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Abstract - In a Quality of Service (QoS) enabled network, the 
Internet Service Providers (ISPs) need to define the network 
requirements for the customers by defining a set of policies.  Every 
time a new customer gets added or removed or when a customer's 
resource requirements change, the administrator needs to modify 
the policies installed on the routers/servers in the network.  
However, these modifications will affect the traffic flowing in the 
network and in turn might take away some of the existing 
customers' resources.  Therefore, there is a need to predict how 
changing the policies will affect the performance of the existing 
traffic flows in the network.  In this paper, we present a mechanism 
for predicting whether adding, removing or changing a policy will 
degrade the performance of the traffic flows belonging to the 
previous customers.  The network administrator can use this 
information to better decide whether such modifications to the 
policies are desired. 
 

I. INTRODUCTION 

The fast growing use of the Internet and the limited amount 
of bandwidth and other network resources and services have 
required a need for providing Quality of Service (QoS).  
There have been two approaches for providing QoS, which 
then became standards in the IETF.  One approach is called 
IntServ/RSVP, which uses a signaling mechanism for 
reserving the required bandwidth.  This work was then 
followed by a newer approach called DiffServ, which solved 
the problem of scaling with RSVP.  In either approach, the 
service classes are assigned to the users by the Internet 
Service Providers (ISPs) and corporate administrators by 
defining a set of policies [2].  A policy is defined for a user 
(or user group) accessing an application (or application 
group) running on a server (or group of servers).  The policy 
maps a traffic aggregate to a class of service (COS).  In a 
policy, the traffic is characterized by the 5-tuples in the IP 
header (i.e. source and destination IP address or a range of 
IP addresses, source and destination port numbers or a range 
of port numbers and the protocol).  The user can define an IP 
address range by specifying a netmask or a prefix.  A table 
of COS mappings defines how each class of service is to be 
implemented in the network.  The COS mapping table 
defines limits on the amount of resources that each class of 
service should enforce, e.g. limits on the network bandwidth, 
or bounds on the total number of connections belonging to 
that class should be permitted at a server.  A policy can have 
a life span, which defines the period when the policy is 
active.  A life span has a beginning time and an ending time.  
In addition to the life span, the policy may be further 

restricted to be active only on specific days or dates by 
specifying a validity time field. 
 
In a typical enterprise, the number of routers and servers 
runs into hundreds and thousands.  Independent 
configuration of all these devices is tedious and can easily 
lead to missed devices and inconsistent configuration.  
Therefore, in order to easily manage the network 
configuration, a configuration management tool must be 
used.  In a QoS enabled network, this tool allows the 
administrator to configure the policies from a central 
location [1].  One advantage of having a central management 
tool is that it allows the network administrator to generate 
and distribute consistent configurations for all 
routers/servers throughout the network.  It also allows the 
manager to verify the validity of the defined policies using 
the knowledge of the network topology and the information 
about each node [1].  However, when adding, removing or 
changing policies in a network care must be taken not to 
degrade the performance of the traffic matching the existing 
policies.  Therefore, there is a need for predicting the 
behavior of the network before these policies get modified.  
There has been some work on network traffic prediction by 
modeling techniques [3, 4, 5].  In [3] the prediction method 
uses archived quantitative performance data to create a 
quantitative/qualitative dynamic system representation.  The 
representation captures the qualitative states of the network, 
qualitative input events and transitions among the states 
resulting from these events.  The model shows the current 
system behavior and is used to predict future possible 
behaviors.  [4] discusses a graphical predictor tool using an 
object-oriented simulation analysis.  In [5] the network 
predictor discussed is built for QoS networks and uses a 
combination of network component models and probabilistic 
analysis.  This predictor continuously monitors quality of 
service, compares it with the expected or desired values and 
projects future values.  These methods, however, use past 
data and performance measurements to predict the network 
behavior in the future and they assume that the network 
configuration and the policies are unchanged.  So far, there 
has been no work on prediction of the behavior of the traffic 
in a QoS enabled network when policies get modified.  In 
the following sections of this paper, we present a method for 
designing such a network prediction tool and discuss some 
of the issues.  We will also show some results from a 
simulation using the network simulation (NS2) tool with the 



DiffServ extension and finally present some conclusions and 
future work in this area. 
 

II. NETWORK PREDICTION METHOD 

When defining the policies in a policy-based network, the 
administrator needs to make sure they cover all possible 
traffic flows.  This means that there must be a policy defined 
for every traffic flow or traffic aggregate in the network.  
Each policy must have a priority associated with it, which is 
used for ordering of the policies.  The policy with the lowest 
priority is the default policy, which maps all traffic not 
covered by the previous policies onto a default class of 
service, which normally is best effort.  A traffic flow gets the 
service class associated with the first matching policy (i.e. 
with the highest priority) in the list. 
 
Modification of a policy is one of three operations: addition, 
change and deletion of the policy.  Since a policy exists for 
every possible traffic flow in a network, the addition and the 
deletion operations as well as the change operation, result in 
changing of a service class from one level to a new level. 
When the network manager adds a new policy, the 
prediction tool first checks whether the new policy requires 
more or less resources than the old policy.  Assuming that a 
service class is defined as a traffic rate, a more resource 
requirement translates to a requirement for a higher traffic 
rate.  If the new policy specifies a requirement for fewer 
resources, the prediction tool can safely predict that this 
policy will not hurt the performance of any other traffic 
flows that share the same resources.  On the other hand, if 
the new policy requires more resources, the prediction tool 
performs more involved steps.  It first determines whether 
the traffic matching the new policy shares resources with 
any other traffic in the network.  To do so, it finds the access 
router pair(s) (i.e. the ingress and the egress routers) for the 
source/destination IP addresses specified in the new policy.  
It is assumed that the manager is aware of the network 
topology and can retrieve the access routers by performing a 
table lookup.  Since in a policy, the source and the 
destination IP addresses can be specified as a range of 
addresses, there can be multiple ingress/egress access 
routers.  The next step is to determine all the possible paths 
from the ingress to the egress access router(s) (i.e. find out 
all the intermediate nodes) by performing a ‘traceroute’ from 
the ingress access router(s) to the egress access router(s).  
Figure 1 shows an example of having multiple paths 
between a pair of source/destination address ranges.  For 
example, let’s assume that the new policy is defined as 
having premium service for all the traffic originating from 
subnet 1.1.0.0 (Site 1) and destined to subnet 1.2.0.0 (Site 2).  
After a table lookup, the predictor finds out that subnet 
1.1.0.0 is located behind the access routers called ingress1 
and ingress2 and subnet 1.2.0.0 is located behind the access 
routers called egress1 and egress2.  Therefore, there are four 
possible paths connecting these two sites as listed below. 

 
Path1: ingress1-router1-router2-router3-router4-egress1 
Path2: ingress1-router1-router2-router3-router6-egress2 
Path3: ingress2-router5-router2-router3-router4-egress1 
Path4: ingress2-router5-router2-router3-router6-egress2 
 

Figure 1 

 
The predictor then measures the traffic utilization (ignoring 
the best effort traffic) on every link along these paths from 
the ingress router to the egress router.  Assuming that all the 
link bandwidths in the network are known, the amount of 
free bandwidth on every link along these paths is calculated.  
All traffic measurements used by the predictor tool are 
retrieved from the network manager (i.e. a monitoring tool) 
which calculates a running average over a long period of 
time.  The next step is to find out all other policies' traffic 
that will be affected by the new policy.  This involves 
determining all the possible paths in the network that share 
any single link with the paths previously found and then 
finding the corresponding policies.  Since there are too many 
such paths present in a large network, this operation is not 
efficient and it is almost impossible to perform.  To simplify 
this operation, the predictor first calculates the extra 
bandwidth required by the new policy by subtracting its old 
bandwidth requirement from the new bandwidth 
requirement.  It then compares this difference with the 
available bandwidth on every link along the path.  It then 
only considers the links along this path whose available 
bandwidth is less than this difference.  These links are so 
called the congested links.  The predictor then finds all the 
existing policies that define traffic flows, which pass through 
these congested links.  To do this, the network predictor 
dumps the shortest path graph of the network produced by 
the OSPF routing protocol.  This graph is split into two 
separate trees, with the roots being the nodes on each side of 
the congested link and the leaves of the trees being the 
access routers in the network (see Figure 2).  The predictor 
traverses both trees and finds all the access routers in each 
tree.  It determines all the access routers on one side and all 
the access routers on the other side of the congested link.  
Then, it goes through all the installed policies and finds all 
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the policies that have an ingress access router in the ingress 
section and an egress access router in the egress section.  
The predictor ignores the best effort traffic in all 
measurements since it does not need to predict the affect of 
the new policy on this kind of traffic.  Here, we assume that 
the network administrator is only concerned about the traffic 
belonging to the customers who pay for the level of service 
they have requested.  It is fair to assume that the bottlenecks 
are the link speeds in the network and not the processing 
power and the internal resources of each router as is true in 
today’ s networks. 
 

Figure 2 
 
To show how the predictor works, we consider the following 
example. 
 
Example 

Let’ s consider the network as shown in Figure 3.  In this 
example, there are six subnets, and each subnet is connected 
to the backbone through an access router.  We assume that 
the routers are DiffServ enabled and there are four policies 
configured.  Policies 1 through 3 specify better than best 
effort class of service and policy 4 is the default policy. 
 

Src IP Dest IP Src Port Dst Port Protocol Service 
Level: 

Policy 1: 1.4.0.0 1.3.0.0 ANY ANY TCP 20kbps 
Policy 2: 1.2.0.0 1.5.0.0 ANY ANY UDP 20kbps 
Policy 3: 1.6.0.0 1.4.0.0 ANY ANY TCP 20kbps 
Policy 4: ANY ANY ANY ANY ANY 10kbps 
New 
Policy: 1.2.0.0 1.3.0.0 ANY ANY TCP 30kbps 
 

IP Address Access Router Used 

1.1.0.0 Access Router 1 
1.2.0.0 Access Router 2 
1.3.0.0 Access Router 3 
1.4.0.0 Access router 4 
1.5.0.0 Access router 5 
1.6.0.0 Access router 6 

Table 1 

 
Figure 3 

Error! Reference source not found. is used for finding the 
access router(s) used by each subnet for connecting to the 
backbone.  With the current policies installed, all TCP traffic 
originating from the subnet 1.2.0.0 and terminating in the 
subnet 1.3.0.0, gets default class of service (10kbps).  The 
new policy requires a better service (i.e. 30kbps) for this 
traffic flow.  However, before adding this policy, the 
administrator needs to find out if this modification affects 
the traffic flows specified in policies 1 through 4.  After 
finding the path between the two subnets (i.e. Access Router 
2, router 1, router 2, router 3, router 4, router 5, router 6, 
Access Router 3), we calculate the free bandwidth on each 
link along this path.  Let N be the difference between the old 
and the new required bandwidths and let b be the amount of 
free bandwidth on a link. 
 

N = Old Rate – New Rate = 30kbps - 10kbps = 20kbps 
 
Link 1: Access Router 2 to Router 1 

b1 = 35kbps b1>N 
Link 2: Router 1 to Router 2 

b2 = 50kbps b2>N 
Link 3: Router 2 to Router 3 

b3 = 10kbps b3<N ∴ (Congested link) 
Link 4: Router 3 to Router 4 

b4 = 10kbps b4<N ∴ (Congested link) 
Link 5: Router 4 to Router 5 

b5 = 40kbps b5>N 
Link 6: Router 5 to Router 6 

b6 = 50kbps b6>N 
Link 7: Router 6 to Access Router 3 

b7 = 45kbps b7>N 
 
In this example, there are two congested links identified (i.e. 
links 3 and 4).  First, we consider link 3 (i.e. router 2 to 
router 3).  We split our network into two sections, the 
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ingress section and the egress section.  These two sections 
are on either side of link 3.  As can be seen in Figure 3 the 
access routers 2 and 5 are the ingress routers and the access 
routers 1, 3, 4 and 6 are the egress routers that use link 3.  
Then we go through the installed policies and find the 
policies which specify traffic flows originating from any 
router in the ingress router section which are destined to any 
router in the egress section.  As we see in Figure 3, there are 
no policies specifying such traffic flows.  We follow the 
same procedures for the congested link 4 (i.e. router 3 to 
router 4).  We find the ingress access routers to be 1, 2, 5 
and 6 and the egress routers 3 and 4.  From our policies, we 
find that policy 3 uses this congested link and therefore its 
traffic will be affected by the new policy. 
 

III. SIMULATION AND RESULTS 

To simulate the network prediction tool, we used the 
network simulator (NS2) with the DiffServ extensions added 
by Sean Murphy [7]. 
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As seen in Figure 4, there are 5 access routers and 9 core 
routers in the simulated network.  Each access router 
connects a LAN of four users to the backbone.  The LAN 
speed is 10 Mbps and all the backbone links are 1.0 Mbps 
each.  There are 11 policies specified.  Policies 3, 6 and 9 
give the highest class of service to all traffic matching the 
paths AR2  AR5, AR4  AR3 and AR5  AR1, 
respectively.  Policies 2, 5 and 8 give medium class of 
service to all traffic matching the paths AR1  AR4, AR2 

 AR3, and AR3  AR2, respectively.  Policies 1, 4, 7 and 
10 give the lowest class of service to all traffic matching the 
paths AR1  AR5, AR1  AR3, AR4  AR2 and AR5  
AR4, respectively.  Finally, policy 11 is the default policy, 
which maps all other traffic flows not specified in policies 1 
through 10 onto a best effort class of service.  Note that the 
prediction tool does not determine the affect of the new 
policy on the best effort traffic. 
 
 Source Dest Class  Rate 
Policy 1:AR1 AR5 low/EF  100 kbps 

Policy 2:AR1 AR4 medium/EF 200 kbps 
Policy 3:AR2 AR5 high/EF  300 kbps 
Policy 4:AR1 AR3 low/EF  100 kbps 
Policy 5:AR2 AR3 medium/EF 200 kbps 
Policy 6:AR4 AR3 high/EF  300 kbps 
Policy 7:AR4 AR2 low/EF  100 kbps 
Policy 8:AR3 AR2 medium/EF 200 kbps 
Policy 9:AR5 AR1 high/EF  300 kbps 
Policy 10:AR5 AR4 low/EF  100 kbps 
Policy 11:ANY ANY BE 
 
New Policy:AR1 AR3 high 300 kb/s 
 
A new policy is being added to move all traffic flows from 
AR1 to AR3 onto the highest class of service (300kbps).  
However, this traffic was previously being mapped onto the 
lowest class (100kbps) as specified in policy 4.  The 
simulated prediction tool finds the old policy and calculates 
the difference between the old traffic rate and the new rate to 
be 200kbps (i.e. 300kbps – 100kbps).  Table 2 shows the 
throughput on every link along the path from AR1 to AR3 
before the new policy gets added.  The links R2  R3 and 
R3  R4 (as highlighted in the table) show a high utilization 
where the free bandwidths are only 76.1kbps (i.e. 1000kbps 
– 923.9kbps) and 77.7kbps (i.e. 1000kbps – 922.3kbps), 
respectively.  Since these free bandwidths are smaller than 
the needed extra bandwidth (i.e. 200kbps), the prediction 
tool marks these links as congested links.  It then finds the 
affected policies to be policies 1 through 5 whose traffic 
passes through these congested links.  The predictor then 
warns the administrator about a performance hit on these 
traffic flows so that he/she can decide whether or not to add 
the new policy. 
 

Link Throughput 
Before New Policy 

Unused Bandwidth 

AR1  R1 424.2 kbps 575.8 kbps  (> 200 kbps) 
R1  R2 425.2 kbps 574.8 kbps  (> 200 kbps) 
R2  R3 923.9 kbps 76.1 kbps  (< 200 kbps) 
R3  R4 922.3 kbps 77.7 kbps  (< 200 kbps) 
R4  R5 625.4 kbps 374.6 kbps  (> 200 kbps) 
R5  R6 609.4 kbps 390.6 kbps  (> 200 kbps) 
R6  R8 608.6 kbps 391.4 kbps  (> 200 kbps) 

R8  AR3 608.2 kbps 39.8 kbps  (> 200 kbps) 

Table 2: Table used for finding the congested links 
 
To verify the prediction, the new policy is added and the 
traffic rates belonging to all the policies are again measured.  
Table 3 shows the rate of all the traffic flows in the network 
before and after the new policy is added.  As predicted, 
adding of the new policy affects the traffic matching policies 
1 through 5.  All affected traffic flows use the links R2  
R3 and R3  R4. 
 
 
 



Path Corresponding 
Policy 

Throughput 
Before New 

Policy 

Throughput 
After New 

Policy 
AR1  AR5 Policy 1 110.0 kbps 107.9 kbps 
AR1  AR4 Policy 2 204.1 kbps 199.9 kbps 
AR2  AR5 Policy 3 297.8 kbps 244.0 kbps 
AR1  AR3 Policy 4 103.7 kbps 284.8 kbps 
AR2  AR3 Policy 5 203.7 kbps 157.9 kbps 
AR4  AR3 Policy 6 300.7 kbps 300.7 kbps 
AR4  AR2 Policy 7 111.3 kbps 111.3 kbps 
AR3  AR2 Policy 8 205.8 kbps 205.8 kbps 
AR5  AR1 Policy 9 300.7 kbps 300.7 kbps 
AR5  AR4 Policy 10 111.7 kbps 111.7 kbps 

Table 3: Table showing the affected policies 
 
The following diagram is a plot of the accuracy of the 
predictor versus the link speeds in the core network.  The 
solid line represents the accuracy of the predictor for token 
buckets of sizes 50kbits, 30kbits and 10kbits used for the 
high, medium and the low classes of service definitions, 
respectively, and the dotted line represents the accuracy for 
token buckets of sizes 5kbits, 3kbits and 1kbits.  As can be 
seen from the plot, the accuracy of the predictor is high 
when the bottlenecks are the link speeds in the network and 
not the internals of the routers. 

Figure 5 

 
IV. COMPLEXITY AND SCALABILITY 

In order to calculate the complexity of the network predictor, 

we define the following variables: 

m: the number of core routers 
n: the number of access routers 
p: the number of installed/existing policies 

To determine the congested links along the path of the new 
policy from the ingress access router to the egress access 
router the operations performed are on the order of m.  Next, 
for every congested link, the predictor needs to traverse the 
ingress and the egress trees, which is on the order of m since 
there are a total of m nodes in both trees (combined) to be 
traversed.  Next, in order to find the affected policies, the 
predictor performs nxp operations.  The total number of 
operations performed by the predictor is linearly 
proportional to the total number of the core and access 
routers and the total number of the installed policies.  

Therefore, the network predictor is scalable and can easily 
be used for large networks with a large number of core and 
access routers. 

o(complexity) = o(2m) + o(np) 
 

CONCLUSION AND FUTURE WORK 

The network predictor tool enables the administrator to 
determine whether changing a policy in a quality of 
service/policy enabled network would affect the 
performance of the traffic matching the existing policies.  
The network predictor tool is easy to implement and can 
greatly impact the ease of the configuration and management 
of a policy enabled network.  It is also scalable and can be 
used for large networks having many core and access 
routers. 
 
The network predictor described in this paper assumes that 
the quality of service measures are in terms of the traffic rate 
only.  However, this measure can also be described in terms 
of the end-to-end delay and/or the packet loss percentage.  
As a future work item, we will investigate how the predictor 
would determine the congested links in the network being 
affected by the changes to the policy.  We will also 
investigate how the predictor will determine the affected 
policies if they are associated with a life span.  In this case, 
each policy is good only for certain periods of the time so 
the predictor needs to determine the overlaps of the policies 
during the same period of time. 
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