
A Utility Framework for the Automatic
Generation of Audio-Visual Skims

Hari Sundaram Lexing Xie Shih-Fu Chang
Dept. Of Electrical Engineering, Columbia University,

New York, New York 10027.
email: { sundaram, xlx, sfchang }@ee.columbia.edu

ABSTRACT
In this paper, we present a novel algorithm for generating audio-
visual skims from computable scenes. Skims are useful for
browsing digital libraries, and for on-demand summaries in set-
top boxes. A computable scene is a chunk of data that exhibits
consistencies with respect to chromaticity, lighting and sound.
There are three key aspects to our approach: (a) visual
complexity and grammar, (b) robust audio segmentation and (c)
an utility model for skim generation. We define a measure of
visual complexity of a shot, and map complexity to the
minimum time for comprehending the shot. Then, we analyze
the underlying visual grammar, since it makes the shot sequence
meaningful. We segment the audio data into four classes, and
then detect significant phrases in the speech segments. The
utility functions are defined in terms of complexity and duration
of the segment. The target skim is created using a general
constrained utility maximization procedure that maximizes the
information content and the coherence of the resulting skim. The
objective function is constrained due to multimedia
synchronization constraints, visual syntax and by penalty
functions on audio and video segments. The user study results
indicate that the optimal skims show statistically significant
differences with other skims with compression rates up to 90%.

1. INTRODUCTION
This paper deals with the problem of automatic generation of
audio visual skims. The problem is important because unlike the
static, image based video summaries [20], video skims preserve
the dynamism of the original audio-visual data. Applications of
audio-visual skims include: (a) on demand summaries of the data
stored in set-top boxes (interactive TV) (b) personalized
summaries for mobile devices and (c) for news channels (e.g.
CNN) that receive a tremendous amount of raw footage.

There has been prior research on generating video skims. In the
Informedia skimming project [4], important regions of the video
were identified via a TF/IDF analysis of the transcript. They also
used face detectors and performed motion analysis for additional

cues. The MoCA project [13] worked on automatic generation of
film trailers. They used heuristics on the trailers, along with a set
of rules to detect certain objects (e.g. faces) or events (e.g.
explosions). Work at Microsoft Research [9] dealt with
informational videos; there, they looked at slide changes, user
statistics and pitch activity to detect important segments. Recent
work [11] has dealt with the problem of preview generation by
generating “interesting” regions based on viewer activity in
conjunction with topical phrase detecting. However, in order to
generate the preview, some viewers need to have seen the video.

data

visual complexity

syntax analysis

sig. phrases

segmentation

objective function / constraints

skim minimization

computable scenes

Figure 1: the skim generation framework.

Skims can differ based on the user’s task (actively seeking
information vs. passively watching a TV preview), the device
constraints and on the form of the skim (semantic, affect-based,
event-driven, and discourse centric). This work focuses on the
generation of passive skims with the aim of maximizing the
information content and coherence. We work on four specific
areas that were not investigated in prior research: (a) the
relationship between the length of a shot in a film and its
comprehension time (b) analyzing the visual syntactical
structure in the film and (c) prosodic analysis for determining
significant portions of speech, and (d) a general utility
framework for maximizing the skim information content and
coherence.

We define a measure for visual complexity, and then relate this
measure to comprehension time using a psychological

experiment. This helps us determine the minimum time allocated
to a shot in the skim, for it to remain comprehensible. We also
investigate the use of visual film-syntax for reducing the content
of the scene. Film-syntax refers to the arrangement of shots by
the director to give meaning to the shot sequence. Examples
include, specification of (a) scale (b) duration (c) order of shots,
amongst many others [15]. We investigate rules governing the
duration of two syntactic elements (a visual phrase and a dialog)
for content reduction.

We analyze the audio stream in two ways. First, we segment the
audio data using Support Vector Machine (SVM) classifiers,
organized in a tree structure into four classes: silence, clean
speech, noisy speech, music / environmental sounds. In order to
ensure coherent segments, we smooth the result using a duration
dependent Viterbi decoder. Second, we analyze the discourse
structure, for significant phrases, using the acoustic correlates of
prosody [7][12] in conjunction with an SVM classifier. The two
modes of analysis are then combined and the speech segments
are ranked in order of significance.

We formulate the problem of skim generation in terms of utility
maximization with constraints. We model the skim
comprehensibility in terms of audio and video utility functions.
The objective function that is to be minimized has constraints
(audio / video duration constraints, visual syntax, synchronous
multimedia constraints) that are constructed with the aim of
maximizing the speech information content and the overall
coherence of the video. The user studies indicate that the skims
generated work well at high compression rates up to 90%.

The rest of this paper is organized as follows. We begin by
defining the goals of this work. Then we briefly discuss the
computable scene idea. In section 4, 5, we discuss visual
complexity and syntax analysis and in section 6 we present our
work on audio analysis. In section 7 we discuss the utility based
skim generation framework. We present experimental results in
section 8, and finally present the conclusions in section 9.

2. THE SKIM PROBLEM DEFINITION
A skim is a audio-visual clip, that is a drastically condensed
version of the original video. In this section, we shall discuss in
order, the factors that affect skims, the different skim types, the
specific goals in this paper and a summary of the computational
architecture.

2.1 Factors that affect skims
There are at least two factors that affect the skim generation
algorithm — the task of the user and the device constraints. We
divide up tasks into two broad categories: active and passive
tasks. An task is defined to be active when the user requires
certain information to be present in the final summary (e.g. “find
me all videos that contain Colin Powell.”). In a passive task, the
user does not have anything specific in mind, and is more
interested in consuming the information. Examples include
previews in a set-top box environment, browsing in a video
digital library. The device on which the skim is to be rendered
affects the skim in at least two ways: the nature of the user
interface and the device constraints. The UI can be complex (e.g.
the PC), medium (e.g. a palm pilot) and simple (e.g. a cell
phone). The UI affects the resolution of the skim, and also

influences the kinds of tasks that the user has in mind (e.g. it is
difficult to input a query on a cell phone). The computational
resources available on the device — cpu speed, memory,
bandwidth, availability an the audio rendering device, all effect
the skim. The effect takes the form of the resolution of the skim,
as well as the decision to include audio in the skim.

2.2 Skims come in different flavors
In this section we attempt to identify some of the different skim
forms. These forms are a function of the user’s information
needs, the domain as well as the intent of the content provider.

Semantic: Here, we attempt to preserve the semantics in the
data. These could be specified by the user (in the form of a
query), or the content producer, who may specify (via MPEG-7
metatags) the content to be retained in the skim.

Affect based: In this form, we would like to retain the “mood”
or the affect [1] generated by the content producer. The director
controls the duration of shots in the sequence to produce a
particular emotional response (e.g. fast cuts during an action
sequence).

Event driven: This skim will contain all the events important in
the domain. For example, a skim of a soccer game would contain
all the goals. Clearly, this form is affected by the domain, and the
users needs.

Discourse centric: This skim will attempt to parse the discourse
structure of the speech in the video, and determine the most
significant audio segments using prosody analysis.

2.3 Goals
The goal of this work is the automatic generation of audio-visual
skims for passive tasks, that summarize the video. This work
focuses on creating discourse centric skims. We make the
following assumptions:

1. We do not know the semantics of the original.

2. The data is not a raw stream (e.g. home videos), but is the
result of an editing process (e.g. films, news).

3. The time that the user has to watch the skim is known.

Since we work on passive tasks, the information needs of the
user are a priori unknown. A decision to detect certain set of
predefined events will induce a bias in the skim, thereby
conflicting with the assumption that the user needs are unknown.
The assumption of the data stream being produced is an
important one, since we shall attempt to preserve the grammar of
the underlying produced video, so as to preserve meaning.

3. COMPUTABLE SCENES
In our work we have focused on the detection of computable
scenes [18][19]. They are formed by looking at the relationships
between elementary computable audio and video scenes and
structure. The elementary audio and video scenes represent
contiguous chunks of audio and video respectively. These scenes
are termed computable, since they can be automatically
computed using low-level features in the data. There are four
types of computable scenes that arise due to different kinds of

synchronizations between the elementary audio and visual
computable scenes. Figure 2 shows one computable scene type.

We do not address the problem of semantics of the segments,
since this is not a well posed problem. There are three novel
ideas in our approach: (a) analysis of the effects of rules of
production on the data (b) a finite, causal memory model for
segmenting audio and video and (c) the use of top-down
structural grouping rules that enable us to be consistent with
human perception. These scenes form the input to our
condensation algorithm.

The Informedia and the MoCA projects analyze data over the
entire video. However, they do not perform scene level analysis
for skim generation. In our current work, we analyze the data
within one scene. In future work, we plan on utilizing the
interesting syntactical relationships amongst scenes that exist in
the video [15], for condensation.

4. VISUAL COMPLEXITY
In this section, we shall present an overview of the relationship
between visual complexity of an image and its time for
comprehension. Since the work in sections 4 and 5 have been
reported before [17] we shall only summarize the key issues
here.

4.1 Insights: film making and psychology
In film-making, there is a relationship between the size1 of the
shot and its apparent time (i.e. time perceived by the viewer).:

“Close-ups seem to last relatively longer on the screen than long
shots. The content of the close up is immediately identified and
understood. The long shot on the other hand, is usually filled
with detailed information which requires eye-scanning over the
entire tableau. The latter takes time to do, thus robbing it of
screen time” [15].

Recent results in experimental psychology [6] indicate the
existence of an empirical law: the subjective difficulty in
learning a concept is directly proportional to the Boolean
complexity of the concept (the shortest prepositional formula
representing the concept), i.e. to its logical incompressibility.
Clearly, there is empirical evidence to suggest a relationship
between visual “complexity” of a shot and its comprehensibility.

4.2 Measuring visual complexity
We define the visual complexity of an shot to be its Kolmogorov
complexity [5]. In [17], we showed that length of the Lempel-

Ziv 2 codeword asymptotically converges to the Kolgomorov
complexity of the shot. The complexity is estimated using a
single key-frame3. Representing each shot by its key-frame is
reasonable since our shot detection algorithm [21], is sensitive to
changes in color and motion.
We conducted a simple psychological experiment to measure the
average comprehension time (i.e. the average of the times to
answer who? where? what? and when?) for shot key-frames in
[17]. We generate histograms of the average comprehension time
after discretizing the complexity axis. The lower-bound on the
comprehension time is generated by determining a least squares
fit to the minimum time in each histogram. The distribution of
times in each histogram slice, above the minimum time, is well
modeled by a Rayleigh distribution. By using the 95th percentile
cut-off for each histogram we get an estimate of the upper-bound
on the comprehension time. The equations for the lines are as
follows:

Figure 2: A progressive scene followed by
a dialog sequence.

() 2.40 1.11,
() 0.61 0.68,

b

b

U c c
L c c

= +
= +

 <1>

where c is the normalized complexity and Ub and Lb are the
upper and lower bounds respectively, in sec. The lines were
estimated for c ∈ [0.25, 0.55] (since most of the data lies in this
range) and then extrapolated. Hence, given a shot of duration to
and normalized complexity cS, we can condense it to at most
Ub(cS) sec by removing the last to - Ub(cS) sec. The upper bound
comprehension time is actually a conservative bound. This is
because of two reasons: (a) the shots in a scene in a film are
highly correlated (not i.i.d) and (b) while watching a film, there
is no conscious attempt at understanding the scene.

5. VISUAL FILM SYNTAX
In this section we shall give a brief overview of “film syntax.”
Then, we shall discuss its utility in films and then give syntax
based reduction schemes for two syntactic elements.

5.1 Defining film syntax
The phrase film syntax refers to the specific arrangement of shots
so as to bring out their mutual relationship [15]. In practice, this
takes on many forms (chapter 2, [15]) : (a) minimum number of
shots in a sequence (b) varying the shot duration, to direct
attention (c) changing the scale of the shot (there are “golden
ratios” concerning the distribution of scale) (d) the specific
ordering of the shots (this influences the meaning). These
syntactical rules lack a formal basis, and have been arrived at by
trial and error by film-makers. Hence, even though shots in a
scene only show a small portion of the entire setting at any one
time, the syntax allows the viewers to understand that these shots
belong to the same scene.

Let us contrast shots with words in a written document. Words
have more or less fixed meanings and their position in a sentence
is driven by the grammar of that language. However, in films it is

2 Lempel-Ziv encoding is a form of universal data coding that doesn’t
depend on the probability distribution of the source [5].
3 We choose the 5th frame after the beginning of the shot, to be its key-
frame. We acknowledge that there are other more sophisticated strategies
for choosing key-frames.

1 The size (long/medium/close-up/extreme close-up) refers to the size of
the objects in the scene relative to the size of the image

the phrase (a sequence of shots) that is the fundamental semantic
unit. Each shot can have a multitude of meanings, that gets
clarified only by its relationship to other shots. An object
detector based approach (e.g. Informedia project [4], MoCA
[13]) to skims, for films, at a conceptual level, makes the analogy
“shots as words.” However, this is in contrast to the way film-
makers create a scene, where the syntax provides the meaning of
the shot sequence. Hence, while condensing films, we must
honor the film syntax.

5.2 Syntax rules for shot removal

A phrase is a sequence of shots designed to convey a particular
semantic. According to the rules of cinematic syntax [15], a
phrase must have at least three shots. “Two well chosen shots
will create expectations of the development of narrative; the
third well-chosen shot will resolve those expectations.” Sharff
[15] also notes that depicting a meaningful conversation between
m people requires at least 3m shots. Hence in a dialogue that
shows two participants, this rule implies that we must have a
minimum of six shots.

Let us assume that we have a scene that has k shots. Then, we
perform three types of syntax reductions (break points based on
heuristics) based on the on the number of shots k (Table 1). The
number and the location of the dropped shots depend on k and
the syntax element (i.e. dialog or progressive). In the following
discussion, we use a fictional film with a character called Alice.

It is reasonable to expect that the number of phrases in a scene,
increase with the number of shots. For short scenes (type I
reduction) we assume that there is a single phrase, containing
one principal idea, in the scene. For example, the director could
show Alice, walking back to her apartment, in a short scene.

Table 1: Three types of syntax reductions that depend on the
element (dialog/progressive) and the number of shots k.

Breakpoints for each type
Element Min. phrase

length I II III

Dialog 6 k ≤ 15 15 < k < 30 k ≥ 30

Progressive 3 k ≤ 6 6 < k < 15 k ≥ 15

In scenes of medium duration (type II reduction) we assume that
there are at most two phrases. For example, <1st phrase>: Alice
could be shown entering her room, switching on the lights, and
be shown thinking. <2nd phrase>: then, she is shown walking to
the shelves looking for a book, and is then shown with the book.
We assume that scenes of long duration, (type III reduction)

contain at most three phrases. Modifying the previous example
— <1st phrase>: Alice is shown entering the room, <2nd phrase>:
she is shown searching for the book, <3rd phrase>: she walks
with the book to her desk and makes a phone call. Hence, the
reduction attempts to capture the phrase in the middle and the
two end phrases.

In type I reduction, figure 3 (I), we drop shots from the right,
since the director sets up the context of the scene using the initial
shots. In type II, we expect an initial context, followed by a
conclusion. Here, we start dropping shots from the middle,
towards the ends. In type III, the scene is divided into three equal
segments, and shots are dropped from the two interior segment
boundaries. Unlike written text, there are no obvious visual
“punctuation marks” in the shots to indicate a “phrase change.”
Hence our syntax reduction strategy, which will capture the
phrases in scenes of short and medium duration, may cause error
in scenes of long duration. All shot detection algorithms generate
certain number of false alarms and misses, and this affects the
syntactical rules that we’ve developed. In [17], we show how to
modify the minimum number of shots retained in a progressive
scene by computing a statistical upper bound on the false alarm
probability of the shot detector.

Figure 3: Three syntax reduction mechanisms. The
black boxes are the minimal phrases and will not be
dropped, while the gray shots can be dropped.

(II)

(III)

(I)

6. ANALYZING AUDIO
In this section we discuss our approach for analyzing the audio
stream prior to skim generation. We begin by first defining the
audio analysis task for skims; then we present audio
segmentation and significant phrase detection algorithms both of
which use SVM classifiers. We conclude by presenting results in
section 6.4.

6.1 This is a hard problem!
Audio skim generation aims at dramatic time reduction (up to
90%) while preserving perceptual coherence. There are some
clear drawbacks to simple approaches to determining useful
segments in the audio stream. Let us assume that we wish to
compress an audio track that is 100 sec. long, by 90%. Then: (a)
downsampling the audio by 90% will leave the audio to be
severely degraded since the pitch of the speech segments will
increase dramatically. (b) PR-SOLA [9] is a non-linear time
compression technique that eliminates long pauses, and attempts
to preserve the original pitch in the output. User studies indicate
that users do not prefer to have the speech sped up beyond 1.6x
(i.e. ~40% compression). (c) selecting only those segments that
are synchronous with the pre-selected video shots makes the
audio stream is choppy and difficult to comprehend [4]. We
define an audio segment as a contiguous chunk of coherent
audio. Our approach to automatically identify audio segments:
(a) create robust classifiers on the audio data via SVM’s (b)
detect significant phrases in speech via discourse structure
analysis.

6.2 Audio segment classification
We build a tree-structured to classify each frame (100ms) into
four generic classes: silence, clean speech, noisy speech and
music / environmental sounds. We use 16 features in our
approach [10], [14] [16]): (1) loudness, (2) low-band energy (3)
high-band energy (4) low energy ratio (5) spectral roll off (6)

spectral flux (7) spectral centroid (8) spectral entropy (9) MFCC
(10) delta MFCC (11) RASTA, (12) PLP and four variants of the
zero crossing rate (13) ZCR, (14) mean ZCR, (15) variance of
the ZCR and (16) high ZCR-ratio [10]. The cepstral features,
RASTA and PLP were chosen since they are well known to be
good speech discriminators [14]. All other features were chosen
for their ability to discriminate between music and speech.

Silence frames are first separated from the rest of the audio
stream using an adaptive threshold on the energy. Two SVM
classifiers (C-SVM with radial basis kernel [3]) are then used in
cascade: the remaining frames are separated into speech vs. non-
speech (music or environmental sounds); and the speech class is
further classified as clean and noisy speech. We then apply a
modified Viterbi decoding algorithm [14][19] to smooth the
sequence of frame labels. The decoder makes use of the class
transition probabilities, classifier error likelihood and a duration
utility (a function of the prior duration distribution of each class)
to find the maximum likelihood class path.

6.3 Detecting significant phrases
In this section, we shall summarize our work on detecting
segment beginnings (SBEG’s) in speech. These are important as
they serve as the introduction of new topic in the discourse [7],
Detecting these discourse boundaries is different from
determining emphasized portions of speech [2], since these
emphasized portions can occur anywhere in the discourse
(including SBEG’s).

There has been much work in the computational linguistics
community [8][7][12] to determine the acoustic correlates of the
prosody in speech. Typically, SBEG’s have a preceding pause
that is significantly longer than for other phrases, higher initial
pitch values (mean, variance), and smaller pauses that end the
phrase than for other phrases [7][8]. In our algorithm, we extract
the following features per phrase: pitch and energy values (min,
max, mean, variance) for the (initial, last and complete) portions
of the phrase, pause durations preceding and following the
phrase.

Prior work [2][9] that uses speech based summarization indicates
that users prefer relatively long segments of speech. In this work
we restrict our attention to phrases that last between five to
fifteen seconds. Our approach is then summarized as follows: (a)
we first detect all the silent portions in the data (b) candidate
phrases are all segments of audio that lie between two silent
portions, and which satisfy our phrase duration criterion. (c) We
then extract the acoustic features per phrase, and the phrase is
then classified using a C-SVM classifier, with a radial basis
function kernel. Furthermore, we rank the significant segments
as a function of the pause and pitch.

6.4 Results
In this section, we present results on the audio segment
classification as well as the significant phrase detection.

6.4.1 Segment classification
We used 45 minutes of audio data from two films (Bladerunner,
Four Weddings and a Funeral) to train our classifier. The data is
complex containing speech overlaid with background sounds,

music and other environmental sounds. The data was labeled by
the first two authors, with the following labeling criteria: (a)
segments classified as “music” were western music; speech was
labeled as “noisy” or “clean” depending upon the level of the
background sound; all other segments were labeled as
“environmental” sounds. Weak speech segments embedded in
environmental sounds (e.g. sounds from the street) were labeled
as environmental sounds. The confusion matrixes for the two
classifiers (after a five-fold cross validation) are as follows:

Table 2: confusion matrixes for speech / non-speech
(left) and Speech and noisy speech (right).

T \ C S ¬S

S 0.76 0.24

¬S 0.13 0.87

T \ C S SN

S 0.84 0.16

SN 0.06 0.94

Where, T: true label, C: classifier result, S: Speech, ¬S: non-
speech (i.e. music / environmental sounds), SN: noisy speech.

6.4.2 Significant phrase detection
We used data from three films Bladerunner, Sense and
sensibility, Pulp fiction to label 324 phrases as “significant” or
as “non-significant.” We labeled only those phrases that were
complete grammatical phrases as significant. Examples of non-
significant phrases include — phrases that begin or end mid-
sentence, and the list of cue phrases (e.g. “now, what do you
want to eat?”) [8]. Only the first author labeled the phrases. The
ground truth had 48 significant phrases and 276 non-significant
phrases. The results of five fold cross-validation on the 324
phrases, using an SVM (radial basis kernel, γ = 0.04, C = 100,
117 support vectors) gave 100% precision and 100% recall. We
believe that this result is perhaps due to two factors: (a) labeling
by one person only, and (b) the data was very consistent. We
expect the performance to be lower in a more diverse test set.

The two classifiers (i.e. the tree-structured audio segmentation
algorithm and the significant phrase detector) are run in parallel,
and the results of the significant phrase detector is merged with
that of the audio segmentation to preserve the long, significant
phrases. This is followed by heuristic rule-based smoothing that
ensures a minimum duration (2 seconds) of a segment by
merging short segments [10][19].

7. GENERATING SKIMS
In this section, we develop our algorithm for automatic audio-
visual skim generation via constrained minimization. We begin
by deriving a utility function for individual audio and video
segments. Then, we discuss the penalty functions that operate on
groups of audio and video segments. This is followed by a
section on constraints. Finally, we discuss our optimization
strategy.

In the sections that follow we assume the following notation. Nv
and Na represent the total number of video shots and audio
segments in the original sequence; To is the original duration of
the sequence, the target skim duration is Tf, to,n,v and to,k,a
represent the original duration of the nth shot and the kth audio
segment in the scene. Define indicator sequence φv(n) = 1 iff. nth

video shot is present in the condensed scene. Define
Nφ,v = ∑ φv(n), the number of video shots in the condensed

scene. φa(n) = 1 iff. nth is not silent, and Nφ,a = ∑ φa(n) is the
number of non-silent audio segments.

, , ,

, ,

, ,
, ,

, ,

, ,

() () (,)

1

()

0

p i p i Lb i i

p i Ub i

p i Lb i
, ,p i Lb i

Ub i Lb i

p i Lb i

P t t S t c

t t

t t
t t t

t t

t t

= λ

 ≥

−
λ = ≤ < −

 <

i

p i Ub it
 <3>

7.1 The need for a utility function
In order to determine the skim duration, we need to measure the
comprehensibility of a video shot and a audio segment as a
function of its duration. The shot utility function, models the
comprehensibility of a shot as a continuous function of its
duration and its visual complexity. This idea is connected to the
results in section 4.2 in following way. Let us assume for the
sake of definitiveness, that we have a 10 sec. shot of complexity
0.5. Then the upper bound duration Ub = 2.23 sec. We have
argued that that if we reduce the shot duration to its upper bound,
then there is a high probability that it will still be
comprehensible. Note that the results in section 4.2 do not tell us
how the comprehensibility of a shot changes when we decrease
its duration. Hence the need for a shot utility function. We do not
have any experimental results indicating a similar complexity-
time relationship for audio, however, it seems fairly reasonable
to conjecture its existence. Hence, the form of our audio utility
function will be similar to the utility function that we shall derive
in the next section for video shots. We model the utility of a
video shot (audio segment) independently of other shots
(segments).

where, λ modulates the shot utility, tp,i is the proportional time
for shot i i.e. , ,i f ot T Tο i tLb,i and tUb,i are the lower and upper

time bounds for shot i, and S(t,c) is the shot utility function.

The utility function for the sequence of shots is the sum of the
utilities of the individual shots:

 , ,
, : () 1 : () 0

1(, ,) (,) ()
v v

v v v i v i p j
v i i j j

U t c S t c P t
Nφ φ = φ =

 φ = −

∑ ∑

G G <4>

where, 0 1: , ...v Nt t t t
G

and 0 1 .: , ... Nc c c cG represent the durations
and complexities of the shot sequence.

We conjecture the utility function of an non-silent audio segment
of duration t belonging to a class k as follows:

 (,) (1 exp())k kA t k tβ λ= − − <5>

where, A is the utility function and where β and λ are class
dependent parameters. When we need to remove an audio
segment from the skim, we assign a negative utility to this silent
(a dropped segment is silent) segment: 7.2 Defining the utility functions

The non-negative utility function of a video shot S(t, c), where t
is the duration of the shot and c is its complexity, must satisfy
the following constraints:

 (2() () /i iL t t tο)θ= − <6>

where, ti is the duration of the ith silence, and where tο and θ are
normalizing constants. Then, similar to equation <4>, we define
the audio utility to be the sum of the utilities of the constituent
segments.

1. For fixed c, S(t, c) must be a non-decreasing function of the
duration t. i.e. This is intuitive
since decreasing the shot duration by dropping frames from
the end of the shot (section 4.2), cannot increase its
comprehensibility.

1 2 1 2, (,) (,).t t S t c S t c∀ ≤ ≤

 , ,
, : () 1 : () 0

1(, ,) (,) ()
a a

a a a i a i i a
a i i i i

U t k A t k L t
Nφ φ φ

φ
= =

 = −

∑ ∑

GG
 <7>

2. This is because complexity c = 0
implies the complete absence of any information, while
c = 1 implies that the shot is purely random.

(,0) 0, (,1) 0.t S t S t∀ = =

where, 0 1: ,a Nt t t t
G

… and 0 1: , Nk k k k
G

… represent the durations
and the class labels of the audio segments in the skim. We model the shot utility function to be a bounded,

differentiable, separable, concave function:

 <2> (,) (1) (1 exp()).S t c c c t= β − − −αi
7.3 The video rhythm penalty function
The original sequence of shots have their duration arranged in a
specific proportion according to the aesthetic wishes of the
director of the film. Clearly, while condensing a scene, it is
desirable to maintain this “film rhythm.” For example, in a scene
with three shots of durations 5 sec. 10 sec. and 5 sec. maintaining
the scene rhythm would imply that we preserve the ratios of the
duration (i.e. 1:2:1) of the shots. We define the rhythm penalty
function as follows:

The exponential is due to the first constraint and the fact that the
utility function is assumed to bounded. Symmetry with respect to
complexity is again reasonable and the functional form stems
from second constraint and concavity.

When a shot i is dropped, we assign a negative utility P(tp,i) to
the shot as follows:

,
,

: () 1

,
,

,
: () 1 : () 1

(, ,) ln ,

, .

i
o i

ii i

o i i
o i i

o i i
i i i i

f
R t t f

f

t tf f
t t

ο
ο

φ =

φ = φ =

φ =

= =

∑

∑ ∑

G G

 <8>

where R is the penalty function, and where, ti is the duration of
the ith shot in the current sequence, while to,i is the duration of the
ith shot in the original sequence. The ratios are recalculated with
respect to only those shots that are not dropped, since the rhythm
will change when we drop the shots. will change when we drop the shots.

7.4 The audio slack penalty function 7.4 The audio slack penalty function
In film previews, one common method of packing audio
segments tightly within a limited time, is to make them overlap
by a slight duration. We associate a slack variable ξ, with each
audio segment that allows it to overlap the previous segment by
ξ sec (see fig. 4). This variable is bounded as –2 ≤ ξ ≤ 0, for all
segments (the slack of the first segment is zero). This allows us
to compress audio data a little more without losing too much
comprehensibility. We need to penalize excessive slack, and
hence we have a slack penalty function.

In film previews, one common method of packing audio
segments tightly within a limited time, is to make them overlap
by a slight duration. We associate a slack variable ξ, with each
audio segment that allows it to overlap the previous segment by
ξ sec (see fig. 4). This variable is bounded as –2 ≤ ξ ≤ 0, for all
segments (the slack of the first segment is zero). This allows us
to compress audio data a little more without losing too much
comprehensibility. We need to penalize excessive slack, and
hence we have a slack penalty function.

 2
1

2

1(,) (,)
aN

i i i
i

E k k k
Eο

ξ η −
=

= ∑
GG

ξ <9>

where, ξi is the slack variable for the ith segment, Eo is a constant
that normalizes the sum to 1, ki is the class label for the ith
segment, and η is a class
dependent coupling factor that
weights the interaction
between adjacent classes. For
example, we never allow two
adjacent speech segments to
overlap.

7.5 Constraints
There are four principal constraints in our algorithm: (a) audio-
visual synchronization requirements (b) minimum and maximum
duration bounds on the video shots and the audio segments (c)
the visual syntactical constraints and (d) the total time duration.
We shall only discuss the first two constraints since we’ve have
extensively covered the syntactical constraints in section 5.2.

7.5.1 Tied multimedia segments

A multimedia segment is said to be fully tied if the
corresponding audio and video segments begin and end

synchronously, and in addition are uncompressed. Note also, that
video shots that are tied cannot be dropped from the skim. The
multimedia segments can also be partially tied only on the left or
on the right, but in this case the corresponding segments are only
synchronous at one end, and the video (audio) can be
compressed.

In figure 5, we show a fully tied segment corresponding to the
section of audio marked as a significant phrase. Since the
beginning (and ending) of a significant phrase will not in general
coincide with a shot boundary, we shall split the shot intersected
by the corresponding audio boundary into two fragments. To
each fragment, we associate the complexity of the parent shot.
Each tie boundary induces a synchronization constraint:

1 2

, ,
1 1

N N

v i a j j
i j

t t ξ
= =

= +∑ ∑ <10>

where N1, N2 are the number of video and audio segments to the
left of the boundary respectively, tv,i is the duration of the ith
video segment, ta,j is the duration of the jth audio segment and ξj
is the slack variable associated with each audio segment. In
equation <10>, the left side is just the sum of the duration of all
the video shots to the left of the synchronization boundary.
Similarly, the right side is the sum of the duration of all the audio
segments and their corresponding slack variables. Note, a fully
tied segment will induce two synchronization constraints, while a
partial tie will induce one synchronization constraint. A skim
represents a highly condensed sequence of audio and video, with
a high information rate. Hence, a tied segment by virtue of being
uncompressed and synchronous allows the viewer to “catch-up.”

ξ
Figure 4: the slack variable ξ

7.5.2 Bounds on duration
Each video shot and audio segment in the skim satisfies
minimum and maximum duration constraints. For the video shot
fragments, the lower bounds are determined from the complexity
lower bound (eq. <1>). For the audio segments, we have
heuristic bounds: silences 150ms, music / environmental sounds:
3 sec. Speech segments are kept in their entirety and hence lower
and upper bounds are made equal to the original duration. These
heuristics will ensure that we have long audio segments in the
skims, thus increasing the coherence of the skim. Note that each
video shot and each audio segment is upper bounded by its
original duration. We reduce the duration of the music /
environmental sounds by trimming the end of the segment
(except for the last segment, which is trimmed from the
beginning). Speech segments are either kept in their entirety or
dropped completely if the target time cannot be met. Trimming
speech segments will make them sound incoherent since we may
then cut a sentence mid-way.

tied

Video
7.6 Constrained minimization
We focus on the generation of passive discourse centric
summaries that have maximum coherence. Since we deem the
speech segments to contain the maximum information, we shall
seek to achieve this in two ways: (a) by biasing the audio utility
functions in favor of the clean speech class and (b) biasing the
solution search in favor of the clean speech class. In case the
audio segments do not contain clean speech, the skim generation

Audio

Figure 5: the gray box indicates a speech
segment and the dotted lines show the
corresponding tied video segment.

algorithm will work just as well, except that in this case we are
not biased with respect to any one class.

In this implementation we construct fully tied multimedia
segments the following way. We first assume that the audio has
been segmented into classes with all the significant phrases
marked. All the segments marked as “clean speech” are ranked
depending on the significance of the segment. Then, we associate
multimedia tied segments with these ranked speech segments
only. All other segments (including “noisy speech”) have the
same low rank and are not tied to the video. In order to ensure
that the skim appears coherent, we do two things: (a) ensure that
the principles of visual syntax are not violated and (b) have
maximal number of tie constraints. These constraints ensure
synchrony between the audio and the video segments. In the
sections that follow, we assume the following: we are given Tf,
the target duration of the skim, the audio has been segmented and
the clean speech segments ranked, and that the video has been
segmented into shots.

7.6.1 Constraint relaxation

We present the intuition behind our strategy for ensuring that a
feasible solution region exists for the optimization algorithm.
The detailed algorithm showing derivation of sufficient
conditions for a solution region to exist can be found in [19]. We
now present the key ideas:

1. A fully tied multimedia segment ensures the following: (a)
the corresponding audio and video segments are
uncompressed. (b) none of these segments can be dropped.
Hence, removing one synchronization constraint from a
fully tied segment allows us to compress the audio and
video segments and if necessary, drop them from the final
skim.

2. Only clean speech segments are fully tied. Since speech
segments have been ranked according their significance, we

remove one constraint starting from the lowest ranked
speech segment.

3. Once a feasible video solution region has been found, an
audio feasible solution is guaranteed to exist, since we can
always drop audio segments that are not in fully tied
segments, by converting them to silence. The absence of
syntactical rules governing audio segments, enables us to
drop them. We pick the audio segments to drop in this
order: pick noisy speech segments first. Then, if none exist,
pick the segment that minimizes the deficit.

Briefly then, we do the following: (a) start will all clean speech
segments tied. (b) drop shots and relax constraints till the video
budget is met. (c) Once the video budget is met, meet the audio
budget by dropping audio segments in order. This is summarized
in figure 6.

The visual syntax constraints require that a minimum number of
shots be present in the skim. Hence, there will some compression
rates that cannot be met even after removing all the
synchronization constraints. In that case, we create a “best”
effort skim. This is done by first removing as many shots as
allowed by the rules of syntax, and then setting the duration of
each shot to its lower bound. The skim target duration is then
modified to be the sum of the duration of these shots. We now
present the optimization function.

constraints:
1. duration bounds
2. sync. constraints
3. visual syntax

7.6.2 Mathematical formulation

does a video solution exist?

relax sync constraints

no

We now define the objective function Of that gets minimized as a
consequence of our minimization procedure. Then, given the
target duration Tf :

 1 2(, , ,) (,) ()f a v c A a V vO t t n O t O tξ ω ξ ω= +
G GG G G G

 <11>

minimization

find feasible audio solution

yes
where, ω1, ω2 are constant weights. OA, OV, represent the audio,
and video objective functions respectively and are defined as
follows:

 1

2

(,) 1 (, ,) ()

() 1 (, ,) ()
A a A a a

V v V v v v

O t U t k E

O t U t k R t

ξ φ λ ξ

φ λ

= − +

= − +

GG GG G
GG G G <12> segment durations

Figure 6: searching for a feasible solution by
successively relaxing the synchronization
constraints.

where, λ1, λ2 are weighting factors. Note that once we have
feasible solution regions, k , ,a vφ φ

G
are constants. The individual

shot durations are determined as follows:

, ,

, , ,

, , , , ,

, , , , mi

,
: () 1

,

, ,
1 1

(, , ,) arg min (, , ,)

subject to:
, : () 1

() , ,

,

,

, :1

a v c

b

v

l v l a

a v c f a v c
t t n

L i v i v i v v

i i a i a v

i v f
i i

i a i f
j

N N

v i a j j
i j

t t n O t t n

t t t i i

T k t t N N

t T

t T

t t l N

ξ

ο

ο φ

φ

ο

ξ ξ

φ

ξ

ξ

∗ ∗ ∗ ∗

=

= =

=

n

,≤ ≤ =

≤ ≤ ≥

=

+ =

= +

∑

∑

∑ ∑

GG G

G GG G G G

…

 <13>

where No is the number of final synchronization constraints, T(k)
is the class dependent audio lower bound. The first two
constraints in equation <13> are duration constraints, the next
two are total time budget constraints, while the last equation
refers to the synchronization constraints. Note that Nmin is the
minimum number of shots to be retained in the scene, and this
arises from the syntactical rules discussed earlier. Also, the shots
can be dropped only in a constrained manner using the rules in
section 5.2.

8. EXPERIMENTS
The scenes used for creating the skims were from three films:
Blade Runner (bla), Bombay (bom), Farewell my Concubine
(far). The films were chosen for their diversity in film-making
styles. While we arbitrarily picked one scene from each film, we
ensured that each scene had a progressive phrase and a dialog.

We conducted
experiments with
three different
skim generation
mechanisms: the

algorithm
presented in this
paper, a
proportional skim
(let us assume
that we wish to
compress the
segment by 75%;
then in a

proportional
skim, each video
shot and each
audio segment
would be
compressed by
75%; in both

cases, we trim the data from the right of each video shot / audio
segment) and a semi-optimal skim with proportional video and
the optimal audio segments from our algorithm. Note that
previous user study results [17] with visual skims (that contained
no audio) showed that a utility based visual skims were
perceptually better (in a statistically significant sense) than
proportionally reduced visual skims. Since presence of the
optimal audio segments will make the third skim more coherent
than the proportional skim, we deem it semi-optimal. In figure 7,
the red segments (appears as dark gray in print) represent the
video data, while the green (light gray) segments represent the
audio segments; the black rectangle shows the significant phrase.
Note that the semi-optimal and the proportional skims have the
same proportional video data, and the optimal and the semi-
optimal skims have the same optimal audio data.

2.

We would liked to have created one skim per compression rate,
per film. However, this would have meant that each user would
have had to rate 27 skims, an exhausting task. Instead, we
created three skims (one from each algorithm) at each of the
three different compression rates (90%, 80%, and 50%), thus
creating nine skims. We conducted a pilot user study with twelve
graduate students. Each film was on the average, familiar to 2.33

students. The subjects were expected to evaluate each skim, on a
scale of 1-7 (strongly disagree – strongly agree), on the
following metric: Is the sequence coherent? They were
additionally asked to indicate their agreement in answering the
four generic questions of who? where? when? what? for the nine
skims. The setup was double-blind and each user watched the
skims in random order.

Table 3: User test scores. The columns: algorithms (optimal,
semi-optimal, proportional), the film, compression rate, and the
five questions. The table shows values of the optimal and the
difference of the scores of the (semi / pr) skims from the optimal.
Bold numbers indicate statistically significant differences.

Algo. Film Rate Coh? who? when? where? what?

Opt 5.25 5.92 5.50 6.00 5.58
semi / pr

bom 90
2.3 / 0.9 1.1/ 0.75 0.9 / 0.5 1 / 0.75 1.6 / 0.6

Opt 4.83 6.00 5.50 6.00 5.58
semi / pr

bla 80
1.8 / 1.7 0.5 / 1.3 0.3 / 0.8 0.3 / 0.9 1.1 / 1.2

Opt 4.75 5.92 5.75 6.00 5.25
semi / pr

far 50
-0.2/ 0.5 0.3 / 0.2 0.1 / 0.1 0.3 / 0.3 0.0 / 0.2

original optimal s-opt. prop.

The results are shown in table 3. The rows in table 3 show the
averaged raw scores across users for the optimal algorithm and
the raw score differences from the optimal, for the other two
algorithms. The numbers in bold indicate statistically significant
differences from the optimal skim. We computed the statistical
significance using the standard Student’s t-test. The test scores
indicates that the optimal skim is better than the other two skims,
at a confidence level of 95% at the high compression rates (90%
and 80%). Interestingly, the optimal skim was not significantly
better than the other two skims at the 50% compression rate.

tim
e

0

0.5

1

1.5

2

5

90

80

50

90

80

50

F
t
s

F
s
p
g

W
a
h
r
f
d
o
r
d
b
c

story where what who when
igure 8: The difference between the raw optimal score and

he minimum of the other two scores. The differences are
ignificant at 80% and 90% compressions rates.
igure 7: The original video and the four
kims: optimal, semi-optimal and
roportional. segment types —red: video,
reen: audio; black: discourse segment
hy do the significance tests yield different results at the high
nd low rates? At low compression rates, our optimal skim, does
ave proportionately reduced video shots; this is because of the
hythm penalty function. (see section 7.3) and because the utility
unction is exponential (see section 7.2) — hence flat at long
urations. Hence the optimal result will be pretty similar to the
ther two skims. At the high compression rates, proportionately
educing the skim is not possible as this approach will severely
ecrease the skim utility (it decays exponentially). This is
ecause as some shots will fall below the lower bound for
omprehension.

10. REFERENCES In figure 9, we show the parts of the optimal skim at 80%
compression rate. Note that the skim has captured the dialog
element, the significant phrases (the shots are uncompressed),
and preserves the synchronized beginnings and endings. We do
not have an gunshot detector, and it appears in the skim because
the end is synchronized. The other two skims do not contain
significant phrases, the audio and video will be completely
unsynchronized.

[1] B. Adams et. al. Automated Film Rhythm Extraction for
Scene Analysis, Proc. ICME 2001, Aug. 2001, Japan.

[2] B. Arons, Pitch-Based Emphasis Detection For Segmenting
Speech Recordings, Proc. ICSLP 1994, Sep. 1994, vol. 4,
pp. 1931-1934, Yokohama, Japan, 1994.

[3] N. Christianini, J. Shawe-Taylor, Support Vector Machines
and other kernel-based learning methods, 2000, Cambridge
University Press, New York. Do you make up these

questions, Mr. Holden? [4] M.G. Christel et. al Evolving Video Skims into Useful
Multimedia Abstractions, ACM CHI ′98, pp. 171-78, Los
Angeles, CA, Apr. 1998.

[5] T.M. Cover, J.A. Thomas, Elements of Information Theory,
1991, John Wiley and Sons.

[6] J. Feldman, Minimization of Boolean complexity in human
concept learning, Nature, pp. 630-633, vol. 407, Oct. 2000. gunshot office sounds dialog

[7] J. Hirschberg, B. Groz, Some Intonational Characteristics
of Discourse Structure, Proc. ICSLP 1992. Figure 9: the Blade Runner optimal skim showing the

important elements captured by our algorithm. The gray
box shows the location of the sig. phrase. [8] J. Hirschberg D. Litman, Empirical Studies on the

Disambiguation of Cue Phrases, Computational Linguistics,
1992. 9. CONCLUSIONS

[9] L. He et. al. Auto-Summarization of Audio-Video
Presentations, ACM MM ′99, Orlando FL, Nov. 1999. In this paper, we’ve presented a novel framework for condensing

computable scenes. The solution has three parts: (a) analysis of
visual complexity and film syntax, (b) robust audio segmentation
and significant phrase detection via SVM’s and (c) determining
the duration of the video and audio segments via a constrained
utility maximization.

[10] L. Lu et. al. A robust audio classification and segmentation
method, ACM Multimedia 2001, pp. 203-211, Ottawa,
Canada, Oct. 2001.

[11] T. S-Mahmood, D. Ponceleon, Learning video browsing
behavior and its application in the generation of video
previews, Proc. ACM Multimedia 2001, pp. 119 - 128,
Ottawa, Canada, Oct. 2001.

We defined a measure for visual complexity and then showed
how we can map visual complexity of a shot to its
comprehension time. After noting that the syntax of the shots
influences the semantics of a scene, we devised algorithms based
on simple rules governing the length of the progressive phrase
and the dialog. We devised a robust audio segmentation
algorithm using SVM classifiers in a tree structure, and imposed
duration constraints on the segments using a modified Viterbi
algorithm. We also showed how we could analyze the prosody
and detect significant phrases in the speech segments.

[12] D. O’Shaughnessy, Recognition of Hesitations in
Spontaneous Speech, Proc. ICASSP, 1992.

[13] S. Pfeiffer et. al. Abstracting Digital Movies Automatically,
J. of Visual Communication and Image Representation, pp.
345-53, vol. 7, No. 4, Dec. 1996.

[14] L. R. Rabiner B.H. Juang, Fundamentals of Speech
Recognition, Prentice-Hall 1993.

[15] S. Sharff, The Elements of Cinema: Towards a Theory of
Cinesthetic Impact, 1982, Columbia University Press.

We have focused on generating discourse centric skims with
maximum coherence. First, we developed utility functions for
both audio and video segments, and we minimized an objective
function that was based on the sequence utility. We introduced
the idea of tied multimedia segments that imposes
synchronization constraints on the skim. Additionally, the
objective function is subject to video and audio penalty functions
and minimum duration requirements on the audio and video
segments.

[16] E. Scheirer, M. Slaney, Construction and Evaluation of a
Robust Multifeature Speech/Music Discriminator Proc.
ICASSP ′97, Munich, Germany Apr. 1997.

[17] H. Sundaram, Shih-Fu Chang, Constrained Utility
Maximization for generating Visual Skims, IEEE Workshop
on Content-based Access of Image and Video Libraries
(CBAIVL-2001) Dec. 2001 Kauai, HI USA.

[18] H. Sundaram, S.F. Chang, Computable Scenes and
structures in Films, IEEE Trans. on Multimedia, Vol. 4, No.
2, June 2002. We conducted a pilot user study on three scenes, generating

skims using three skim generation algorithms, at three different
compression rates. The results of the user study shows that while
the optimal skims are all as coherent, the differences are
statistically significant at the high rates (i.e. 80% and 90%).

[19] H. Sundaram, Segmentation, Structure Detection and
Summarization of Multimedia Sequences, PhD thesis, Dept.
Of Electrical Engineering, Columbia University NY, Aug.
2002.

[20] S. Uchihashi et. al. Video Manga: Generating Semantically
Meaningful Video Summaries Proc. ACM Multimedia ′99,
pp. 383-92, Orlando FL, Nov. 1999.

The algorithms presented here leave much room for
improvement: (a) the creation of summaries for active tasks, in a
constrained environment and (b) how to construct skims for raw
video footage (e.g. home videos) by modifying the skim
generation mechanism discussed here?

[21] D. Zhong, Segmentation, Indexing and Summarization of
Digital Video Content PhD Thesis, Dept. Of Electrical Eng.
Columbia University, NY, Jan. 2001.

	INTRODUCTION
	THE SKIM PROBLEM DEFINITION
	Factors that affect skims
	Skims come in different flavors
	Goals

	COMPUTABLE SCENES
	VISUAL COMPLEXITY
	Insights: film making and psychology
	Measuring visual complexity

	VISUAL FILM SYNTAX
	Defining film syntax
	Syntax rules for shot removal

	ANALYZING AUDIO
	This is a hard problem!
	Audio segment classification
	Detecting significant phrases
	Results
	Segment classification
	Significant phrase detection

	GENERATING SKIMS
	The need for a utility function
	Defining the utility functions
	The video rhythm penalty function
	The audio slack penalty function
	Constraints
	Tied multimedia segments
	Bounds on duration

	Constrained minimization
	Constraint relaxation
	Mathematical formulation

	EXPERIMENTS
	CONCLUSIONS
	REFERENCES

