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ABSTRACT 
In this paper, we present a novel algorithm for generating audio-
visual skims from computable scenes. Skims are useful for 
browsing digital libraries, and for on-demand summaries in set-
top boxes. A computable scene is a chunk of data that exhibits 
consistencies with respect to chromaticity, lighting and sound. 
There are three key aspects to our approach: (a) visual 
complexity and grammar, (b) robust audio segmentation and (c) 
an utility model for skim generation. We define a measure of 
visual complexity of a shot, and map complexity to the 
minimum time for comprehending the shot. Then, we analyze 
the underlying visual grammar, since it makes the shot sequence 
meaningful. We segment the audio data into four classes, and 
then detect significant phrases in the speech segments. The 
utility functions are defined in terms of complexity and duration 
of the segment. The target skim is created using a general 
constrained utility maximization procedure that maximizes the 
information content and the coherence of the resulting skim. The 
objective function is constrained due to multimedia 
synchronization constraints, visual syntax and by penalty 
functions on audio and  video segments. The user study results 
indicate that the optimal skims show statistically significant 
differences with other skims with compression rates up to 90%. 

1. INTRODUCTION 
This paper deals with the problem of automatic generation of 
audio visual skims. The problem is important because unlike the 
static, image based video summaries [20], video skims preserve 
the dynamism of the original audio-visual data. Applications of 
audio-visual skims include: (a) on demand summaries of the data 
stored in set-top boxes (interactive TV) (b) personalized 
summaries for mobile devices and (c) for news channels (e.g. 
CNN) that receive a tremendous amount of raw footage.  

There has been prior research on generating video skims. In the 
Informedia skimming project [4], important regions of the video 
were identified via a TF/IDF analysis of the transcript. They also 
used face detectors and performed motion analysis for additional 

cues. The MoCA project [13] worked on automatic generation of 
film trailers. They used heuristics on the trailers, along with a set 
of rules to detect certain objects (e.g. faces) or events (e.g. 
explosions). Work at Microsoft Research [9] dealt with 
informational videos; there, they looked at slide changes, user 
statistics and pitch activity to detect important segments. Recent 
work [11] has dealt with the problem of preview generation by 
generating “interesting” regions based on viewer activity in 
conjunction with topical phrase detecting. However, in order to 
generate the preview, some viewers need to have seen the video. 
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Figure 1: the skim generation framework. 

Skims can differ based on the user’s task (actively seeking 
information vs. passively watching a TV preview), the device 
constraints and on the form of the skim (semantic, affect-based, 
event-driven, and discourse centric). This work focuses on the 
generation of passive skims with the aim of maximizing the 
information content and coherence. We work on four specific 
areas that were not investigated in prior research: (a) the 
relationship between the length of a shot in a film and its 
comprehension time (b) analyzing the  visual syntactical 
structure in the film and (c) prosodic analysis for determining 
significant portions of speech, and (d) a general utility 
framework for maximizing the skim information content and 
coherence. 

  
 

We define a measure for visual complexity, and then relate this 
measure to comprehension time using a psychological 



experiment. This helps us determine the minimum time allocated 
to a shot in the skim, for it to remain comprehensible. We also 
investigate the use of visual film-syntax for reducing the content 
of the scene. Film-syntax refers to the arrangement of shots by 
the director to give meaning to the shot sequence. Examples 
include, specification of (a) scale (b) duration (c) order of shots, 
amongst many others [15]. We investigate rules governing the 
duration of two syntactic elements (a visual phrase and a dialog) 
for content reduction. 

We analyze the audio stream in two ways. First, we segment the 
audio data using Support Vector Machine (SVM) classifiers, 
organized in a tree structure into four classes: silence, clean 
speech, noisy speech, music / environmental sounds. In order to 
ensure coherent segments, we smooth the result using a duration 
dependent Viterbi decoder. Second, we analyze the discourse 
structure, for significant phrases, using the acoustic correlates of 
prosody [7][12] in conjunction with an SVM classifier. The  two 
modes of analysis are then combined and the speech segments 
are ranked in order of significance. 

We formulate the problem of skim generation in terms of utility 
maximization with constraints. We model the skim 
comprehensibility in terms of audio and video utility functions. 
The objective function that is to be minimized has constraints 
(audio / video duration constraints, visual syntax, synchronous 
multimedia constraints) that are constructed with the aim of 
maximizing the speech information content and the overall 
coherence of the video. The user studies indicate that the skims 
generated work well at high compression rates up to 90%. 

The rest of this paper is organized as follows. We begin by 
defining the goals of this work. Then we briefly discuss the 
computable scene idea. In section 4, 5, we discuss visual 
complexity and syntax analysis and in section 6 we present our 
work on audio analysis. In section 7 we discuss the utility based 
skim generation framework. We present experimental results in 
section 8, and finally present the conclusions in section 9. 

2. THE SKIM PROBLEM DEFINITION 
A skim is a audio-visual clip, that is a drastically condensed 
version of the original video. In this section, we shall discuss in 
order, the factors that affect skims, the different skim types, the 
specific goals in this paper and a summary of the computational 
architecture. 

2.1 Factors that affect skims 
There are at least two factors that affect the skim generation 
algorithm — the task of the user and the device constraints. We 
divide up tasks into two broad categories: active and passive 
tasks. An task is defined to be active when the user requires 
certain information to be present in the final summary (e.g. “find 
me all videos that contain Colin Powell.”). In a passive task, the 
user does not have anything specific in mind, and is more 
interested in consuming the information. Examples include 
previews in a set-top box environment, browsing in a video 
digital library. The device on which the skim is to be rendered 
affects the skim in at least two ways: the nature of the user 
interface and the device constraints. The UI can be complex (e.g. 
the PC), medium (e.g. a palm pilot) and simple (e.g. a cell 
phone). The UI affects the resolution of the skim, and also 

influences the kinds of tasks that the user has in mind (e.g. it is 
difficult to input a query on a cell phone). The computational 
resources available on the device — cpu speed, memory, 
bandwidth, availability an the audio rendering device, all effect 
the skim. The effect takes the form of the resolution of the skim, 
as well as the decision to include audio in the skim. 

2.2 Skims come in different flavors  
In this section we attempt to identify some of the different skim 
forms. These forms are a function of the user’s information 
needs, the domain as well as the intent of the content provider. 

Semantic: Here, we attempt to preserve the semantics in the 
data. These could be specified by the user (in the form of a 
query), or the content producer, who may specify (via MPEG-7 
metatags) the content to be retained in the skim. 

Affect based: In this form, we would like to retain the “mood” 
or the affect [1] generated by the content producer. The director 
controls the duration of shots in the sequence to produce a 
particular emotional response (e.g. fast cuts during an action 
sequence). 

Event driven: This skim will contain all the events important in 
the domain. For example, a skim of a soccer game would contain 
all the goals. Clearly, this form is affected by the domain, and the 
users needs. 

Discourse centric: This skim will attempt to parse the discourse 
structure of the speech in the video, and determine the most 
significant audio segments using prosody analysis. 

2.3 Goals 
The goal of this work is the automatic generation of audio-visual 
skims for passive tasks, that summarize the video. This work 
focuses on creating discourse centric skims. We make the 
following assumptions: 

1. We do not know the semantics of the original. 

2. The data is not a raw stream (e.g. home videos), but is the 
result of an editing process (e.g. films, news). 

3. The time that the user has to watch the skim is known. 

Since we work on passive tasks, the information needs of the 
user are a priori unknown. A decision to detect certain set of 
predefined events will induce a bias in the skim, thereby 
conflicting with the assumption that the user needs are unknown. 
The assumption of the data stream being produced is an 
important one, since we shall attempt to preserve the grammar of 
the underlying produced video, so as to preserve meaning.  

3. COMPUTABLE SCENES 
In our work we have focused on the detection of computable 
scenes [18][19]. They are formed by looking at the relationships 
between elementary computable audio and video scenes and 
structure. The elementary audio and video scenes represent 
contiguous chunks of audio and video respectively. These scenes 
are termed computable, since they can be automatically 
computed using low-level features in the data. There are four 
types of computable scenes that arise due to different kinds of 



synchronizations between the elementary audio and visual 
computable scenes. Figure 2 shows one computable scene type. 

We do not address the problem of semantics of the segments, 
since this is not a well posed problem. There are three novel 
ideas in our approach: (a) analysis of the effects of rules of 
production on the data (b) a finite, causal memory model for 
segmenting audio and video and (c) the use of top-down 
structural grouping rules that enable us to be consistent with 
human perception. These scenes form the input to our 
condensation algorithm. 

The Informedia and the MoCA projects analyze data over the 
entire video. However, they do not perform scene level analysis 
for skim generation. In our current work, we analyze the data 
within one scene. In future work, we plan on utilizing the 
interesting syntactical relationships amongst scenes that exist in 
the video [15], for condensation. 

4. VISUAL COMPLEXITY 
In this section, we shall present an overview of the relationship 
between visual complexity of an image and its time for 
comprehension. Since the work in sections 4 and 5 have been 
reported before [17] we shall only summarize the key issues 
here. 

4.1 Insights: film making and psychology 
In film-making, there is a relationship between the size1 of the 
shot and its apparent time (i.e. time perceived by the viewer).: 

“Close-ups seem to last relatively longer on the screen than long 
shots. The content of the close up is immediately identified and 
understood. The long shot on the other hand, is usually filled 
with detailed information which requires eye-scanning over the 
entire tableau. The latter takes time to do, thus robbing it of 
screen time”  [15]. 

Recent results in experimental psychology [6] indicate the 
existence of an empirical law: the subjective difficulty in 
learning a concept is directly proportional to the Boolean 
complexity of the concept (the shortest prepositional formula 
representing the concept), i.e. to its logical incompressibility. 
Clearly, there is empirical evidence to suggest a relationship 
between visual “complexity” of a shot and its comprehensibility. 

4.2 Measuring visual complexity 
We define the visual complexity of an shot to be its Kolmogorov 
complexity [5]. In [17], we showed that length of the Lempel-

Ziv 2  codeword asymptotically converges to the Kolgomorov 
complexity of the shot. The complexity is estimated using a 
single key-frame3. Representing each shot by its key-frame is 
reasonable since our shot detection algorithm [21], is sensitive to 
changes in color and motion.  
We conducted a simple psychological experiment to measure the 
average comprehension time (i.e. the average of the times to 
answer who? where? what? and when?) for shot key-frames in 
[17]. We generate histograms of the average comprehension time 
after discretizing the complexity axis. The lower-bound on the 
comprehension time is generated by determining a least squares 
fit to the minimum time in each histogram. The distribution of 
times in each histogram slice, above the minimum time, is well 
modeled by a Rayleigh distribution. By using the 95th percentile 
cut-off for each histogram we get an estimate of the upper-bound 
on the comprehension time. The equations for the lines are as 
follows: 

Figure 2: A progressive scene followed by 
a dialog sequence.  
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where c is the normalized complexity and Ub and Lb are the 
upper and lower bounds respectively, in sec. The lines were 
estimated for c ∈ [0.25, 0.55] (since most of the data lies in this 
range) and then extrapolated. Hence, given a shot of duration to 
and normalized complexity cS, we can condense it to at most 
Ub(cS) sec by removing the last to -  Ub(cS) sec. The upper bound 
comprehension time is actually a conservative bound. This is 
because of two reasons: (a) the shots in a scene in a film are 
highly correlated (not i.i.d ) and (b) while watching a film, there 
is no conscious attempt at understanding the scene.  

5. VISUAL FILM SYNTAX 
In this section we shall give a brief overview of “film syntax.” 
Then, we shall discuss its utility in films and then give syntax 
based reduction schemes for two syntactic elements.  

5.1 Defining film syntax 
The phrase film syntax refers to the specific arrangement of shots 
so as to bring out their mutual relationship [15]. In practice, this 
takes on many forms (chapter 2, [15]) : (a) minimum number of 
shots in a sequence (b) varying the shot duration, to direct 
attention (c) changing the scale of the shot (there are “golden 
ratios” concerning the distribution of scale) (d) the specific 
ordering of the shots (this influences the meaning). These 
syntactical rules lack a formal basis, and have been arrived at by 
trial and error by film-makers. Hence, even though shots in a 
scene only show a small portion of the entire setting at any one 
time, the syntax allows the viewers to understand that these shots 
belong to the same scene.  

Let us contrast shots with words in a written document. Words 
have more or less fixed meanings and their position in a sentence 
is driven by the grammar of that language. However, in films it is 

                                                                 

                                                                 
2 Lempel-Ziv encoding is a form of universal data coding that doesn’t 
depend on the probability distribution of the source [5]. 
3 We choose the 5th frame after the beginning of the shot, to be its key-
frame. We acknowledge that there are other more sophisticated strategies 
for choosing key-frames.  

1 The size (long/medium/close-up/extreme close-up) refers to the size of 
the objects in the scene relative to the size of the image 



the phrase (a sequence of shots) that is the fundamental semantic 
unit. Each shot can have a multitude of meanings, that gets 
clarified only by its relationship to other shots. An object 
detector based approach (e.g. Informedia project [4], MoCA 
[13]) to skims, for films, at a conceptual level, makes the analogy 
“shots as words.” However, this is in contrast to the way film-
makers create a scene, where the syntax provides the meaning of 
the shot sequence. Hence, while condensing films, we must 
honor the film syntax. 

5.2 Syntax rules for shot removal 

A phrase is a sequence of shots designed to convey a particular 
semantic. According to the rules of cinematic syntax [15], a 
phrase must have at least three shots. “Two well chosen shots 
will create expectations of the development of narrative; the 
third well-chosen shot will resolve those expectations.” Sharff 
[15] also notes that depicting a meaningful conversation between 
m people requires at least 3m shots. Hence in a dialogue that 
shows two participants, this rule implies that we must have a 
minimum of six shots.  

Let us assume that we have a scene that has k shots. Then, we 
perform three types of syntax reductions (break points based on 
heuristics) based on the on the number of shots k (Table 1). The 
number and the location of the dropped shots depend on k and 
the syntax element (i.e. dialog or progressive). In the following 
discussion, we use a fictional film with a character called Alice.  

It is reasonable to expect that the number of phrases in a scene, 
increase with the number of shots. For short scenes (type I 
reduction) we assume that there is a single phrase, containing 
one principal idea, in the scene. For example, the director could 
show Alice, walking back to her apartment, in a short scene. 

Table 1: Three types of syntax reductions that depend on the 
element (dialog/progressive) and the number of shots k. 

Breakpoints for each type 
Element Min. phrase 

length I II III 

Dialog 6 k ≤ 15 15 < k < 30 k ≥ 30 

Progressive 3 k ≤ 6 6 < k < 15 k ≥ 15 

In scenes of medium duration (type II reduction) we assume that 
there are at most two phrases. For example, <1st phrase>: Alice 
could be shown entering her room,  switching on the lights, and 
be shown thinking. <2nd phrase>: then, she is shown walking to 
the shelves looking for a book, and is then shown with the book. 
We assume that scenes of long duration, (type III reduction) 

contain at most three phrases. Modifying the previous example 
— <1st phrase>: Alice is shown entering the room, <2nd phrase>: 
she is shown searching for the book, <3rd phrase>: she walks 
with the book to her desk and makes a phone call. Hence, the 
reduction attempts to capture the phrase in the middle and the 
two end phrases. 

In type I reduction, figure 3 (I), we drop shots from the right, 
since the director sets up the context of the scene using the initial 
shots. In type II, we expect an initial context, followed by a 
conclusion. Here, we start dropping shots from the middle, 
towards the ends. In type III, the scene is divided into three equal 
segments, and shots are dropped from the two interior segment 
boundaries. Unlike written text, there are no obvious visual 
“punctuation marks” in the shots to indicate a “phrase change.” 
Hence our syntax reduction strategy, which will capture the 
phrases in scenes of short and medium duration, may cause error 
in scenes of long duration. All shot detection algorithms generate 
certain number of false alarms and misses, and this affects the 
syntactical rules that we’ve developed. In [17], we show how to 
modify the minimum number of shots retained in a progressive 
scene by computing a statistical upper bound on the false alarm 
probability of the shot detector.  

Figure 3: Three syntax reduction mechanisms. The 
black boxes are the minimal phrases and will not be 
dropped, while the gray shots can be dropped. 

( II ) 

( III )

( I ) 

6. ANALYZING AUDIO 
In this section we discuss our approach for analyzing the audio 
stream prior to skim generation. We begin by first defining the 
audio analysis task for skims; then we present audio 
segmentation and significant phrase detection algorithms both of 
which use SVM classifiers. We conclude by presenting results in 
section 6.4. 

6.1 This is a hard problem! 
Audio skim generation aims at dramatic time reduction (up to 
90%) while preserving perceptual coherence. There are some 
clear drawbacks to simple approaches to determining useful 
segments in the audio stream. Let us assume that we wish to 
compress an audio track that is 100 sec. long, by 90%. Then: (a) 
downsampling the audio by 90% will leave the  audio to be 
severely degraded since the pitch of the speech segments will 
increase dramatically. (b) PR-SOLA [9] is a non-linear time 
compression technique that eliminates long pauses, and attempts 
to preserve the original pitch in the output. User studies indicate 
that users do not prefer to have the speech sped up beyond 1.6x 
(i.e. ~40% compression). (c) selecting only those segments that 
are synchronous with the pre-selected video shots makes the 
audio stream is choppy and difficult to comprehend [4]. We 
define an audio segment as a contiguous chunk of coherent 
audio. Our approach to automatically identify audio segments: 
(a) create robust classifiers on the audio data via SVM’s (b) 
detect significant phrases in speech via discourse structure 
analysis. 

6.2 Audio segment classification 
We build a tree-structured to classify each frame (100ms) into 
four generic classes: silence, clean speech, noisy speech and 
music / environmental sounds. We use 16 features in our 
approach [10], [14] [16]): (1) loudness, (2) low-band energy (3) 
high-band energy (4) low energy ratio (5) spectral roll off (6) 



spectral flux (7) spectral centroid (8) spectral entropy (9) MFCC 
(10) delta MFCC (11) RASTA, (12) PLP and four variants of the 
zero crossing rate (13) ZCR, (14) mean ZCR, (15) variance of 
the ZCR and (16) high ZCR-ratio [10]. The cepstral features, 
RASTA and PLP were chosen since they are well known to be 
good speech discriminators [14]. All other features were chosen 
for their ability to discriminate between music and speech.  

Silence frames are first separated from the rest of the audio 
stream using an adaptive threshold on the energy. Two SVM 
classifiers (C-SVM with radial basis kernel [3]) are then used in 
cascade: the remaining frames are separated into speech vs. non-
speech (music or environmental sounds); and the speech class is 
further classified as clean and noisy speech. We then apply a 
modified Viterbi decoding algorithm [14][19] to smooth the 
sequence of frame labels. The decoder makes use of the class 
transition probabilities, classifier error likelihood and a duration 
utility (a function of the prior duration distribution of each class) 
to find the maximum likelihood class path. 

6.3 Detecting significant phrases 
In this section, we shall summarize our work on detecting 
segment beginnings (SBEG’s) in speech. These are important as 
they serve as the introduction of new topic in the discourse [7], 
Detecting these discourse boundaries is different from 
determining emphasized portions of speech [2], since these 
emphasized portions can occur anywhere in the discourse 
(including SBEG’s).  

There has been much work in the computational linguistics 
community [8][7][12] to determine the acoustic correlates of the 
prosody in speech. Typically, SBEG’s have a preceding pause 
that is significantly longer than for other phrases, higher initial 
pitch values (mean, variance), and smaller pauses that end the 
phrase than for other phrases [7][8]. In our algorithm, we extract 
the following features per phrase: pitch and energy values (min, 
max, mean, variance) for the (initial, last and complete) portions 
of the phrase, pause durations preceding and following the 
phrase. 

Prior work [2][9] that uses speech based summarization indicates 
that users prefer relatively long segments of speech. In this work 
we restrict our attention to phrases that last between five to 
fifteen seconds.  Our approach is then summarized as follows: (a) 
we first detect all the silent portions in the data (b) candidate 
phrases are all segments of audio that lie between two silent 
portions, and which satisfy our phrase duration criterion. (c) We 
then extract the acoustic features per phrase, and the phrase is 
then classified using a C-SVM classifier, with a radial basis 
function kernel. Furthermore, we rank the significant segments 
as a function of the pause and pitch. 

6.4 Results 
In this section, we present results on the audio segment 
classification as well as the significant phrase detection.  

6.4.1 Segment classification 
We used 45 minutes of audio data from two films (Bladerunner, 
Four Weddings and a Funeral) to train our classifier. The data is 
complex containing speech overlaid with background sounds, 

music and other environmental sounds. The data was labeled by 
the first two authors, with the following labeling criteria: (a) 
segments classified as “music” were western music; speech was 
labeled as “noisy” or “clean” depending upon the level of the 
background sound; all other segments were labeled as 
“environmental” sounds. Weak speech segments embedded in 
environmental sounds (e.g. sounds from the street) were labeled 
as environmental sounds. The confusion matrixes for the two 
classifiers (after a five-fold cross validation) are as follows: 

Table 2: confusion matrixes for speech / non-speech 
(left) and Speech and noisy speech (right). 

T \ C S ¬S 

S 0.76 0.24 

¬S 0.13 0.87 

T \ C S SN 

S 0.84 0.16 

SN 0.06 0.94 

Where, T: true label, C: classifier result, S: Speech, ¬S: non-
speech (i.e. music / environmental sounds), SN: noisy speech.  

6.4.2 Significant phrase detection 
We used data from three films Bladerunner, Sense and 
sensibility, Pulp fiction  to label 324 phrases as “significant” or 
as “non-significant.” We labeled only those phrases that were 
complete grammatical phrases as significant. Examples of non-
significant phrases include — phrases that begin or end mid-
sentence, and the list of cue phrases (e.g. “now, what do you 
want to eat?”) [8]. Only the first author labeled the phrases. The 
ground truth had 48 significant phrases and 276 non-significant 
phrases. The results of five fold cross-validation on the 324 
phrases, using an SVM (radial basis kernel, γ = 0.04, C = 100, 
117 support vectors) gave 100% precision and 100% recall. We 
believe that this result is perhaps due to two factors: (a) labeling 
by one person only, and (b) the data was very consistent. We 
expect the performance to be lower in a more diverse test set. 

The two classifiers (i.e. the tree-structured audio segmentation 
algorithm and the significant phrase detector) are run in parallel, 
and the results of the significant phrase detector is merged with 
that of the audio segmentation to preserve the long, significant 
phrases. This is followed by heuristic rule-based smoothing that 
ensures a minimum duration (2 seconds) of a segment by 
merging short segments [10][19]. 

7. GENERATING SKIMS 
In this section, we develop our algorithm for automatic audio-
visual skim generation via constrained minimization. We begin 
by deriving a utility function for individual audio and video 
segments. Then, we discuss the penalty functions that operate on 
groups of audio and video segments. This is followed by a 
section on constraints. Finally, we discuss our optimization 
strategy. 

In the sections that follow we assume the following notation. Nv 
and Na represent the total number of video shots and audio 
segments in the original sequence; To is the original duration of 
the sequence, the target skim duration is Tf, to,n,v and to,k,a 
represent the original duration of the nth shot and the kth audio 
segment in the scene. Define indicator sequence φv(n) = 1 iff. nth 



video shot is present in the condensed scene. Define 
Nφ,v = ∑ φv(n), the number of video shots in the condensed 

scene. φa(n) = 1 iff. nth is not silent, and Nφ,a = ∑ φa(n) is the 
number of non-silent audio segments. 
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7.1 The need for a utility function 
In order to determine the skim duration, we need to measure the 
comprehensibility of a video shot and a audio segment as a 
function of its duration. The shot utility function, models the 
comprehensibility of a shot as a continuous function of its 
duration and its visual complexity. This idea is connected to the 
results in section  4.2 in following way. Let us assume for the 
sake of definitiveness, that we have a 10 sec. shot of complexity 
0.5. Then the upper bound duration Ub = 2.23 sec. We have 
argued that that if we reduce the shot duration to its upper bound, 
then there is a high probability that it will still be 
comprehensible.  Note that the results in section 4.2 do not tell us 
how the comprehensibility of a shot changes when we decrease 
its duration. Hence the need for a shot utility function. We do not 
have any experimental results indicating a similar complexity-
time relationship for audio, however, it seems fairly reasonable 
to conjecture its existence. Hence, the form of our audio utility 
function will be similar to the utility function that we shall derive 
in the next section for video shots. We model the utility of a 
video shot (audio segment) independently of other shots 
(segments). 

where, λ modulates the shot utility, tp,i is the proportional time 
for shot i i.e. , ,i f ot T Tο i  tLb,i and  tUb,i are the lower and upper 

time bounds for shot i, and S(t,c) is the shot utility function.  

The utility function for the sequence of shots is the sum of the 
utilities of the individual shots:  

 , ,
, : ( ) 1 : ( ) 0

1( , , ) ( , ) ( )
v v

v v v i v i p j
v i i j j

U t c S t c P t
Nφ φ = φ =

 
 φ = −
 
 
∑ ∑

G G  <4> 

where, 0 1: , ...v Nt t t t
G

and 0 1 .: , ... Nc c c cG  represent the durations 
and complexities of the shot sequence. 

We conjecture the utility function of an non-silent audio segment 
of duration t belonging to a class k as follows: 

 ( , ) (1 exp( ))k kA t k tβ λ= − −  <5> 

where, A is the utility function and where β and λ are class 
dependent parameters. When we need to remove an audio 
segment from the skim, we assign a negative utility to this silent 
(a dropped segment is silent) segment: 7.2 Defining the utility functions 

The non-negative utility function of a video shot S(t, c), where t 
is the duration of the shot and c is its complexity, must satisfy 
the following constraints: 

 ( 2( ) ( ) /i iL t t tο )θ= −  <6> 

where, ti is the duration of the ith silence, and where tο and θ are 
normalizing constants. Then, similar to equation <4>, we define 
the audio utility to be the sum of the utilities of the constituent 
segments. 

1. For fixed c, S(t, c) must be a non-decreasing function of the 
duration t. i.e. This is intuitive 
since decreasing the shot duration by dropping frames from 
the end of the shot (section 4.2), cannot increase its 
comprehensibility. 
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2.  This is because complexity c = 0 
implies the complete absence of any information, while 
c = 1 implies that the shot is purely random.  

( ,0) 0, ( ,1) 0.t S t S t∀ = =

where, 0 1: ,a Nt t t t
G

… and 0 1: , Nk k k k
G

… represent the durations 
and the class labels of the audio segments in the skim. We model the shot utility function to be a bounded, 

differentiable, separable, concave  function: 

  <2> ( , ) (1 ) (1 exp( )).S t c c c t= β − − −αi
7.3 The video rhythm penalty function 
The original sequence of shots have their duration arranged in a 
specific proportion according to the aesthetic wishes of the 
director of the film. Clearly, while condensing a scene, it is 
desirable to maintain this “film rhythm.” For example, in a scene 
with three shots of durations 5 sec. 10 sec. and 5 sec. maintaining 
the scene rhythm would imply that we preserve the ratios of the 
duration (i.e. 1:2:1) of the shots. We define the rhythm penalty 
function as follows: 

The exponential is due to the first constraint and the fact that the 
utility function is assumed to bounded. Symmetry with respect to 
complexity is again reasonable and the functional form stems 
from second constraint and concavity.  

When a shot i is dropped, we assign a negative utility P(tp,i) to 
the shot as follows:  
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where R is the penalty function, and where, ti is the duration of 
the ith shot in the current sequence, while to,i is the duration of the 
ith shot in the original sequence. The ratios are recalculated with 
respect to only those shots that are not dropped, since the rhythm 
will change when we drop the shots. will change when we drop the shots. 

7.4 The audio slack penalty function 7.4 The audio slack penalty function 
In film previews, one common method of packing audio 
segments tightly within a limited time, is to make them overlap 
by a slight duration. We associate a slack variable ξ, with each 
audio segment  that allows it to overlap the previous segment by 
ξ sec (see fig. 4). This variable is bounded as –2 ≤ ξ ≤ 0, for all 
segments (the slack of the first segment is zero). This allows us 
to compress audio data a little more without losing too much 
comprehensibility. We need to penalize excessive slack, and 
hence we have a slack penalty function. 

In film previews, one common method of packing audio 
segments tightly within a limited time, is to make them overlap 
by a slight duration. We associate a slack variable ξ, with each 
audio segment  that allows it to overlap the previous segment by 
ξ sec (see fig. 4). This variable is bounded as –2 ≤ ξ ≤ 0, for all 
segments (the slack of the first segment is zero). This allows us 
to compress audio data a little more without losing too much 
comprehensibility. We need to penalize excessive slack, and 
hence we have a slack penalty function. 
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where, ξi is the slack variable for the ith segment, Eo is a constant 
that normalizes the sum to 1, ki is the class label for the ith 
segment, and η is a class 
dependent coupling factor that 
weights the interaction 
between adjacent classes. For 
example, we never allow two 
adjacent speech segments to 
overlap. 

7.5 Constraints 
There are four principal constraints in our algorithm: (a) audio-
visual synchronization requirements (b) minimum and maximum 
duration bounds on the video shots and the audio segments (c) 
the visual syntactical constraints and (d) the total time duration. 
We shall only discuss the first two constraints since we’ve have 
extensively covered the syntactical constraints in section 5.2. 

7.5.1 Tied multimedia segments 

A multimedia segment is said to be fully tied if the 
corresponding audio and video segments begin and end 

synchronously, and in addition are uncompressed. Note also, that 
video shots that are tied cannot be dropped from the skim. The 
multimedia segments can also be partially tied only on the left or 
on the right, but in this case the corresponding segments are only 
synchronous at one end, and the video (audio) can be 
compressed. 

In figure 5, we show a fully tied segment corresponding to the 
section of audio marked as a significant phrase. Since the 
beginning (and ending) of a significant phrase will not in general 
coincide with a shot boundary, we shall split the shot intersected 
by the corresponding audio boundary into two fragments. To 
each fragment, we associate the complexity of the parent shot. 
Each tie boundary induces a synchronization constraint:   
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where N1, N2 are the number of video and audio segments to the 
left of the boundary respectively, tv,i is the duration of the ith 
video segment, ta,j is the duration of the jth audio segment and ξj 
is the slack variable associated with each audio segment. In 
equation <10>, the left side is just the sum of the duration of all 
the video shots to the left of the synchronization boundary. 
Similarly, the right side is the sum of the duration of all the audio 
segments and their corresponding slack variables. Note, a fully 
tied segment will induce two synchronization constraints, while a 
partial tie will induce one synchronization constraint. A skim 
represents a highly condensed sequence of audio and video, with 
a high information rate. Hence, a tied segment by virtue of being 
uncompressed and synchronous allows the viewer to “catch-up.”  

ξ 
Figure 4: the slack variable ξ 

7.5.2 Bounds on duration 
Each video shot and audio segment in the skim satisfies 
minimum and maximum duration constraints. For the video shot 
fragments, the lower bounds are determined from the complexity 
lower bound (eq. <1>). For the audio segments, we have 
heuristic bounds: silences 150ms, music / environmental sounds: 
3 sec. Speech segments are kept in their entirety and hence lower 
and upper bounds are made equal to the original duration. These 
heuristics will ensure that we have long audio segments in the 
skims, thus increasing the coherence of the skim. Note that each 
video shot and each audio segment is upper bounded by its 
original duration. We reduce the duration of the music / 
environmental sounds by trimming the end of the segment 
(except for the last segment, which is trimmed from the 
beginning). Speech segments are either kept in their entirety or 
dropped completely if the target time cannot be met. Trimming 
speech segments will make them sound incoherent since we may 
then cut a sentence mid-way.  

tied 

Video
7.6 Constrained minimization 
We focus on the generation of passive discourse centric 
summaries that have maximum coherence. Since we deem the 
speech segments to contain the maximum information, we shall 
seek to achieve this in two ways: (a) by biasing the audio utility 
functions in favor of the clean speech class and (b) biasing the 
solution search in favor of the clean speech class. In case the 
audio segments do not contain clean speech, the skim generation 

Audio

Figure 5: the gray box indicates a speech 
segment and the dotted lines show the 
corresponding tied video segment. 



algorithm will work just as well, except that in this case we are 
not biased with respect to any one class.  

In this implementation we construct fully tied multimedia 
segments the following way. We first assume that the audio has 
been segmented into classes with all the significant phrases 
marked. All the segments marked as “clean speech” are ranked 
depending on the significance of the segment. Then, we associate 
multimedia tied segments with these ranked speech segments 
only. All other segments (including “noisy speech”) have the 
same low rank and are not tied to the video. In order to ensure 
that the skim appears coherent, we do two things: (a) ensure that 
the principles of visual syntax are not violated and (b) have 
maximal number of tie constraints. These constraints ensure 
synchrony between the audio and the video segments. In the 
sections that follow, we assume the following: we are given Tf, 
the target duration of the skim, the audio has been segmented and 
the clean speech segments ranked, and that the video has been 
segmented into shots.  

7.6.1 Constraint relaxation 

We present the intuition behind our strategy for ensuring that a 
feasible solution region exists for the optimization algorithm. 
The detailed algorithm showing derivation of sufficient 
conditions for a solution region to exist can be found in [19]. We 
now present the key ideas: 

1. A fully tied multimedia segment ensures the following: (a) 
the corresponding audio and video segments are 
uncompressed. (b) none of these segments can be dropped. 
Hence, removing one synchronization constraint from a 
fully tied segment allows us to compress the audio and 
video segments and if necessary, drop them from the final 
skim. 

2. Only clean speech segments are fully tied. Since speech 
segments have been ranked according their significance, we 

remove one constraint starting from the lowest ranked 
speech segment. 

3. Once a feasible video solution region has been found, an 
audio feasible solution is guaranteed to exist, since we can 
always drop audio segments that are not in fully tied 
segments, by converting them to silence. The absence of 
syntactical rules governing audio segments, enables us to 
drop them. We pick the audio segments to drop in this 
order: pick noisy speech segments first. Then, if none exist, 
pick the segment that minimizes the deficit. 

Briefly then, we do the following: (a) start will all clean speech 
segments tied. (b) drop shots and relax constraints till the video 
budget is met. (c) Once the video budget is met, meet the audio 
budget by dropping audio segments in order. This is summarized 
in figure 6. 

The visual syntax constraints require that a minimum number of 
shots be present in the skim. Hence, there will some compression 
rates that cannot be met even after removing all the 
synchronization constraints. In that case, we create a “best” 
effort skim. This is done by first removing as many shots as 
allowed by the rules of syntax, and then setting the duration of 
each shot to its lower bound. The skim target duration is then 
modified to be the sum of the duration of these shots. We now 
present the optimization function. 

constraints: 
1. duration bounds 
2. sync. constraints 
3. visual syntax 

7.6.2 Mathematical formulation 

does a video solution exist? 

relax sync constraints

no 

We now define the objective function Of that gets minimized as a 
consequence of our minimization procedure. Then, given the 
target duration Tf : 

 1 2( , , , ) ( , ) ( )f a v c A a V vO t t n O t O tξ ω ξ ω= +
G GG G G G

 <11> 

minimization 

find feasible audio solution 

yes 
where, ω1, ω2 are constant weights. OA, OV, represent the audio, 
and video objective functions respectively and are defined as 
follows: 
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GG G G  <12> segment durations 

Figure 6: searching for a feasible solution by 
successively relaxing the synchronization 
constraints. 

where, λ1, λ2 are weighting factors. Note that once we have 
feasible solution regions, k , ,a vφ φ

G
are constants. The individual 

shot durations are determined as follows: 
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where No is the number of final synchronization constraints, T(k) 
is the class dependent audio lower bound. The first two 
constraints in equation <13> are duration constraints, the next 
two are total time budget constraints, while the last equation 
refers to the synchronization constraints. Note that Nmin is the 
minimum number of shots to be retained in the scene, and this 
arises from the syntactical rules discussed earlier. Also, the shots 
can be dropped only in a constrained manner using the rules in 
section 5.2.  

8. EXPERIMENTS 
The scenes used for creating the skims were from three films: 
Blade Runner (bla), Bombay (bom), Farewell my Concubine 
(far). The films were chosen for their diversity in film-making 
styles. While we arbitrarily picked one scene from each film, we 
ensured that each scene had a progressive phrase and a dialog. 

We conducted 
experiments with 
three different 
skim generation 
mechanisms: the 

algorithm 
presented in this 
paper, a 
proportional skim 
(let us assume 
that we wish to 
compress the 
segment by 75%; 
then in a 

proportional 
skim, each video 
shot and each 
audio segment 
would be 
compressed by 
75%; in both 

cases, we trim the data from the right of each video shot /  audio 
segment) and a semi-optimal skim with proportional video and 
the optimal audio segments from our algorithm. Note that 
previous user study results [17] with visual skims (that contained 
no audio) showed that a utility based visual skims were 
perceptually better (in a statistically significant sense) than 
proportionally reduced visual skims. Since presence of the 
optimal audio segments will make the third skim more coherent 
than the proportional skim, we deem it semi-optimal. In figure 7, 
the red segments (appears as dark gray in print) represent the 
video data, while the green (light gray) segments represent the 
audio segments; the black rectangle shows the significant phrase. 
Note that the semi-optimal and the proportional skims have the 
same proportional video data, and the optimal and the semi-
optimal skims have the same optimal audio data. 

2.

We would liked to have created one skim per compression rate, 
per film. However, this would have meant that each user would 
have had to rate 27 skims, an exhausting task. Instead, we 
created three skims (one from each algorithm) at each of the 
three different compression rates (90%, 80%, and 50%), thus 
creating nine skims. We conducted a pilot user study with twelve 
graduate students. Each film was on the average, familiar to 2.33 

students. The subjects were expected to evaluate each skim, on a 
scale of 1-7 (strongly disagree – strongly agree), on the 
following metric: Is the sequence coherent? They were 
additionally asked to indicate their agreement in answering the 
four generic questions of who? where? when? what? for the nine 
skims. The setup was double-blind and each user watched the 
skims in random order. 

Table 3: User test scores. The columns: algorithms (optimal, 
semi-optimal, proportional), the film, compression rate, and the 
five questions. The table shows values of the optimal and the 
difference of the scores of the (semi / pr) skims from the optimal. 
Bold numbers indicate statistically significant differences. 

Algo. Film Rate Coh? who? when? where? what? 

Opt  5.25 5.92 5.50 6.00 5.58 
semi / pr

bom 90 
2.3 / 0.9 1.1/ 0.75 0.9 / 0.5 1 / 0.75 1.6 / 0.6

Opt 4.83 6.00 5.50 6.00 5.58 
semi / pr

bla 80 
1.8 / 1.7 0.5 / 1.3 0.3 / 0.8 0.3 / 0.9 1.1 / 1.2

Opt 4.75 5.92 5.75 6.00 5.25 
semi / pr

far 50 
-0.2/ 0.5 0.3 / 0.2 0.1 / 0.1 0.3 / 0.3 0.0 / 0.2

original optimal s-opt. prop. 

The results are shown in table 3. The rows in table 3 show the 
averaged raw scores across users for the optimal algorithm and 
the raw score differences from the optimal, for the other two 
algorithms. The numbers in bold indicate statistically significant 
differences from the optimal skim. We computed the statistical 
significance using the standard Student’s t-test. The test scores 
indicates that the optimal skim is better than the other two skims, 
at a confidence level of 95% at the high compression rates (90% 
and 80%). Interestingly, the optimal skim was not significantly 
better than the other two skims at the 50% compression rate.  
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igure 7: The original video and the four
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hy do the significance tests yield different results at the high 
nd low rates? At low compression rates, our optimal skim, does 
ave proportionately reduced video shots; this is because of the 
hythm penalty function. (see section 7.3) and because the utility 
unction is exponential (see section 7.2) — hence flat at long 
urations. Hence the optimal result will be pretty similar to the  
ther two skims. At the high compression rates, proportionately 
educing the skim is not possible as this approach will severely 
ecrease the skim utility (it decays exponentially). This is 
ecause as some shots will fall below the lower bound for 
omprehension.  
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