCTURE

In this section, we discuss our algorithm to integrate
information from the a-scene, v-scene boundary detection
algorithms with the results of the structure and silence detec-
tion algorithms. The computational scene model in Table I,
can generate c-scenes that run counter to grouping rules that
human beings routinely use. Hence, the use of silence and
structure detection imposes additional semantic constraints on
the c-scene boundary detection algorithm.

A. Detecting c-Scene Boundaries

There are three principal rules for detecting c-scenes.

1) We detect a c-scene boundary (c-scene-b) whenever we
can associate a v-scene boundary (v-scene-b) with an
a-scene boundary (a-scene-b) that lies within a window
of s

2) We declare a c-scene-b to be present when normal
v-scene-b’s (see Section IV-C) intersect silent regions.

3) We always associate a c-scene boundary with strong
v-scene boundary locations.

The first rule is the synchronization rule for detecting
c-scenes. The window is necessary as film directors delib-
erately do not exactly align a-scene and v-scene boundaries; at
a perceptual level, this causes a smoother transition between
scenes. There are some exceptions to this rule, which we dis-
cuss later in the section. The second rule is important as many
transitions between c-scenes are silent (e.g., the first scene ends
in silence and then the second scene shows conversation, which
also begins with silence). In such cases, audio scene boundaries
may not exist within s of the v-scene.

The third rule becomes necessary when there is no detectable
a-scene boundary within s of a strong v-scene boundary.
Strong v-scene boundaries occur as transitions between two
v-scenes that are long in duration, and which differ greatly
in chromatic composition. The notation used in the figures
in this section: silence: gray box, structure: patterned box,
solid dot: a-scene boundary, equilateral triangle: v-scene, solid
right-angled triangle: weak v-scene. Now, we detail the steps
in the algorithm.

Step 1: Remove v-scene or a-scene changes or silence

within structured sequences (i.e., within dialogs

and regular anchors) ( Fig. 5 ). This is intuitive

since human beings recognize and group structured

sequences into one semantic unit.

Step 2: Place c-scene boundaries at strong (see Sec-

tion IV-C ) v-scene boundaries. Remove all strong

v-scenes from the list of v-scenes.
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Fig. 5. Remove a-scenes, v-scenes, and detected silence, when present in
structured sequences.

Fig. 6. Tight synchronization between weak v-scenes and nonweak a-scenes.

Step 3: If an a-scene lies within W s of a

v-scene-b, place a c-scene boundary at the

v-scene-b location. However, there are three

exceptions:

1. Do not associate a weak v-scene-b with a weak

a-scene-b.

2. If the v-scene-b is weak, it must synchronize

with a nonweak a-scene-b that is within W =2 s

i.e., we have tighter synchronization requirements

for weak v-scene-b’s (see Fig. 6 ).

3. Do not associate a normal v-scene-b with a weak

a-scene-b marked as silent (see Section VI-C ).

Step 4: Nonweak (see Section IV-C ) v-scene bound-

aries (i.e., normal boundaries. Note that strong

boundaries would have already been handled in Step

2) that intersect silent regions are labeled as

c-scene boundaries. To determine whether a v-scene

boundary intersects silence, we do the following

� Compute the fraction of silence in a symmetric

window (2 W s long) around the v-scene boundary.

Let L and R be the left and right silence frac-

tions. i.e., the amount of data in the left and

right windows that constitute silence.

� Then, declare a c-scene boundary if: L > 0:8 _

R > 0:8.

Now, we have a list of c-scenes, as well as lists of singleton
video and audio scene boundaries. The c-scenes are then post-
processed to check if additional structure is present.

B. Post-Processing c-Scenes

Once we have detected all the c-scenes, we use a conserva-
tive post-processing rule to eliminate false alarms. An irregular
anchor shot in a semantic scene is a shot that the director comes
back to repeatedly, but not in a regular pattern, within the dura-
tion of the semantic scene. This is known in film-making, as the
“familiar-image” [12]. We check if an anchor is present across
adjacent scenes and merge them, if present. We make this rule
transitive: i.e., if we have three c-scenes A, B, C, in succession,
and if A and B have share a regular anchor and B and C share a
(possibly different) irregular anchor, then c-scenes A, B and C
are merged into one c-scene.

VIII. E XPERIMENTAL RESULTS

In this section, we shall discuss the experimental results of
our algorithms. The data used to test our algorithms is complex:

TABLE II
GROUND TRUTH DATA

TABLE III
C-SCENE DETECTORRESULTS

we have three 1-h segments from three diverse films in English:
1) Sense and Sensibility; 2) Pulp Fiction; and 3)Four Weddings
and a Funeral. In the tables that follow, we have abbreviated
the films assense, pulp,andfour, respectively. We begin with a
section that explains how the labeling of the ground truth data
was done (see Table II). It is followed by sections on c-scene
boundary detection and structure detection.

A. Labeling the Ground Truth

The audio and the video data were labeled separately (i.e.,
label audio without watching the video and label video without
hearing the audio). This was because when we useboth the
audio and the video (i.e., normal viewing of the film) we tend
to label scene boundaries based on the semantics of the scene.
Only one person (the first author) labeled the data. Due to space
constraints, we summarize our labeling procedure.

We attempt to label the audio and video data into coherent
segments. From empirical observations of film data, it became
apparent that for a group of shots to establish an independent
context, it must last at least 8 s Hence, all the v-scenes that we
label must last more than 8 s We also set the minimum duration
of an a-scene to be 8 s Then, the labeling criteria were as follows:

a) Do not mark v-scene boundaries in the middle of dialogs
or regular anchors, instead mark structure detection points
at the beginning and end of the dialogs/regular anchors.

b) When encountering montage sequences (see Sec-
tion II-C), only label the beginning and end of the
montage sequence.

c) When encountering silences greater than 8 s label the be-
ginning and ends of the silence.

d) When encountering speech in the presence of music, label
the beginning and the end of the music segment.

e) Do not mark speaker changes.
Table III shows the data obtained from labeling the audio and

the video data separately — audio scenes (A-s) and video scenes
(V-s). The c-scenes are broken up into constituent units: P-pure,
Ac-V (audio changes, visuals consistent), A-Vc: audio consis-
tent, visuals change, and MM: mixed mode. Note that an a-scene
and v-scene are denoted to be synchronous if they less than 5 s
apart.
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TABLE IV
V-SCENE DETECTORRESULTS FOR THETHREE FILMS

B. Scene Change Detector Results

In this section, we discuss the scene change detector results.
First, we discuss the parameters that we need to set. The memory
and attention span sizes for the audio and video scene detection
algorithm, and the synchronization parameter , which we
set to 5 sec (i.e., c-scene boundary is marked when the audio
and video scenes are within 5 s of each other). For detecting
video coherence, video we set the attention span to be 8 s (in
accordance with our labeling rule) and the size of the memory
is set to 24 s In general, increasing the memory size reduces
false alarms, but increases misses.

In evaluating our results, we shall compare against c-scenes
against the total number of shots in the film, since they are
all candidate c-scene change points. Second, it is important to
note that we are dealing with an asymmetric two-class problem
(scene change vs. nonscene change) where the number of
ground truth scene change locations is typically less than 10%
of the total number of shots.

We now present results for c-scene and v-scene detection in
Tables III and IV. These results are for the entire duration of
the film (each film is one hour long) and for all types of transi-
tions. We us the following notation: H: hits; M: misses; FA: false
alarms; CR: correct rejection; shots: the number of shots de-
tected by the shot detection algorithm; NCL: non-scene change
locations (this is just the number of shots less the number of
ground truth scene change locations); P: precision (i.e., hits/(hits
+ falsealarms); and R: recall (i.e., hits/(hits + misses).

The result shows that the c-scene and the v-scene detectors
work well. The recall for c-scene detectors varies between

while the precision varies between . The recall
for the v-scene detector varies between while the pre-
cision varies between . Note that the correct rejection
is excellent — around 95% across all cases. We now discuss two
aspects relevant to our results —sources of error, and the rele-
vance of the low precision.

Shot Detector Errors:Misses in the video shot boundary de-
tection algorithm cause the wrong key-frame to be present in the
buffer, thus causing an error in the minima location

Labeling Uncertainty: Labeling the audio data is time con-
suming and often there is genuine uncertainty about the a-scene
change location. This can happen for example, when we have
a long sequence of low amplitude sounds (e.g., background
sounds, soft footsteps) that changes into silence. Thus, this can
translate to c-scene misses. This uncertainty may be mitigated
to a certain extent by using additional labelers, but is difficult
to eliminate altogether.

Low Precision: It is clear that our algorithm apparently over-
segments the data. However, a detailed look at the false alarms
indicates that these scenes are correct from a computational
standpoint (i.e., satisfied the requirements for a change), but

TABLE V
THE DIALOGUE DETECTORRESULTS

were wrong semantically (e.g., a conversation shot against a
wall, that continues against a backdrop of a large window that
has sun shining through). This seems to imply that even though
we had signal-level guidelines for labeling the ground truth, the
labeler ended up labeling the data on a semantic level. One of the
goals of our work is to generate video summaries by condensing
computable scenes [19]. There we compress each computable
scene via an analysis of the visual complexity of the shots and by
using film syntax. In such tasks, “over-segmentation” resulting
in c-scenes that are reasonable from a computational standpoint
do not affect the results; there, misses in c-scenes are more prob-
lematic.

C. Structure Detection Results

In this section, we present our structure detection results. The
statistical tests that are central to the dialogue detection algo-
rithm make it almost parameter free. These test are used at the
standard levels of significance ( ). The sliding window
size (six frames). The results of the dialog detector (Table V)
show that it performs very well. The best result is a precision of
1.00 and recall of 0.91 for the filmSense and Sensibility. The
misses are primarily due to misses by the shot-detection algo-
rithm. Missed key-frames will cause a periodic sequence to ap-
pear less structured.

D. Comparison With Related Work

We now briefly compare our results with prior work. Note
that the these algorithms use different datasets, and also have
different objectives in mind. Hence direct performance compar-
isons are difficult.

Scene Detection:There has been some prior work on joint
audio-visual segmentation [6]. In [6], the authors, denote a scene
change point to occur at a frame, which exhibits:1) a shot cut;
2) an audio change; and 3) a high-motion change. However,
these are short term phenomena, and the they do not investi-
gate long term correlations in either audio or video data, or the
relationship of these detectors to the presence of structure (e.g.,
dialogs). Also, by focusing on synchronous audio visual events,
they overlook the possibility of having single, unsynchronized,
but semantically important audio or visual events.

There has been some prior work that analyzed film data [5],
[10]. In [5], the authors use visual features alone to determine a
logical story unit (LSU): a collection of temporally interrelated
events. The LSU is detected using a single link clustering algo-
rithm (via subblock matching across key-frames) with cluster
thresholds that change with the content of the cluster. This is
done on the shots while ignoring the duration. However, impor-
tantly, the duration of a scene can vary greatly with directorial
style and semantics. In [10], the authors aim at automating the
process of creating (using visual features) video abstracts, given
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a time budget, not segmentation. Neither of these works at-
tempts to incorporate film-making constraints on the minimum
number of shots in a scene, dialogs, or examines the inter-rela-
tionships between audio and video scene boundaries.

Dialog Detection: There has been prior work [22], [23] to
determine dialogs in video sequences. The results there are also
good, however, they need to set cluster threshold parameters.
In contrast, our algorithm is almost parameter free. The main
contribution of our work is to present an abstract conceptual
framework in terms of the topological graph — this framework
is easily extended for systematically detecting arbitrary struc-
tures using robust statistical methods.

IX. DISCUSSING C-SCENEDETECTORBREAKDOWNS

In this section, we shall discuss three situations that arise in
different film-making situations. In each instance, the 180rule
is adhered to and yet our assumption of chromatic consistency
across shots is no longer valid.

Sudden Change of Scale:A sudden change of scale accom-
panied by a change in audio cannot be accounted for in our algo-
rithm. This can happen in the following case: a long shot1 shows
two people with low amplitude ambient sound; then, there is a
sudden close up of one person as he starts to speak. Detecting
these breaks, requires understanding the semantics of the scene.

Widely Differing Backgrounds:This can happen in two cir-
cumstances: 1) a right-angled camera pan and 2) a set up in-
volving two cameras. In the first case, the coherence model
will show a false alarm for v-scene, and if accompanied by an
a-scene change, this will be labeled as a c-scene break. In the
second case, we have two opposing cameras having no overlap
in their field-of-view causing an apparent change in the back-
ground. This can happen for example, when the film shows one
character inside the house, talking through a widow to another
character who is standing outside.

Change of Axis:The axis of action (i.e., the line of interest )
can change in several ways. Let us assume that we have a scene
which shows a couple engaged in conversation. The director can
change the axis of action within a scene [1] by 1) moving the one
of two people across the room or 2) by using a circular tracking
shot around the couple, thereby establishing a new axis in both
cases. The motion continuity alerts the viewer about this change.

These situations are problematic (incorrect boundary place-
ment) only when they take place over long time scales (i.e.,
camera pans and stays there); Short term changes will be han-
dled by our algorithm. Also, if these changes exhibit structure,
(i.e., in a dialog or in a regular anchor), these false alarms will
be eliminated. One way to overcome the slow-pan situation is
to incorporate motion information into our decision framework.
Motion continuity will be of help in detecting the change of axis
scenario. Clearly, our computational model makes simplifying
assumptions concerning the chromatic consistency of a v-scene,
even when film-makers adhere to the 180rule.

X. CONCLUSION

We now summarize the work presented in this paper. We have
presented a computational scene model for films. We show the

1The size (long/medium/close-up/extreme close-up) refers to the size of the
objects in the scene relative to the size of the image.

existence of four different types of computable scenes, that arise
due to different synchronizations between audio and video scene
boundaries. The computational framework for audio and video
scenes was derived from camera placement rules in film-making
and from experimental observations on the psychology of audi-
tion. A v-scene exhibits long-term consistency with regard to
lighting conditions and chromaticity of the scene. The a-scene
shows long term consistency with respect to the ambient audio.
We believe that the computable scene formulation is the first
step toward deciphering the semantics of a semantic scene.

We showed how a causal, finite memory model formed the
basis of our audio and video scene segmentation algorithm. In
order to determine audio scene segments we determine correla-
tions of the feature data in the attention span, with the rest of the
memory. The maxima of the rate of increase of the correlation
is used to determine scene change points. We use ideas of recall
and coherence in our video segmentation algorithm. The algo-
rithm works by determining the coherence amongst the shot-lets
in the memory. A local minima criterion determines the scene
change points.

We derived a periodic analysis transform based on the topo-
logical properties of the dialog to determine the periodic struc-
ture within a scene. We showed how one can use the student’s
t-test to detect the presence of statistically significant dialogues.
We also showed how to determine silences in audio.

We derived semantic constraints on the computable scene
model, and showed how to use the silence and structure informa-
tion along with audio and video scene boundaries to resolve cer-
tain ambiguities. These ambiguities cannot be determined with
using just the a-scene and the v-scene detection models.

The scene segmentation algorithms were tested on a difficult
test data set: 3 h from commercial films. They work well, giving
a best c-scene detection result of 94%. The structure detection
algorithm was tested on the same data set giving excellent re-
sults: 91% recall and 100% precision. We believe that the re-
sults are very good when we keep the following considerations
in mind: 1) the data set is complex and 2) the shot cut detection
algorithm had misses that introduced additional error.

Contributions:

1) A computational scene model that incorporates the syn-
ergy between audio, video, and structure in the data.

2) A finite, causal memory model framework for segmenting
both audio and visual data.

3) An abstract topological framework for arbitrary structures
video in a robust manner. We show an algorithm for de-
tecting dialogs in this framework.

4) The features and the models used in segmentation incor-
porate production rules from film-making as well as due
to the psychology of audition.

5) The idea that we need top-down structural grouping rules
to improve segmentation results.

6) Constraints for merging information from different
modalities (audio, video, silence and structure) to ensure
that the resulting segmentation is consistent with human
perception.

Future Work: There are several clear improvements possible
to this work.

1) The computational model for the detecting the video
scene boundaries is limited, and needs to tightened in
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view of the model breakdowns discussed. One possible
improvement is to do motion analysis on the video and
prevent video scene breaks under smooth camera motion.

2) The v-scene detection algorithm should dynamically
adapt to the low-contrast scenarios to improve perfor-
mance.

3) Since shots misses can cause errors, we are also looking
into using entropy-based irregular sampling of the video
data in addition to the key-frames extracted from our shot-
segmentation algorithm.

Current work includes generating video skims using these com-
putable scenes [19].
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