
Network Prediction in a Policy-Based IP Network
Mandis Beigi and

Dinesh Verma
IBM T.J. Watson Research Center

30 SawmillRiver Road
Hawthorne, NY 10532

<mandis,dverma>@us.ibm.com

Abstract - In a Quality of Service (QoS) enabled network, the
Internet Service Providers (ISPs) need to define the network
requirements for the customers by defining a set of policies. Every
time a new customer gets added or removed or when a customer's
resource requirements change, the administrator needs to modify
the policies installed on the routers/servers in the network.
However, these modifications will affect the traffic flowing in the
network and in turn might take away some of the existing
customers' resources. Therefore, there is a need to predict how
changing the policies will affect the performance of the existing
traffic flows in the network. In this paper, we present a mechanism
for predicting whether adding, removing or changing a policy will
degrade the performance of the traffic flows belonging to the
previous customers. The network administrator can use this
information to better decide whether such modifications to the
policies are desired.

I. INTRODUCTION

The fast growing use of the Internet and the limited amount
of bandwidth and other network resources and services have
required a need for providing Quality of Service (QoS).
There have been two approaches for providing QoS, which
then became standards in the IETF. One approach is called
IntServ/RSVP, which uses a signaling mechanism for
reserving the required bandwidth. This work was then
followed by a newer approach called DiffServ, which solved
the problem of scaling with RSVP. In either approach, the
service classes are assigned to the users by the Internet
Service Providers (ISPs) and corporate administrators by
defining a set of policies [2]. A policy is defined for a user
(or user group) accessing an application (or application
group) running on a server (or group of servers). The policy
maps a traffic aggregate to a class of service (COS). In a
policy, the traffic is characterized by the 5-tuples in the IP
header (i.e. source and destination IP address or a range of
IP addresses, source and destination port numbers or a range
of port numbers and the protocol). The user can define an IP
address range by specifying a netmask or a prefix. A table
of COS mappings defines how each class of service is to be
implemented in the network. The COS mapping table
defines limits on the amount of resources that each class of
service should enforce, e.g. limits on the network bandwidth,
or bounds on the total number of connections belonging to
that class should be permitted at a server. A policy can have
a life span, which defines the period when the policy is
active. A life span has a beginning time and an ending time.
In addition to the life span, the policy may be further

restricted to be active only on specific days or dates by
specifying a validity time field.

In a typical enterprise, the number of routers and servers
runs into hundreds and thousands. Independent
configuration of all these devices is tedious and can easily
lead to missed devices and inconsistent configuration.
Therefore, in order to easily manage the network
configuration, a configuration management tool must be
used. In a QoS enabled network, this tool allows the
administrator to configure the policies from a central
location [1]. One advantage of having a central management
tool is that it allows the network administrator to generate
and distribute consistent configurations for all
routers/servers throughout the network. It also allows the
manager to verify the validity of the defined policies using
the knowledge of the network topology and the information
about each node [1]. However, when adding, removing or
changing policies in a network care must be taken not to
degrade the performance of the traffic matching the existing
policies. Therefore, there is a need for predicting the
behavior of the network before these policies get modified.
There has been some work on network traffic prediction by
modeling techniques [3, 4, 5]. In [3] the prediction method
uses archived quantitative performance data to create a
quantitative/qualitative dynamic system representation. The
representation captures the qualitative states of the network,
qualitative input events and transitions among the states
resulting from these events. The model shows the current
system behavior and is used to predict future possible
behaviors. [4] discusses a graphical predictor tool using an
object-oriented simulation analysis. In [5] the network
predictor discussed is built for QoS networks and uses a
combination of network component models and probabilistic
analysis. This predictor continuously monitors quality of
service, compares it with the expected or desired values and
projects future values. These methods, however, use past
data and performance measurements to predict the network
behavior in the future and they assume that the network
configuration and the policies are unchanged. So far, there
has been no work on prediction of the behavior of the traffic
in a QoS enabled network when policies get modified. In
the following sections of this paper, we present a method for
designing such a network prediction tool and discuss some
of the issues. We will also show some results from a
simulation using the network simulation (NS2) tool with the

DiffServ extension and finally present some conclusions and
future work in this area.

II. NETWORK PREDICTION METHOD

When defining the policies in a policy-based network, the
administrator needs to make sure they cover all possible
traffic flows. This means that there must be a policy defined
for every traffic flow or traffic aggregate in the network.
Each policy must have a priority associated with it, which is
used for ordering of the policies. The policy with the lowest
priority is the default policy, which maps all traffic not
covered by the previous policies onto a default class of
service, which normally is best effort. A traffic flow gets the
service class associated with the first matching policy (i.e.
with the highest priority) in the list.

Modification of a policy is one of three operations: addition,
change and deletion of the policy. Since a policy exists for
every possible traffic flow in a network, the addition and the
deletion operations as well as the change operation, result in
changing of a service class from one level to a new level.
When the network manager adds a new policy, the
prediction tool first checks whether the new policy requires
more or less resources than the old policy. Assuming that a
service class is defined as a traffic rate, a more resource
requirement translates to a requirement for a higher traffic
rate. If the new policy specifies a requirement for fewer
resources, the prediction tool can safely predict that this
policy will not hurt the performance of any other traffic
flows that share the same resources. On the other hand, if
the new policy requires more resources, the prediction tool
performs more involved steps. It first determines whether
the traffic matching the new policy shares resources with
any other traffic in the network. To do so, it finds the access
router pair(s) (i.e. the ingress and the egress routers) for the
source/destination IP addresses specified in the new policy.
It is assumed that the manager is aware of the network
topology and can retrieve the access routers by performing a
table lookup. Since in a policy, the source and the
destination IP addresses can be specified as a range of
addresses, there can be multiple ingress/egress access
routers. The next step is to determine all the possible paths
from the ingress to the egress access router(s) (i.e. find out
all the intermediate nodes) by performing a ‘traceroute’ from
the ingress access router(s) to the egress access router(s).
Figure 1 shows an example of having multiple paths
between a pair of source/destination address ranges. For
example, let’s assume that the new policy is defined as
having premium service for all the traffic originating from
subnet 1.1.0.0 (Site 1) and destined to subnet 1.2.0.0 (Site 2).
After a table lookup, the predictor finds out that subnet
1.1.0.0 is located behind the access routers called ingress1
and ingress2 and subnet 1.2.0.0 is located behind the access
routers called egress1 and egress2. Therefore, there are four
possible paths connecting these two sites as listed below.

Path1: ingress1-router1-router2-router3-router4-egress1
Path2: ingress1-router1-router2-router3-router6-egress2
Path3: ingress2-router5-router2-router3-router4-egress1
Path4: ingress2-router5-router2-router3-router6-egress2

Figure 1

The predictor then measures the traffic utilization (ignoring
the best effort traffic) on every link along these paths from
the ingress router to the egress router. Assuming that all the
link bandwidths in the network are known, the amount of
free bandwidth on every link along these paths is calculated.
All traffic measurements used by the predictor tool are
retrieved from the network manager (i.e. a monitoring tool)
which calculates a running average over a long period of
time. The next step is to find out all other policies' traffic
that will be affected by the new policy. This involves
determining all the possible paths in the network that share
any single link with the paths previously found and then
finding the corresponding policies. Since there are too many
such paths present in a large network, this operation is not
efficient and it is almost impossible to perform. To simplify
this operation, the predictor first calculates the extra
bandwidth required by the new policy by subtracting its old
bandwidth requirement from the new bandwidth
requirement. It then compares this difference with the
available bandwidth on every link along the path. It then
only considers the links along this path whose available
bandwidth is less than this difference. These links are so
called the congested links. The predictor then finds all the
existing policies that define traffic flows, which pass through
these congested links. To do this, the network predictor
dumps the shortest path graph of the network produced by
the OSPF routing protocol. This graph is split into two
separate trees, with the roots being the nodes on each side of
the congested link and the leaves of the trees being the
access routers in the network (see Figure 2). The predictor
traverses both trees and finds all the access routers in each
tree. It determines all the access routers on one side and all
the access routers on the other side of the congested link.
Then, it goes through all the installed policies and finds all

Ingress 2

Egress 1

Internet

Site 1

1.1.0.0

Site 2

1.2.0.0Ingress 1
Egress 2

1

2 3

4

5
6

the policies that have an ingress access router in the ingress
section and an egress access router in the egress section.
The predictor ignores the best effort traffic in all
measurements since it does not need to predict the affect of
the new policy on this kind of traffic. Here, we assume that
the network administrator is only concerned about the traffic
belonging to the customers who pay for the level of service
they have requested. It is fair to assume that the bottlenecks
are the link speeds in the network and not the processing
power and the internal resources of each router as is true in
today’ s networks.

Figure 2

To show how the predictor works, we consider the following
example.

Example

Let’ s consider the network as shown in Figure 3. In this
example, there are six subnets, and each subnet is connected
to the backbone through an access router. We assume that
the routers are DiffServ enabled and there are four policies
configured. Policies 1 through 3 specify better than best
effort class of service and policy 4 is the default policy.

Src IP Dest IP Src Port Dst Port Protocol Service
Level:

Policy 1: 1.4.0.0 1.3.0.0 ANY ANY TCP 20kbps
Policy 2: 1.2.0.0 1.5.0.0 ANY ANY UDP 20kbps
Policy 3: 1.6.0.0 1.4.0.0 ANY ANY TCP 20kbps
Policy 4: ANY ANY ANY ANY ANY 10kbps
New
Policy: 1.2.0.0 1.3.0.0 ANY ANY TCP 30kbps

IP Address Access Router Used

1.1.0.0 Access Router 1
1.2.0.0 Access Router 2
1.3.0.0 Access Router 3
1.4.0.0 Access router 4
1.5.0.0 Access router 5
1.6.0.0 Access router 6

Table 1

Figure 3

Error! Reference source not found. is used for finding the
access router(s) used by each subnet for connecting to the
backbone. With the current policies installed, all TCP traffic
originating from the subnet 1.2.0.0 and terminating in the
subnet 1.3.0.0, gets default class of service (10kbps). The
new policy requires a better service (i.e. 30kbps) for this
traffic flow. However, before adding this policy, the
administrator needs to find out if this modification affects
the traffic flows specified in policies 1 through 4. After
finding the path between the two subnets (i.e. Access Router
2, router 1, router 2, router 3, router 4, router 5, router 6,
Access Router 3), we calculate the free bandwidth on each
link along this path. Let N be the difference between the old
and the new required bandwidths and let b be the amount of
free bandwidth on a link.

N = Old Rate – New Rate = 30kbps - 10kbps = 20kbps

Link 1: Access Router 2 to Router 1

b1 = 35kbps b1>N
Link 2: Router 1 to Router 2

b2 = 50kbps b2>N
Link 3: Router 2 to Router 3

b3 = 10kbps b3<N ∴ (Congested link)
Link 4: Router 3 to Router 4

b4 = 10kbps b4<N ∴ (Congested link)
Link 5: Router 4 to Router 5

b5 = 40kbps b5>N
Link 6: Router 5 to Router 6

b6 = 50kbps b6>N
Link 7: Router 6 to Access Router 3

b7 = 45kbps b7>N

In this example, there are two congested links identified (i.e.
links 3 and 4). First, we consider link 3 (i.e. router 2 to
router 3). We split our network into two sections, the

 Congeste

Ingress
Access
Routers

Egress
Access
Routers

Ingress
Tree

Egress
Tree

:Core
router

:Access
Router

1 5 6

30%’
50kbps

20%
35kbps

90%
10kbps

20%
40kbps

30%
50kbps

35%
45kbps

80%
10kbps

7 8

109

1.2.0.0

Access
Router 2

1.3.0.0

Access
Router 3

1.1.0.0
Access

Router 1 1.4.0.0Access
Router 4

1.5.0.0

Access
Router 5

1.6.0.0

Access
Router 6

Ingress Section
For congested link2 3

Egress Section
For congested link 2 3

2 43

ingress section and the egress section. These two sections
are on either side of link 3. As can be seen in Figure 3 the
access routers 2 and 5 are the ingress routers and the access
routers 1, 3, 4 and 6 are the egress routers that use link 3.
Then we go through the installed policies and find the
policies which specify traffic flows originating from any
router in the ingress router section which are destined to any
router in the egress section. As we see in Figure 3, there are
no policies specifying such traffic flows. We follow the
same procedures for the congested link 4 (i.e. router 3 to
router 4). We find the ingress access routers to be 1, 2, 5
and 6 and the egress routers 3 and 4. From our policies, we
find that policy 3 uses this congested link and therefore its
traffic will be affected by the new policy.

III. SIMULATION AND RESULTS

To simulate the network prediction tool, we used the
network simulator (NS2) with the DiffServ extensions added
by Sean Murphy [7].

Subnet5

Subnet1

Subnet2 AR2

AR1
AR5

R2

R1
R4

R5 R6

R7

R8

R9R3

Subnet4

Subnet3

AR3

User1User2

User3

User4

User2

User1

User3
User4 User1

User2
User3

User4

User1
User2

User3

User4

User1

User4

User2
User3

AR4

Figure 4

As seen in Figure 4, there are 5 access routers and 9 core
routers in the simulated network. Each access router
connects a LAN of four users to the backbone. The LAN
speed is 10 Mbps and all the backbone links are 1.0 Mbps
each. There are 11 policies specified. Policies 3, 6 and 9
give the highest class of service to all traffic matching the
paths AR2 AR5, AR4 AR3 and AR5 AR1,
respectively. Policies 2, 5 and 8 give medium class of
service to all traffic matching the paths AR1 AR4, AR2

 AR3, and AR3 AR2, respectively. Policies 1, 4, 7 and
10 give the lowest class of service to all traffic matching the
paths AR1 AR5, AR1 AR3, AR4 AR2 and AR5
AR4, respectively. Finally, policy 11 is the default policy,
which maps all other traffic flows not specified in policies 1
through 10 onto a best effort class of service. Note that the
prediction tool does not determine the affect of the new
policy on the best effort traffic.

 Source Dest Class Rate
Policy 1:AR1 AR5 low/EF 100 kbps

Policy 2:AR1 AR4 medium/EF 200 kbps
Policy 3:AR2 AR5 high/EF 300 kbps
Policy 4:AR1 AR3 low/EF 100 kbps
Policy 5:AR2 AR3 medium/EF 200 kbps
Policy 6:AR4 AR3 high/EF 300 kbps
Policy 7:AR4 AR2 low/EF 100 kbps
Policy 8:AR3 AR2 medium/EF 200 kbps
Policy 9:AR5 AR1 high/EF 300 kbps
Policy 10:AR5 AR4 low/EF 100 kbps
Policy 11:ANY ANY BE

New Policy:AR1 AR3 high 300 kb/s

A new policy is being added to move all traffic flows from
AR1 to AR3 onto the highest class of service (300kbps).
However, this traffic was previously being mapped onto the
lowest class (100kbps) as specified in policy 4. The
simulated prediction tool finds the old policy and calculates
the difference between the old traffic rate and the new rate to
be 200kbps (i.e. 300kbps – 100kbps). Table 2 shows the
throughput on every link along the path from AR1 to AR3
before the new policy gets added. The links R2 R3 and
R3 R4 (as highlighted in the table) show a high utilization
where the free bandwidths are only 76.1kbps (i.e. 1000kbps
– 923.9kbps) and 77.7kbps (i.e. 1000kbps – 922.3kbps),
respectively. Since these free bandwidths are smaller than
the needed extra bandwidth (i.e. 200kbps), the prediction
tool marks these links as congested links. It then finds the
affected policies to be policies 1 through 5 whose traffic
passes through these congested links. The predictor then
warns the administrator about a performance hit on these
traffic flows so that he/she can decide whether or not to add
the new policy.

Link Throughput
Before New Policy

Unused Bandwidth

AR1 R1 424.2 kbps 575.8 kbps (> 200 kbps)
R1 R2 425.2 kbps 574.8 kbps (> 200 kbps)
R2 R3 923.9 kbps 76.1 kbps (< 200 kbps)
R3 R4 922.3 kbps 77.7 kbps (< 200 kbps)
R4 R5 625.4 kbps 374.6 kbps (> 200 kbps)
R5 R6 609.4 kbps 390.6 kbps (> 200 kbps)
R6 R8 608.6 kbps 391.4 kbps (> 200 kbps)

R8 AR3 608.2 kbps 39.8 kbps (> 200 kbps)

Table 2: Table used for finding the congested links

To verify the prediction, the new policy is added and the
traffic rates belonging to all the policies are again measured.
Table 3 shows the rate of all the traffic flows in the network
before and after the new policy is added. As predicted,
adding of the new policy affects the traffic matching policies
1 through 5. All affected traffic flows use the links R2
R3 and R3 R4.

Path Corresponding
Policy

Throughput
Before New

Policy

Throughput
After New

Policy
AR1 AR5 Policy 1 110.0 kbps 107.9 kbps
AR1 AR4 Policy 2 204.1 kbps 199.9 kbps
AR2 AR5 Policy 3 297.8 kbps 244.0 kbps
AR1 AR3 Policy 4 103.7 kbps 284.8 kbps
AR2 AR3 Policy 5 203.7 kbps 157.9 kbps
AR4 AR3 Policy 6 300.7 kbps 300.7 kbps
AR4 AR2 Policy 7 111.3 kbps 111.3 kbps
AR3 AR2 Policy 8 205.8 kbps 205.8 kbps
AR5 AR1 Policy 9 300.7 kbps 300.7 kbps
AR5 AR4 Policy 10 111.7 kbps 111.7 kbps

Table 3: Table showing the affected policies

The following diagram is a plot of the accuracy of the
predictor versus the link speeds in the core network. The
solid line represents the accuracy of the predictor for token
buckets of sizes 50kbits, 30kbits and 10kbits used for the
high, medium and the low classes of service definitions,
respectively, and the dotted line represents the accuracy for
token buckets of sizes 5kbits, 3kbits and 1kbits. As can be
seen from the plot, the accuracy of the predictor is high
when the bottlenecks are the link speeds in the network and
not the internals of the routers.

Figure 5

IV. COMPLEXITY AND SCALABILITY

In order to calculate the complexity of the network predictor,

we define the following variables:

m: the number of core routers
n: the number of access routers
p: the number of installed/existing policies

To determine the congested links along the path of the new
policy from the ingress access router to the egress access
router the operations performed are on the order of m. Next,
for every congested link, the predictor needs to traverse the
ingress and the egress trees, which is on the order of m since
there are a total of m nodes in both trees (combined) to be
traversed. Next, in order to find the affected policies, the
predictor performs nxp operations. The total number of
operations performed by the predictor is linearly
proportional to the total number of the core and access
routers and the total number of the installed policies.

Therefore, the network predictor is scalable and can easily
be used for large networks with a large number of core and
access routers.

o(complexity) = o(2m) + o(np)

CONCLUSION AND FUTURE WORK

The network predictor tool enables the administrator to
determine whether changing a policy in a quality of
service/policy enabled network would affect the
performance of the traffic matching the existing policies.
The network predictor tool is easy to implement and can
greatly impact the ease of the configuration and management
of a policy enabled network. It is also scalable and can be
used for large networks having many core and access
routers.

The network predictor described in this paper assumes that
the quality of service measures are in terms of the traffic rate
only. However, this measure can also be described in terms
of the end-to-end delay and/or the packet loss percentage.
As a future work item, we will investigate how the predictor
would determine the congested links in the network being
affected by the changes to the policy. We will also
investigate how the predictor will determine the affected
policies if they are associated with a life span. In this case,
each policy is good only for certain periods of the time so
the predictor needs to determine the overlaps of the policies
during the same period of time.

REFERENCES

[1] D. Verma, M. Beigi and R. Jennings, “Policy based
SLA Manaagement Management in Enterprise Networks”,
Workshop on Policies for Distributed Systems and
Networks, January 2001.
[2] R. Rajan, D. Verma, S. Kamat, E. Felstaine and S.
Herzog, “A Policy Framework for Integrated and
Differentiated Services in the Internet”,
http://www.allot.com/technology/PBN.htm.
[3] S. Ibraheem, M. Kokar and L. Lewis, “Capturing a
Qualitative Model of Network Performance and Predicting
Behavior”, Journal of Network and Systems Management,
Vol. 6, No. 4, 1998.
[4] J. Goble and R. Mills, “COMNET III: Object-
Oriented Network Performance Prediction”, Proceedings of
the 1994 Winter Simulation Conference, 1994.
[5] B. Frogner and A. Cannara, “Monitoring and
Prediction of Network Performance”, Proceedings of the
International Workshop on Advance Issues of E-Commerce
and Web-Based Information Systems, 1998.
[6] C. Taylor and D. Meldrum, “Freeway Traffic Data
Prediction using Neural Networks”, National Technical
Information Service, PB95-242343 , Springfield, 1995.
[7] S. Murphy, “DiffServ Additions to NS-2”,
http://www.teltec.dcu.ie/~murphys/ns-work/diffserv.

