

LEARNING STRUCTURED
VISUAL DETECTORS

FROM USER INPUT AT MULTIPLE LEVELS

ALEJANDRO JAIMES
Department of Electrical Engineering, Columbia University, 500 West 120th street MC 4712

New York, NY 10027, USA
E-mail: ajaimes@ee.columbia.edu

Web: www.ee.columbia.edu/~ajaimes

SHIH-FU CHANG
Department of Electrical Engineering, Columbia University

E-mail: sfchang@ee.columbia.edu
Web: www.ee.columbia.edu/~sfchang

Revised (March 28, 2001)

In this paper, we propose a new framework for the dynamic construction of structured visual
object/scene detectors for content-based retrieval. In the Visual Apprentice, a user defines visual
object/scene models via a multiple-level definition hierarchy: a scene consists of objects, which consist
of object-parts, which consist of perceptual-areas, which consist of regions. The user trains the system
by providing example images/videos and labeling components according to the hierarchy she defines
(e.g., image of two people shaking hands contains two faces and a handshake). As the user trains the
system, visual features (e.g., color, texture, motion, etc.) are extracted from each example provided, for
each node of the hierarchy (defined by the user). Various machine learning algorithms are then applied
to the training data, at each node, to learn classifiers. The best classifiers and features are then
automatically selected for each node (using cross-validation on the training data). The process yields a
Visual Object/Scene Detector (e.g., for a handshake), which consists of an hierarchy of classifiers as it
was defined by the user. The Visual Detector classifies new images/videos by first automatically
segmenting them, and applying the classifiers according to the hierarchy: regions are classified first,
followed by the classification of perceptual-areas, object-parts, and objects. We discuss how the
concept of Recurrent Visual Semantics can be used to identify domains in which learning techniques
such as the one presented can be applied. We then present experimental results using several
hierarchies for classifying images and video shots (e.g., Baseball video, images that contain
handshakes, skies, etc.). These results, which show good performance, demonstrate the feasibility, and
usefulness of dynamic approaches for constructing structured visual object/scene detectors from user
input at multiple levels.

1. INTRODUCTION

In the last few years, there has been a tremendous growth in the availability of
multimedia data. This is partly due to better and less expensive technologies to facilitate
digital content creation (e.g., digital cameras), acquisition (e.g., scanners, recording
devices), and access (e.g., the world wide web). Therefore, one of the most important
technical challenges is the development of techniques to access the resulting digital
(image/video) collections. Traditional text-based approaches to access images and video,
although very useful (and necessary in many applications), cannot be used to fully
describe all levels of visual information.30 Consequently, a large amount of research in
Content Based Retrieval (CBR) 6,13,67,62,78,11,9 has focused on indexing visual information
(images/video) using syntax (visual features: color, texture, etc.) at different levels.24
While syntactic information is useful, users are mostly interested in the meaning of the
information (not the form). In particular, users are interested in semantics (objects,

scenes, events, etc.).33 In this regard, textual descriptions of visual information can be
more useful, in many applications. Manually annotating images or videos, however, is a
costly endeavor, specially given the rate at which digital content is produced.

Consequently, most recent efforts in CBR attempt to automatically assign semantic labels
to images/videos. Proposed techniques range from classification mechanisms, to
approaches that structure and describe data. Automatic classification of images, for
example, can be done at the object (e.g., the image contains a horse, or a naked body 18),
or scene level (indoor and outdoor,74 mountain scene,77 etc.). Classification of video, can
also be performed at the scene/object levels. Several other approaches attempt to
automatically structure data (image collections or videos). Additionally, there are major
efforts to create structures and standards for the description of multimedia content.
MPEG-7, 7,48 for example, aims at standardizing a framework for describing audio-visual
content.

One active research area is classification. In particular, it is desirable to construct systems
that can automatically examine visual content, and label it based on the semantic
information it contains. Many of the current systems perform this task by classifying
images/video and assigning them semantic labels. Typically such classifiers are built (by
experts) to perform specific tasks (e.g., indoor vs. outdoor image classification). The
classifiers index image/video data, and users can then utilize the corresponding labels for
searching and browsing. Different users, however, search for information in different
ways, and their search criterion may change over time. Therefore, many of the current
automatic classification approaches suffer from two disadvantages: (1) they do not
accommodate subjectivity (i.e., the expert decides which classifiers to construct), (2) they
do not allow the construction of structured models from user input at multiple-levels.

Manual construction of image/video classifiers can produce systems that are accurate and
work well in specific domains. If the number of objects/scenes to classify is large,
however, such approach becomes impractical. Furthermore, class definitions depend on
the experts that build the systems, and any modification to the class definitions must be
performed by the experts themselves. In addition, users may have interests that are
different from those of the experts building such systems. The definition of a "handshake
image class," for example, may vary among different individuals: for one user the class
may include images that show the hands of two individuals, but nothing else. For another
user, it may include only images in which people are pictured, from a certain distance,
shaking hands. While specialized algorithms can be very useful in some domains (e.g.,
face recognition), we argue that successful content-based retrieval systems should be
dynamic, to allow construction of classifiers that cater to different users' needs.
Algorithms should be as general as possible so that they can be applied in several
domains, and they must exhibit enough flexibility to allow users to determine the classes
in which they are interested. In addition, they should allow the definition of complex
multiple-level models that can accurately represent (and capture) real world structures.
One way to enhance the capability of such systems is to construct flexible frameworks
that use machine learning techniques. 46,5,15,1

In this paper, we present a new approach to content-based retrieval. In the Visual
Apprentice (VA)27,28,29 framework users are able to build Visual Object/Scene Detectors
(classifiers) by defining a model for their classes of interest and providing training
examples. The model in this framework is defined by the user based on an hierarchy that

contains several levels (scene, object, object-part, perceptual-area, region). More
specifically, the user defines a model (definition hierarchy) for an object or scene, and
labels regions (from automatic segmentation) of image/video examples, according to the
model (hierarchy). The system uses several machine learning algorithms to learn
classifiers corresponding to nodes in the hierarchy. The resulting classifiers are applied to
new images/videos, and a decision is made (about the class of the image/video) based on
the new image/video's segmentation and results of classification and grouping at multiple
levels (according to the hierarchy and training provided by the user). In comparison to
other work in CBR, one of the important advantages of our framework is the flexibility of
defining object/scene hierarchies and detailed user input at multiple levels. The approach
allows users to specify multiple level composition models, which are absent in most
existing approaches to CBR.

1.1 Related Work

Research in the area of CBR has grown tremendously in the last few years (for recent
reviews, and references see 6,67,62,78,13,11,9). Many of the systems (e.g., QBIC,53
VisualSEEk,70 VideoQ,8 Virage,3 Spire,4 etc.) have used query-by-example ("show me
images like this one"), and query-by-sketch ("show me images that look like this
sketch"). Some systems have enhanced capabilities for query formulation (e.g., in Spire,
users can perform queries using examples from different images; in Semantic Visual
Templates10 the system tries to help the user formulate queries, using relevance
feedback). Others have focused on classification, using visual features only, textual
features only (e.g., WebSEEk69), or combinations of different types of features (e.g.,
textual and visual in news images;55 visual and audio in 50). Distinctions between
different approaches can be made in many different ways. In 24, for example, distinctions
are made based on the level of description used,30 interface, type of features, etc.

Approaches that perform classification of visual content based on visual features, like the
VA, can be divided into those that perform automatic classification at the scene level
(indoor vs. outdoor,74,55 city vs. landscape77), and at the object level (faces,19 naked
people, and horses18).

Scene level classifiers determine the class of the input image as a whole.77,74,55 In many of
the approaches the image is divided into blocks and the final classification decision is
based on a global measure over the blocks. They differ from the VA since images are
classified based on their global features- not on the structure of local components (i.e., a
user defined model of scene structure). In addition, the algorithms proposed in many of
those systems are specific to the classifiers being built. For example, in the work of,77 the
features that the algorithms use were chosen by the authors, based on the qualitative
features of the different classes being considered (indoor, outdoor, city, landscape, sunset,
forest, and mountain).

Other related approaches perform scene level classification based on regions obtained
from automatic segmentation.68,40 The configuration of regions in different scene classes
is used during classification. A typical beach scene, for example, contains blue regions at
the top (sky), and yellow regions at the bottom (sand). This type of information is used in
a training stage, and the configuration of regions in new images is used to determine the
images' class. The structure, however, is limited to the global configuration regions in the
images, and structured object (or scene) models are not used.

A related approach for object classification uses body-plans18 in the construction of
object models. Specialized filters, for detection of naked people and horses, are used first
to select relevant regions in the image. Search for groups that match the body-plan is then
performed over those regions. Although this approach allows the construction of
multiple-level composition models (like the VA), it system differs from the VA because it
uses specialized algorithms (e.g., filters), and object models built by experts. Likewise,
the approach in 19 utilizes a specialized face detection algorithm.61

In terms of adaptive systems, most of the related work has been done in Computer
Vision.23,16,20 The main difference between the VA approach and previous work in
Computer Vision is the role the user plays in defining objects, and the lack of constraints
imposed by the VA system (e.g., no constraints on lighting conditions, etc.). Other
differences range from the representation of the data (e.g., features used), to the learning
algorithms, application domain, and operational requirements (e.g., speed, computational
complexity). A discussion in 24 outlines differences between CBR and object recognition.

The FourEyes system,45 learns from labels assigned by a user. User input, however,
consists of labeling of regions (not definition of models based on multiple levels like in
the VA). Although multiple feature models (for feature extraction) are incorporated in that
system, different learning algorithms are not used.

Another approach to detecting events on scenes in specific domains is to explore the
unique structures and knowledge in the domain. A system developed in 80 includes
multiple models (for handling color variations within the same type of sport game- e.g.,
different colors of sand in tennis) and uses manually constructed region-level rules (for
exploring the scene structure). High accuracy was reported in detecting batting scenes in
baseball, and tennis serving scenes. This work differs from the VA framework in several
aspects. In particular, that approach uses domain knowledge programmed by an expert
(specific rules for baseball/tennis). In addition, it includes an initial filtering stage based
on a global color measure. In other words, the video scene is first analyzed at the global
level using color histograms, and then detailed scene analysis is performed. The detailed
scene analysis differs in the two approaches (use of rules constructed by experts80 vs. no
expert input in the construction of classifiers in the VA). The initial filtering, however,
could complement the VA framework (e.g., like in 80, a filtering stage could be used to
select different detectors, to deal with variations across different games, as outlined in
section 4.1.1).

Alternative models that represent objects and scenes in terms of their parts have also been
proposed in the CBR community.17,71,48 The definition of Composite Visual Objects17, for
example, is similar to the definition hierarchy of the VA framework, with the difference
that classifiers in the Visual Apprentice are learned automatically. It is also useful to note
the similarity between the definition hierarchy and structures used in MPEG-7.

1.2 Outline

The paper is organized as follows. In section 2 we briefly discuss the application of
machine learning in CBR. In section 3 we discuss the Visual Apprentice framework. In
particular we discuss user input, feature extraction and learning, and classification. Then
we present experimental results, a general discussion of important issues within the
framework, and possible extensions. We conclude in section 6.

2. USING LEARNING IN CBR

As discussed earlier, different users may have different interests, and those interests (for a
single user) may vary over time.57 Using this premise, it is preferable to construct systems
that can adapt to users' interests. One possibility is to build systems that can adapt by
learning from users. An important issue, therefore, in the application of learning
techniques in CBR, is deciding where learning techniques are suitable. The concept of
Recurrent Visual Semantics (RVS)29,24 is helpful in identifying domains in which to apply
learning techniques in the context of CBR.

RVS is defined as the repetitive appearance of elements (e.g., objects, scenes, or shots)
that are visually similar and have a common level of meaning within a specific context.
Examples of domains in which Recurrent Visual Semantics can be easily identified
include news, consumer photography,26 and sports. In professional Baseball television
broadcast, for example, repetition occurs at various levels: objects (e.g., players), scenes
(e.g., a batting scene), shots (e.g., the camera motion after a homerun occurs), and shot
sequence structure (e.g., a homerun shot sequence often includes a batting scene, a scene
of the player running, etc.).

The existence of RVS motivates the approach of using learning techniques in content-
based retrieval. Using this concept, it is possible to identify domains in which learning
techniques can be used to build automatic classifiers (for objects or scenes). The
existence of repetition facilitates training, and the domain constrains the future data
inputs to the classifiers learned. Once a domain is selected, identification of its repetitive
(but semantically meaningful) elements increases the possibilities of successfully
applying machine learning techniques in the specific domain. At the same time,
application of learning within the domain (e.g., baseball video only, versus all types of
video) decreases the possibility of errors.

In section 4 we discuss how this concept was used to select the domains for our
experiments.

3. THE VISUAL APPRENTICE

3.1 OVERVIEW

The Visual Apprentice (VA) framework consists of three stages: (1) user input, (2) feature
extraction and learning, and (3) classification. In the first stage, the user explicitly
defines object/scene models according to her interests, and labels training examples
(images or videos). In particular, each example image/video is segmented automatically
by the system, and the results of the segmentation are manually labeled by the user
according to an hierarchy defined by the user. In the second stage, the system extracts
features (e.g., color, texture, motion, etc.) from each image/video example provided by
the user. Then it learns classifiers based on those examples producing an hierarchy of
classifiers (a Visual Object/Scene Detector- VOD). In the third stage, the classifiers (the
VOD) is applied to unseen images/videos. The Visual Object/Scene Detector performs
automatic classification by first automatically segmenting the image/video, and then
combining classifiers and grouping at different levels.

The Definition Hierarchy

Studies in cognition and human vision have shown that during visual recognition,
humans perform grouping of features at different levels.41,2 The highest level of grouping
is semantic: areas that belong to an object are grouped together. An object, however, can
be separated into object-parts, which consist of perceptual-areas: areas that we perceive
categorically. Categorical perception refers to the qualitative difference of elements
across different categories. Colors, for example, are often “grouped” 73,22- we say the shir
is green, although it may have different shades of green. These different levels of
grouping motivate the model-based approach to the construction of Visual Object
Detectors (VOD)a in the Visual Apprentice. In this framework, a VOD is defined as a
collection of classifiers organized in a definition hierarchyb consisting of the following
levels (Fig. 1): (1) region; (2) perceptual; (3) object-part; (4) object and (5) scene.

Fig. 1. Definition Hierarchy. Note that a scene (not shown in the figure) is a collection of objects and

corresponds to the highest level.

More specifically, a definition hierarchy is defined in terms of the following elements:

 (5) Scene: structuredc set of objects.
 (4) Object: structured set of adjoining object-parts.
 (3) Object-part: structured set of perceptual-areas.
 (2) Perceptual-area: set of regions that are contiguous to each other

and homogeneous within the set.
 (1) Region: set of connectedd pixels
According to this definition, every node e in our definition-hierarchy has a conceptual
interpretation (e.g., “object”), and represents a set of connected pixels in an image/video.
Nodes are image areas and arcs indicate parent-child relationships (from top to bottom)-

a The detectors we describe refer to objects and scenes. We use the name VOD, however, for
simplicity and to emphasize the local structure of the classifiers.
b We have chosen only five levels for the hierarchy because they provide an intuitive
representation that is useful in practice.
c The word structured is used to emphasize the importance of spatial relationships between
elements in the particular set.
d Regions, which are at the lowest level of the hierarchy, constitute the basic units in the
framework and can be extracted using any segmentation algorithm based on low-level features
such as color, texture, or motion.

Level 4: Object Object

Object-part 1 Object-part m Object-part 2

Perceptual-area 1 Perceptual-area n

Region 1 Region 2 Level 1: Region

Level 3: Object-part

Level 2: Perceptual

a node is composed of all of its children. For example, in Fig. 1 object-part1 is an area
composed of n perceptual areas, each of which is composed of a number of regions.

In addition, the following restrictions are placed on the construction of valid hierarchies
(please refer to Fig. 1, where each node represents a set): (1) a set of level i (i≠5) is a
subset of only one set of level i+1 (e.g., an object-part can only belong to one object; a
node in the hierarchy can only have one parent); (2) a set of level i cannot be a subset of a
set of level i-1, unless the two sets are equal (e.g. an object cannot be part of a
perceptual-area; a face can be equal to a single perceptual area); (3) sets at the same level
are disjoint (i.e., intersection of two sets of the same level is empty; two object-parts
cannot intersect); (4) regions do not contain subsets (i.e. regions are the basic units and
cannot be separated); (5) No. sets at level i <= No. sets at level i-1; (6) all sets are finite
and can contain one or more elements; (7) every set is equal to the union of its children.

Fig. 2 shows a batting scene as defined by a user. Note that every node in an hierarchy
has a conceptual meaning (e.g., pitcher), corresponds to an image area in a training
example (e.g., a set of connected pixels in each image), and, as will be shown later,
corresponds to a classifier (e.g., pitcher object-part classifier). The user, in this case, has
decided to model the scene using only four levels (region, perceptual-area, object-part,
and object).

Fig. 2. Automatically segmented Baseball image. This example shows how a scene can be modeled using the

hierarchy. The white outlines were drawn manually to illustrate how the regions map to the hierarchy. Note that
the user decided to model the scene using only four levels.

After the user defines an hierarchy and provides the training examples, features are
extracted and classifiers are learned (stage 2). Classification (stage 3) occurs at the levels
of Fig. 1: regions are classified first and combined to obtain perceptual-areas, which are
used by object-part classifiers. Object-parts, in turn, are combined and the results are
used by object classifiers, etc.

In the sections that follow we discuss, in detail, each of the three stages of the VA (user
input, feature extraction and learning, and classification).

3.2 USER INPUT

Different users have different interests. In order to accommodate this subjectivity we
allow users to build different models (i.e., definition hierarchies) based on their

Batter Field Pitcher

Grass Sand

Regions Regions Regions Regions

Batting

individual preferences. The way in which VODs are constructed, therefore, is subjective
and may vary between users (or for a single user over time). The main goal of this stage
is to let the user construct a Visual Object Detector, without any low-level knowledge
about features, or learning algorithmse.

During training, the user performs the following tasks: (1) creation of a definition
hierarchy by defining the labels to be used for each node; (2) labeling of areas (e.g.,
regions, perceptual-areas, etc.) in each training image/video according to the hierarchy.

Using the interface, the user defines the hierarchy by creating labels for nodes and
expressing the connections between them. The label “batter region of batter object-part,”
(Fig. 2) for example, clearly defines the connections between the batter region, the batter
object-part, and the batting object. Using a simple user interface (Fig. 3), the user can set
the corresponding labels (e.g., the “object-part” field would say “batter”, the “scene”
field would say batting, etc.). Once the labels are created, during training, the user labels
regions, perceptual-areas, object-parts, and objects, in each training image/video. In the
current implementation an image/video example corresponding to a particular hierarchy
must contain all of the nodes defined in the hierarchy (e.g., all batting scene examples
must contain a field, a pitcher, a batter, etc.).

Fig. 3. Visual Apprentice Graphical User Interface.

Labeling of image/video examples according to the hierarchy can be done in several
ways: (1) by clicking on regions obtained from automatic segmentation, (2) by outlining
areas in the segmented/original images/videos. Usually, labeling is almost exclusively
done on the segmented images directly. Furthermore, in most cases it is only necessary to
label individual regions (without outlining areas), because the interface of the VA
facilitates training by automatically grouping regions that are connected and have the
same label. The groups generated are assigned the label of the parent node of the regions
used in the grouping. For example, in Fig. 2, the user labels all of the pitcher regions
(from automatic segmentation) with the name “pitcher region”. Then the system
automatically groups all contiguous "pitcher regions" (those that are connected) and
labels that group “pitcher object-part” (since the parent of the “pitcher regions” label is
"pitcher object-part"). In some cases, however, the user may wish to manually outline

e In section 5 we discuss possibilities of additional user input (e.g., decisions on learning
algorithms to use, etc.).

objects, object-parts or perceptual areas (note manual outlines in white in Fig. 2) and
bypass the automatic grouping algorithm. The difference between using the automatic
grouping provided by the system and manually outlining components is that manual
outlining eliminates segmentation errors that would otherwise be incorporated. Again in
Fig. 2, note that in the segmented image a pitcher region contains some pixels that belong
to the background. Manually outlining the pitcher eliminates that error, since the user
drawn outline excludes those background pixels in the “pitcher object-part” example.

User input for video is similar since only the first frame, in each example video shot,
must be labeled- in the segmentation algorithm used79, regions are automatically
segmented and tracked in each video frame. On that first frame, the user identifies
regions that correspond to each node in her definition hierarchy: all of the sand regions,
all of the sand perceptual-areas, object-parts, etc. The labeled region is tracked by the
system in subsequent frames. For each region, then, it is possible to extract motion-
related features (discussed below).

As a result of user interaction, we obtain the following sets for a defined class j (e.g.,
batting scene of Fig. 2):

• Conceptual definition hierarchy: Hj.

• Example Element Set: EESj = {{(e11, l11), (e12, l12), ..., (e1n, l1n)}, ..., {(ek1, lk1), (ek2, lk2),
..., (ekp, lkp)}, ..., {(em1, lm1), ..., (emq, lmq)} where in each tuple, eki corresponds to the ith
element (i.e., an area of a training image) of level k and lki is a label of level k associated
with the element (e.g., (op31, l31) = (pitcher object-part, pitcher label)). Label level
distinctions emphasize that labels must be different at different levels of the hierarchy.
Regions in the example images/videos that are not labeled by the user are automatically
assigned the label “unknown” and included in the set EESj. This way, using the closed-
world assumption 5, those regions can be used as negative examples during training.

Note that the user also has the option of including additional images/videos/regions to be
used as negative examples, and that each image/video example for a given hierarchy must
contain all the nodes in the hierarchy defined by the user. In other words an image/video
example corresponding to a particular hierarchy must contain all of the nodes defined in
the hierarchy (e.g., all batting scene examples must contain a field, a pitcher, a batter,
etc.). As discussed in section 5, it would be possible to modify this constraint to provide
further flexibility.

In the training stage, then, user input consists solely of defining the definition hierarchy
(by creating the appropriate labels), and labeling example image/video areas according to
the hierarchy. The labeling is done by clicking on image regions, or outlining image areas
in each image/video example.

3.2.1 FEATURE EXTRACTION AND LEARNING

3.2.2 Feature Extraction

As discussed earlier, an element eki of our model (node in the hierarchy) is a set of
connected pixels (i.e., an area of the image). Therefore, user input produces, for each
example image/video, a set of image/video areas, labeled according to the hierarchy
defined by the user. For each element in the Example Element Set, we compute a feature

vector, which is an attribute-value tuple representation of the features of the element
(e.g., color, shape, etc.). By computing feature vectors for all elements in the set EESj, we
obtain a training set of examples for each class j (e.g., batting scene of Fig. 2):

• TSj = {{(fv11, l11), (fv12, l12), ..., (fv1n, l1n)}, ..., {(fvk1, lk1), (fvk2, lk2), ..., (fvkp, lkp)}, ...,
{(fvm1, lm1), ..., fvmq, lmq)} where fvki corresponds to the ith feature vector element of level
k and lki is a label of level k associated with the feature vector (e.g., (op31, l31) = (pitcher
object-part feature vector, pitcher label)). Note that all examples for a particular node in
the hierarchy (e.g., pitcher region) will have the same label.

Two types of feature vectors are used in the framework, those that contain raw features,
and those that contain spatial relationships (described below). The raw vectors consist of
a superset of 43 features. These features can be placed into five different groups.

• Area and location: area, bounding box center (x, and y), orientation, major
axis length, major axis angle, minor axis length.64

• Color: average L, U, and V, dominant L, U, and V (LUV quantized to 166
colors 70).

• Shape: perimeter, form factor, roundness, bounding box aspect ratio,
compactness, extent.64

• Texture: mean Maximum Difference, mean Minimum Total Variation
(MTV), horizontal, vertical, diagonal, and anti-diagonal Mean Local Directed
Standard Deviation (MLDSD), edge direction histogram (see 60,77).

• Motion trajectory: maximum/minimum horizontal and vertical displacement,
absolute horizontal/vertical displacement, trajectory length, displacement
distance, average motion angle, average horizontal/vertical
speed/acceleration.

Feature extraction occurs for all nodes, according to the hierarchy defined by the user. By
computing feature vectors for each element, a training set is obtained for every node of
the hierarchy. Recall that during user input (section 3.2), grouping occurs between
regions that are connected and have the same label (e.g., in Fig. 2 pitcher regions form a
pitcher object-part; sand regions are grouped at the sand perceptual-area node). For each
image example, when the grouping is performed (or a manual outline is used), a new area
of the image is used for feature extraction. In other words, the features of the regions of
the pitcher are used at the pitcher region node, but at the parent node (pitcher object-part
in this case) a new set of features is computed from the image area that results from
merging all connected pitcher regions together. The connected (labeled) pitcher regions,
then, serve as a mask that is used to extract new features for the parent node of the region
node used in the grouping (again in Fig. 2, pitcher object-part for pitcher regions, sand
perceptual-area for sand regions, and so on).

Elements of the hierarchy that are structured (i.e., scenes, objects, and object-parts in the
definition hierarchy of section 3.1), and have more than one element (i.e., field object-
part and batting object in Fig. 2) are treated differently during feature extraction in the
sense that they are characterized in terms of the elements they contain and the spatial
relationships between those elements. For example, in Fig. 2, the feature vector for the
field object-part does not contain the 43 features discussed earlier. Instead, it contains

two elements (grass, sand), and their spatial relationships. Note the difference between
the following feature vectors:

Pitcher region = {label = pitcher, color = white, texture = coarse, etc.} (i.e., a region and its 43
features from the set described above)

Field object-part = {label = field_object_part, grass perceptual-area contains sand perceptual-
area} (e.g., an object-part in terms of its perceptual areas and their spatial relationships)

To represent the structural relationships in structured sets that have more than one
element, (e.g., between perceptual-areas within object-parts, or object-parts within
objects, etc.), Attributed Relational Graphs (ARG) 56,46,65 are constructed. In an ARG,
nodes represent elements and arcs between nodes represent relationships between
elements. In the VA, nodes in the ARGs correspond to labeled elements from the
hierarchy being considered, and arcs represent simple spatial relationships between those
elements. In particular, the following relationships are used: above/below; right of/left of;
near; far; touching; inside/contains.

It is important to note that using this representation an ARG will contain labeled elements
only (see Field feature vector above), and their relationships. This is important because in
the classification stage matching of graphs that contain unlabeled objects, which is a hard
combinatorial problem, is avoided. Additionally, to avoid the difficulties of searching in
complex relational representations (e.g., Horn clauses), the ARG is converted from its
original relational representation to an attribute-value representation:46 elements in the
ARG are ordered (according to their label) and a feature vector is generated. With such
transformation, existing learning techniques that use feature vector representations can be
applied directly (e.g., decision trees, lazy learners, etc.).

The result of the feature extraction stage, then, is a set of feature vectors for each node of
the corresponding hierarchy. Note that in the set TSj the positive examples for a particular
node are those feature vectors in TSj that have the label for the corresponding node. The
rest of feature vectors in the set TSj are negative examples, for that node, under the
closed-world assumption 5. In essence, if there are n nodes in the hierarchy, there will be
n+1 different labels (including the "unknown" label) in the set TSj. This means that there
will be n different classes (one for each node), and therefore n different classification
problems, each of which contains a set of positive and negative examples. This is
important because it emphasizes that the result of the training stage is a set of different
classification problems, one for each node.

3.2.3 Learning of Classifiers and Feature Selection

A classifier is a function that, given an input, assigns it to one of k classes. A learning
algorithm is a function that, given a set of examples and their classes, constructs a
classifier 14. These two definitions are of extreme importance in Machine Learning and in
particular in the framework of the VA. Using the labeled feature vectors, learning
algorithms are applied at each node of the hierarchy defined by the user to obtain
classifiers. This is done for each node at the five levels defined above: (1) region, (2)
perceptual, (3) object-part, (4) object and (5) scene.

As depicted in Fig. 4, all classifiers in an hierarchy could be constructed independently
using a single learning algorithm. For example, it would be possible to choose one of the

most widely used learning algorithms5,46 (e.g., decision trees, lazy learners,1 neural
networks, etc.) and apply it at each node to obtain the corresponding classifiers. The
difficulty with this approach is that no algorithm will outperform (in terms of
classification accuracy) all other algorithms in all tasks. In other words, since the VA is
meant to allow users to define their own classes, it is not possible to choose, a priori, a
learning algorithm that will produce classifiers that will always perform better than
classifiers produced by any other learning algorithm. Of course, other factors could be
considered (discussed further in section 5), including availability of resources
(computational, number of training examples, etc.), speed requirements (during training
and during classification), and desired accuracy.

Fig. 4. Overview of the learning process for each node in the hierarchy. A learning algorithm, applied to the
training data for each node, produces a classifier for the corresponding node.

In order to allow flexibility, we propose a different approach (discussed in the next
section), which consists of applying several learning algorithms to the same training data
(at each node), to obtain a collection of binary classifiers for each node.

Regardless of the approach chosen to construct classifiers (using one or several learning
algorithms), it is well known that selection of features can have a strong impact on
classifier performance, even with learning algorithms that incorporate some form of
feature selection. The justification and benefits in performance of selecting features in
decision trees, for example, is given in 52,39,32. This is because different features may be
better for representing different concepts. For example, “good” features to represent a
field might be color and texture, but good features to represent pitcher might be spatial
location and aspect ratio (see Fig. 2). Therefore, using the same features for all
hierarchies (or for all nodes within a given hierarchy) may not yield the best results.

In many content-based approaches, specifically in interactive ones (query-by-sketch and
query by example techniques 8,70,53), users typically select the features to use. This,
however, is often a difficult task. Automatic feature selection, used in the VA framework,
serves to shield the user from the difficulties inherent in deciding which features are more
important for a specific task (i.e., node in a hierarchy, or VOD). Given a set of features A
(e.g., the superset described in section 3.2.1) with cardinality n, we wish to find a set B
such that AB ⊆ , and where B is a better feature set than A31. The criterion for a “better”
feature set S can be defined in terms of a criterion function C(S), which gives high values

Machine
Learning
Algorithm

Stage 1: training data obtained
and feature vectors computed.

Stage 3: classifiers Stage 2: training

D1

Definition Hierarchy

C1

Visual Detector

for better feature sets and lower values for worse feature sets. One possibility is to define
the function as (1-Pe), where Pe is the probability of error of a classifier. In such case, the
value of the function C(S) depends on the learning algorithm, the training set, and test set
used.

Since the goal is to find a set B, such that AB ⊆ , feature subset selection (FSS) 31 can be
characterized as a search problem. The search for a better feature set can be conducted
using several heuristics that aim to avoid exhaustively analyzing all possible feature sets.
In particular, the search can look for optimal or sub-optimal results, and can be based on
a filter or wrapper approach 36. In the filter approach, the search for best features is
independent of the learning algorithm and classifier that will be used. In the wrapper
approach, which is used in the VA, the criterion function (1- Pe) is dependent on the
learning algorithm and data used. Feature selection, therefore, is performed with respect
to a particular algorithm and data set. In particular, a learning algorithm is repeatedly run
on a data set using various feature subsets so that each run produces a classifier that uses
a different set of features. The performance of the classifiers learned using each feature
set is measured (using k-fold cross-validation, described below), and the best feature
subset is chosen according to the performance. Once the features are chosen, the learning
algorithm is used to construct a classifier using only those features. In the VA, best-first
forward search65 (a sub-optimal non-exhaustive technique) is used to find the best
features.

The search for a better feature set is performed, using a given learning algorithm, by
building different classifiers using different subsets of the original feature set. Once the
best feature set is found (for that particular algorithm), a classifier, using that algorithm is
constructed. Since we use several algorithms (next section), it is then necessary to
compare the different classifiers constructed by the different algorithms, at each node.

3.2.4 Selection and Combination of Classifiers

In the machine-learning community, an important goal is often to compare the
performance of different learning algorithms.14,66 The criterion in those cases is often the
performance of the algorithms on standard data sets (e.g., UC Irvine repository49), or in
particular domains. Instead of trying to find the best algorithms for classifying visual
information, the goals in the VA framework center on determining the best classifiers for
specific tasks (e.g., nodes of the hierarchy). The goal of the training stage is to obtain the
best possible classifier (not learning algorithm) for each node. Since different learning
algorithms may produce classifiers that perform differently on the same training data, the
system simultaneously trains several algorithms (ID3, Naïve-Bayes, IB, MC4)38 and
selects the classifier that produces the best results. Note that, as discussed in the previous
section, FSS is performed with respect to each algorithm, so when the system compares
classifiers (this stage) it is already using the best features found, for each algorithm, in the
previous step.

The performance of each classifier is measured using k-fold cross-validation: 37,47 the set
of training examples is randomly split into k mutually exclusive sets (folds) of
approximately equal size. The learning algorithm is trained and tested k times; each time
tested on a fold and trained on the data set minus the fold. The cross-validation estimate
of accuracy is the average of the estimated accuracies from the k folds. In the VA
accuracy is determined as the overall number of correct classifications, divided by the

number of instances in the data set. The process is repeated for each classifier being
considered.

The best classifier is chosen according to its performance estimate given by the cross-
validation accuracy: for each node, the classifier with the highest accuracy is selected.
The process occurs for every node of the hierarchy defined by the user.

An alternative to selecting the best classifier is to combine all or some of the classifiers
resulting from the cross validation process. In 28 other ways in which classifiers can
interact in the VA framework were presented (also see 54 for a different combination
strategy in a different framework).

Fig. 5. Overview of the learning process for each node in the hierarchy. Note that each classifier is produced
with the best feature set for the particular learning algorithm being applied.

3.3 CLASSIFICATION

When a VOD is applied to a new image/video, the first step is automatic segmentation of
the image/video. Classification then follows the bottom up order of the hierarchy defined
by the user (Fig. 3). First, individual regions are classified (in a selection process similar
to 73) and, then, perceptual-areas formed (i.e., regions are classified perceptually and
groups are found). Those groups are then combined to form prospective object-parts,
which form objects that form scenes. Classification, however, depends on the specific
hierarchy defined by the user. To detect a pitcher object-part (Fig. 2), for example, the
corresponding VOD would find pitcher regions first, and then try to find groups of pitcher
regions that may correspond to the pitcher object-part. The process would be similar for
grass and sand perceptual areas- regions are selected and groups of regions are used by
the parent classifier (of the corresponding region classifier). Note that this is similar to
the grouping performed by the system in the training phase (section 3.2). During training,
regions are labeled by the user, so the system knows exactly which regions (those
labeled) must be taken as a group at the parent node. In the classification stage, the labels
are assigned by a region classifier. The classifier of the parent node, therefore, must
search the space of possible groups.

In the first step, then, regions are selected by a region classifier. Given a universe U of
elements, a function cj(i) is a classifier for class j that determines membership of i (i∈U)

Learning
Algorithm 1

Learning
Algorithm 2

Learning
Algorithm n

Stage 1: training data obtained
and feature vectors computed.

Stage 4: classifier selection Stage 2: learning
classifiers

D1

D1

C1

C2

Cn

Performance
Estimator

Feature
subset

and
classifier

Object Definition Hierarchy

in the set j. In binary classifiers, cj:U→{0,1} where, ∀ i∈U , cj(i) = 1 if i∈j and cj(i) =0
if i∉j. In fuzzy-classifiers35 the function is not binary, but continuous, thus cj:U→[0,1]. In
this case, j is a fuzzy-set since each element in j has been assigned a degree of
membership in that set (e.g., if cj(i) =0.75 and cj(l) =0.68 we say that i is a stronger
member of class j than l).

Region classification results in a set of region-membership tuples Rop = {(r1, m1, s1), (r2,
m2, s2), ..., (rn, mn, sn)} where in each tuple (ri, mi, si), ri is a region that belongs to the
current region class with degree of membership mi. The variable si is used to differentiate
weak (si=0) and strong members of the class (si=1). This is useful because weak isolated
regions can be discarded.

We apply a grouping function g to Rop, to obtain a set PG = {g1, g2, .., gn} where every
element gi is a group of adjoining regions (e.g. group of pitcher regions). The goal then
becomes to find the most likely group candidates from the set PG (e.g., determine which
group of pitcher regions is more likely to be a pitcher object-part). Each group gi may
contain strong and weak region candidates, or just strong candidates. Groups of only
weak regions are not considered because it is very unlikely for such groups to be
important (e.g., unlikely pitcher regions are unlikely to form a pitcher object-part).

A search, then, must be performed over the space of possible groups of regions from the
set PG to find the best possible ones. This can be treated as a classical search problem in
Artificial Intelligence 20,65, and therefore, we can use heuristic techniques to reduce the
search space. In particular, we use an Evolution Algorithm44, treating each element gi in
the set PG as an individual in a population. Individuals evolve from one generation to the
next through genetic operations such as mutation (an individual’s characteristics are
changed) and cross-over (two or more individuals combined to produce a new one).
During the evolution process (generation to generation), only "strong" individuals
survive- that is, individuals that meet certain fitness criteria.

What follows is a description of our algorithm:

1. Initialize population (P = PG).

2. Evaluate individuals in P using as a fitness function, the classifier of the parent node of
the function used to select the regions to form PG. If the maximum number of iterations
has been reached, or an element in P satisfies the criterion function, stop. Otherwise,
continue to step 3.

3. Select and mutate individuals (e.g., remove a region from a selected group, etc.).

4. Go to step 2.

To summarize, strong region candidates are first grouped and then merged with adjoining
weak candidates. This eliminates from consideration isolated weak candidate regions.
The evolution program then considers each group of regions. At every generation step,
each group is mutated, thus generating a new individual. A new individual’s fitness in the
population is measured by the region candidate's parent node classifier. Note that each
individual in the population (a group of regions) corresponds to an area in the
image/video being considered. Therefore, features (recall raw feature set of section 3.2.1)
are extracted from that area, and the classifier that was learned during training is applied.
Examining the example of Fig. 2 again, region classifiers for the following nodes are
applied: grass, sand, pitcher, and batter. The grouping using the evolution program is

performed for each of these, and the groups are judged by the corresponding parent
classifiers (grass and sand perceptual-areas; pitcher and batter object-parts). The field
classifier, then, receives as input a feature vector that contains the grass and sand
perceptual areas found (with their spatial relationships, as explained in section 3.2.1). The
batting classifier, then, receives as input three elements and their spatial relationships
(field, pitcher, and batter).

A final decision is made by the Visual Object Detector (VOD), then, based on the
decisions of all of its classifiers. In particular, all elements of the hierarchy must be
present for a VOD to detect the object. For the batting scene of Fig. 2 to be found, all
elements must be found (i.e., pitcher, field and its parts, etc.).

4. EXPERIMENTAL RESULTS

Applying CBR techniques, and in particular those that use learning, in a real world
scenario can be a challenging task for many different reasons. Therefore, we will describe
some of the issues we encountered applying the VA, and experimental results. In each of
the experiments reported in this section (baseball, handshakes, skies) the amount of time
required to complete the training stage was less than two hours.

4.1.1 Baseball Video

Television broadcasts of professional Baseball games were selected for these experiments
because (as suggested by the concept of RVS of section 2), it was possible to identify
meaningful objects and scenes that are visually similar and repeat. First, we identified the
batting scene of Fig. 2 as a meaningful candidate for a VOD. Then we collected and
examined data.

Table 1. Some quality factors found in professional Baseball broadcast.

Visual Appearance Signal quality

Time of game (day: natural light, evening: artificial
light)

Reception (from Cable TV, antenna,
satellite, etc.)

Daytime weather (sunny, cloudy, raining, etc.) Origin (live game, videotaped game)

Evening weather (raining, foggy, etc.) Internal-network transmission (via
satellite, etc.)

Stadium (natural vs. artificial field, sand color) Analog recording (VHS, S-VHS, EP/SP
mode, etc.)

Teams (color of uniforms) Digital encoding (MPEG-1,2, parameters,
etc.)

Broadcast Network (camera angles, text-on-screen,
etc.)

Noise, human error

In constructing a classifier for the batting scene of Fig. 2, we encountered several issues
of importance (see Table 1 discussed in previous work 29). We divided such factors into
those that are related to visual appearance (i.e., independent of the signal), and those that

are related to the broadcast signal itself. These factors cause variations in the visual
appearance of the content used by the algorithms, and therefore on the value of the
features (segmentation, color, shape, etc.) used. The effect varies from minor to
significant. For example, the time of day (morning, afternoon, night) can significantly
affect the lighting conditions, which have an impact on the perception (and encoding) of
color and texture. It is interesting to note that, due to the length of some Baseball games
(several hours), it is possible to observe significant variations in weather (from sunny to
overcast to rainy) and lighting (it is not uncommon for a game to start in the afternoon
and end in the evening). Other factors, such as the players' uniform and the field remain
constant within a game, but can vary significantly across different games. The way the
games are broadcast (e.g., number of cameras, angles, etc.), on the other hand, is fairly
standard within a game and across different broadcasters. Analyzing the data carefully,
however, it is easy to observe variations that although minor for humans, can have a
severe impact on CBR algorithms. Examples include "small" variations in camera angles
(or camera distance), text on the screen, and others.

The second set of factors was also surprisingly important. Variations in the signal, even
within the same game were sometimes significant. Colors changed, and noise was visible
in many cases. Some of these are due to human error at origin, while others are related to
the broadcast mechanism itself (live over satellite, etc.). Of course, variations in
digitization of the signals can also have a strong impact.

For humans, most of those factors have no impact on the ability to recognize different
scenes. Issues such as clutter (i.e., presence of unknown/unmodeled objects), occlusion,
variations in lighting, and others,24 are well known in Computer Vision and can have a
strong impact on automatic algorithms. Most of these issues, however, are ignored in
most of the experiments reported in CBR, mainly because in most cases the data used for
training/testing comes from a single “collection” (e.g., a particular news source, etc.).

In order to test the framework with a batting scene detector, we used videos from several
broadcasters. The set used in the experiments included games played in different
stadiums (natural and artificial turf), times of day (night/day), weather conditions
(overcast, sunny), etc.

Innings from 6 different games were digitized in MPEG1 format at 1.5 MBps (30
frames/sec, at resolution 352x240 pixels). All scene cuts were obtained manually (scene
cuts could be detected automatically using 43), and each shot was forced to a length of 30
frames, which is long enough to represent a batting (pitching) action. The batting (or
pitching scene) lasts approximately 1 second in a television broadcast.

A set of 376 baseball video shots (of 30 frames each) was used for the experiments. The
set contained 125 batting scene shots (Fig. 2). The set of 376 was divided into
independent training and testing sets. The training set consisted of 60 batting scene shots.
The test set, then, consisted of 316 shots (65 batting scenes and 251 other types of
scenes), and different games were used in the training and test sets. The definition
hierarchy used differed slightly from the one in Fig. 2: the field object-part was divided
into three perceptual areas: mound, top grass, and bottom grass.

Since classification starts at the region level, we examine classification results for
different region classes. As discussed in section 3.2.4, different classifiers may perform
differently on the same training data, and therefore it may be beneficial to use different

algorithms for different classification problems. For our particular experiments, this is
illustrated in Fig. 6. The figure shows the learning curves for region node classifiers
constructed using the ID3 algorithm, and using a k-Nearest Neighbor classifier (k=5). In
the VA framework, cross-validation accuracy is used, over the training set, to select the
best features and classifiers. For illustration purposes here (in Fig. 6 only), we show the
learning performance over the entire set (training and testing sets together). The overall
batting scene classifier does not have access to the test set during training, but we show it
here because the differences between the curves are easier to observe than on the training
set alone- the point of this discussion is to emphasize that an algorithm will perform
differently on different sets of data. The curve for ID3, for example, suggests that an ID3
classifier will perform better on pitcher and grass nodes. An IB-5 classifier shows similar
performance variations on different sets of data. At the same time, the plots show that the
ID3 algorithm is more likely to perform better for the batter regions than the IB5
classifier. In the actual cross-validation experiments over the training set (not shown),
different algorithms and features were selected for the construction of classifiers at
different nodes (some examples are presented in 29). Performance variations over the
training set varied depending on the node, and most of the region level classifiers
achieved around 80% accuracy on the independent test set.

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

er
ro

r

instances

ID3 Learning Curves

batter
pitcher
mound

grass

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

er
ro

r

instances

IB5 Learning Curves

batter
pitcher
mound

grass

Fig. 6. Learning curves that show number of training examples vs. error rate, for two different algorithms (top:
ID3 and bottom: K-Nearest Neighbor, K=5) on the same set of data. The error bars represent 95% confidence

intervals, and the error corresponds to the total percentage of misclassifications.

Detection of video shots of the batting scene (Fig. 2) using the entire hierarchy resulted in
an overall accuracy of 92% (overall % of correct classifications) with 64% recall, and
100% precision on the independent test set of 316 shots (65 batting scenes and 251 non-
batting scenes). High precision was achieved in the VA in these experiments because the
current implementation of the framework requires the detection of all nodes in the
hierarchy. In other words, a batting scene can only be detected if all components of the
hierarchy are found in the scene/shot. Therefore, a detector for this scene is unlikely to
encounter false positives for all of the components of the hierarchy within a single scene.
This mechanism, however, also causes a drop in recall: a classification error (miss) in one
node of the hierarchy can cause a dismissal of a batting scene shot. In general, therefore,
a hierarchy with more nodes is likely to yield higher precision and lower recall. Fewer
nodes are more likely to yield lower precision and higher recall. Indeed, the shots that
were missed by the classifier were missed because not all of the nodes were present. In
particular, in most of the misclassifications the smaller elements (e.g., mound, batter)
could not be found. This was due to segmentation errors, and errors at different levels of
the hierarchy. In some cases text (and borders) surrounding the scene caused the errors- it
is not uncommon for the entire scene to be reduced by a border with text (e.g., statistics
or information from other games being played at the same time), making detection very
difficult.

Detection of the batting scene across different games (with the variations outlined in
Table 1) is a difficult problem on which the VA has performed well. Preliminary
experiments using global features (quantized LUV color histogram and coarseness) as
well as block-based global scene classification (breaking up each image into 16 blocks,
classifying the blocks and assigning the image the majority of the block labels74)
produced poor performance. Although more experiments are required to compare the
VA’s performance with other approaches (e.g., using the same features as in 74,77 and
testing the implementation with a set of similar images), an analysis of the data and the
preliminary experiments suggest that scene-level classification (i.e., not using structure
information) may not yield good results for this particular problem. One of the biggest
difficulties is the variation that occurs across different games. The important components
of the batting scene (i.e., those included in the hierarchy of Fig. 2) usually occupy around
one third of the image (scene). A global approach to classification, therefore, is likely to
be affected by the remaining two thirds of each scene. Because of variations in the
stadium, for example, the background (e.g., wall behind the pitcher) can be significantly
different across different scenes. The VA framework takes this into account in the sense
that if the background is not included in the hierarchy, it may not have a direct impact on
the detection of the object/scene. A related observation is that, in this particular
application, there are many similar scenes that do not match the model. There are many
scenes that show a field and a crowd in the background. Such scenes, however, do not
contain a batter (and pitcher), so a VOD that includes such elements would be able to
differentiate between one of those “field” shots and a batting scene. It would be more
unlikely for a global (or block-based) classifier, on the other hand, to be able to make
such distinctions.

A possibility to alleviate the problem of variation present in the data, is to perform a
filtering of the shots.80 In that approach, incoming video scenes are first automatically
assigned to a “color model” based on unsupervised learning (e.g., different models for
different games- night, sunny, etc.), and a subsequent process uses manually constructed

rules at the segmented region level (to account for local scene structure) to perform
classification. Promising preliminary results (precision 96%, recall 97%) was reported in
detecting batting scenes in broadcast videos.80 However, note that unlike the VA the
approach uses manually constructed region-level rules, and adaptive filtering that
automatically selects the global color model depending on color variations of the new
video. Indeed, it would be a promising direction to incorporate the adaptive filtering as a
pre-filter before applying the VA detector.

4.1.2 Handshakes and skies

Detectors were also constructed for handshake, and sky images (see object hierarchies for
handshakes and skies in Fig. 7). For the handshake tests, 80 training images, and an
independent test set of 733 news images were used. Out of the 733 images, 85 were
handshakes. An overall accuracy of 94% (94% of the set of 733 images, were correctly
classified) was achieved (74% recall, 70% precision) with 89 images automatically
labeled as handshake by the system. Sky detection was performed on a set of 1,300
images that contained 128 skies (with an independent training set of 40 images, see 55).
An accuracy of 94% was achieved (50% recall, 87% precision), in a set of 134 images
retrieved.

Fig. 7. Example object definition hierarchies. The first hierarchy was not used in experiments, but shows how
the close-up of a player could be modeled. The other two hierarchies were used in the experiments reported.

The results reported for the different types of hierarchies show that the Visual Apprentice
framework is flexible, allowing the construction of different types of detectors. More
importantly, performance in each case was similar to performance reported for similar
classifiers using other techniques (overall accuracy around 90% and higher). The
experiments show encouraging results for the construction of dynamic approaches to
classification. Next we describe some possible extensions, and improvements.

Sky

Regions

Face 1 Face 2 Handshake

Regions Regions

Handshake

Regions

BatterField Pitcher

Grass Sand

Regions Regions Regions Regions

Batting

5. DISCUSSION

5.1 Extensions to the framework

The framework of the VA shows several desirable characteristics of CBR systems. The
system uses learning techniques to automatically build classifiers, and therefore detectors
can be easily constructed without the need for specialized algorithms. Since classifiers
are built independently (for each node of the hierarchy), however, specialized algorithms
can be easily incorporated. For example, in the handshake classifier, a face detection
module could be used instead of the face node classifiers. Similarly, a domain-specific
segmentation algorithm could be used to improve performance. In the current
implementation a "standard" set of parameters is used with the segmentation algorithm.
The parameters, however, could depend on the specific class (and hierarchy) being
constructed by the user, or even learned by the system based on correct/incorrect
segmentation results (labeled by the user).

The construction of the hierarchy, as discussed earlier, is subjective and will depend on
the user. Therefore, two hierarchies for the same class (e.g., batting scene) may lead to
different classification results. It is conceptually possible to build an hierarchy
automatically, or semi-automatically. This issue is somewhat related to the learning of
belief networks54, and research in which the goal is to automatically detect Regions of
Interest (ROIs). ROIs are areas that would roughly correspond to nodes in an hierarchy
(i.e., areas of the image which are more important than others59). In 25, for example,
experiments were presented to explore the use of eye-tracking results for automatic
classification. Potentially this type of interaction could replace the current mode of
interaction in the training stage of the VA, and help in the automatic or semi-automatic
construction of hierarchies. A related issue is allowing more flexibility in the construction
of hierarchies, and the application of the VODs. For example, instead of requiring all
nodes to be labeled (and present during classification), it would be possible to extend the
framework to allow the omission of nodes. A batting scene, then, could be detected (with
a smaller confidence score), even if a pitcher is not detected.

Another possible extension of the VA, could include (at the user's expense) additional
input parameters that could be used by the system to guide the training process.
Information on issues such as desired computational efficiency (e.g.,
training/classification speed), for example, could be used internally in the selection of
classifiers, and in providing training guidelines (e.g., size of training set, etc.).

5.2 On Applications

With the VA it is possible, to construct classifiers for objects/scenes that are visually
similar, and have a structure that can be clearly defined. Applications in sports
commercial domains (e.g., databases of retail objects) seem promising. The approach,
however, may be unsuitable for classes in which variation in visual appearance is too
significant, or in which a well-defined structure is not easily identified (e.g., indoor,
outdoor images). Although it is conceivably possible to build several disjoint hierarchies
for such classes (rather than having a single one), it is likely for other approaches that
have produced promising results (e.g., 74,55) to be more suitable.

It is also important to point out that in some domains, specialized algorithms may be
better than flexible frameworks (e.g., the VA). An interesting possibility, however, is the
combination of approaches like the VA with approaches that use expert knowledge. The
VA, for example, could be used by an expert to construct rule-based classifiers, and those
classifiers could be manually refined by the expert to improve their performance in a
specific application. The framework could also be used to quickly examine feature
variations for different types of objects (e.g., analyzing the training data), and to construct
basic components to use in expert-constructed systems (e.g., use of a sky detector in a
larger framework). The batting scene rules in the sports event detection discussed
earlier,80 for example, were constructed by an expert by analyzing features extracted by
the VA during training. High accuracy was achieved in that system using this approach,
suggesting that the VA framework can also be a useful tool for experts constructing
domain-specific classifiers.

6. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a new approach to the construction of dynamic classifiers for CBR. In the
Visual Apprentice (VA), a user defines visual object/scene models, that depend on the
classes in which she is interested, via a multiple-level definition hierarchy (region,
perceptual-area, object part, object, and scene). As the user provides examples from
images or video, visual features are extracted and classifiers are learned for each node of
the hierarchy. At each node, the best features and classifiers are selected based on their
performance, using k-fold cross-validation over the training set. The resulting structured
collection of classifiers (a Visual Scene/Object Detector) can then be applied to new
images/videos. A new image/video is first segmented automatically, and then the
classifiers (region, perceptual-area, object part, object, scene) are applied according to
the hierarchy.

The concept of Recurrent Visual Semantics (RVS) was also discussed. RVS is defined as
the repetitive appearance of elements (e.g., objects, scenes, or shots) that are visually
similar and have a common level of meaning within a specific context. Using that
concept, it is possible to identify where and when learning techniques can be used in
CBR.

Experimental results were presented in the detection of baseball batting scenes,
handshake images, and skies. The results of the experiments are promising. The
framework is flexible (users are allowed to construct their own classifiers,
accommodating subjectivity); no input is required on difficult issues, such as the
importance of low-level features, and selection of learning algorithms; and performance
is comparable to that of other approaches. One of the main advantages of our framework
is the flexibility of defining object/scene hierarchies and detailed user input at multiple
levels. The approach allows users to specify multiple level composition models, which
are absent in most existing approaches to CBR.

Future work includes further research into classifier combination, semi-automatic
hierarchy construction, and MPEG-7 compatibility for the generation of features during
learning and classification. Other topics of future research also include feature and
classifier selection in with a small number of samples, the development of a theoretical

framework for the hierarchical classification scheme we propose, and the inclusion of
additional multimedia features (e.g., audio).

7. REFERENCES

1. D. Aha, Editor. Lazy Learning. Kluwer Academic Publishers, The Netherlands, 1997.
2. A. Amir, and M. Lindenbaum, “A generic grouping algorithm and its quantitative analysis,”

IEEE Transactions on Pattern Recognition and Machine Intelligence (PAMI), 20(2):186-192,
February 1998.

3. J.R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R.C. Jain, and C.
Shu, “The VIRAGE Image Search Engine: An Open Framework for Image Management,” in
proceedings of SPIE Storage and Retrieval for Still Image and Video Databases IV, vol.
2670:76-87, February 1996.

4. L.D. Bergman, V. Castelli, C.-S. Li and J.R. Smith, “SPIRE, a Digital Library for Scientific
Information,” International Journal of Digital Libraries, Special Issue “In the Tradition of the
Alexandrian Scholars”, 3(1):85-99, July 2000.

5. G. Briscoe and T. Caelli, editors. A Compendium of Machine Learning, Ablex series in
Artificial Intelligence. Norwood, NJ, 1996.

6. L.D. Bergman, and V. Castelli, editors. Image Databases, Search and Retrieval of Digital
Imagery. John Wiley & Sons, New York (forthcoming).

7. S.-F. Chang, T. Sikora, and A. Puri, “Overview of the MPEG-7 Standard,” IEEE
Transactions on Circuits and Systems for Video Technology, special issue on MPEG-7, June
2001 (to appear).

8. S.-F. Chang, W. Chen, H.J. Meng, H. Sundaram, and D. Zhong, “A Fully Automatic Content-
Based Video Search Engine Supporting Multi-Object Spatio-temporal Queries,” IEEE
Transactions on Circuits and Systems for Video Technology, Special Issue on Image and
Video Processing for Interactive Multimedia, 8(5):602-615, September 1998.

9. S.-F. Chang, J.R. Smith, M. Beigi and A. Benitez, “Visual Information Retrieval from Large
Distributed On-line Repositories,” Communications of the ACM, 40(12):63-71, December,
1997.

10. S.-F. Chang, B. Chen and H. Sundaram, “Semantic Visual Templates: Linking Visual Features
to Semantics,” in proceedings of International Conference on Image Processing (ICIP '98),
Workshop on Content Based Video Search and Retrieval, pages 531-535, Chicago IL,
October, 1998.

11. S.-F. Chang, Q. Huang, T.S. Huang, A. Puri, and B. Shahraray., "Multimedia Search and
Retrieval," in A. Puri and T. Chen, eds., Advances in Multimedia: Systems, Standards, and
Networks, Marcel Dekker, 1999.

12. W. Cohen, "Learning Trees and Rules with Set-valued Features", Thirteenth National
Conference on Artificial Intelligence, AAAI 1996, Portland, Oregon, August 1996.

13. A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, San Francisco,
USA, 1999.

14. T.G. Dietterich, “Proper Statistical Tests for Comparing Supervised Classification Learning
Algorithms,” Technical Report, Department of Computer Science, Oregon State University,
1996.

15. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, New York,
2001.

16. B.A. Draper, “Learning Object Recognition Strategies,” Ph.D. thesis, Computer Science
Department, University of Massachusetts, MA, 1993.

17. G. Durand, C. Thienot, and P. Faudemay, “Extraction of Composite Visual Objects from
Audiovisual Materials,” in proceedings of SPIE Multimedia and Archiving Systems IV, vol.
3846:194-203, Boston, MA, 1999.

18. D.A. Forsyth and M. Fleck, “Body Plans,” in proceedings of IEEE Computer Vision and
Pattern Recognition (CVPR '97), pages 678-683, San Juan, Puerto Rico, 1997.

19. C. Frankel, M.J. Swain and V. Athitsos, “WebSeer: An Image Search Engine for the World
Wide Web,” University of Chicago Technical Report TR-96-14, July 31, 1996.

20. W.E.L. Grimson. Object Recognition by Computer: The Role of Geometric Constraints. MIT
Press, Cambridge, MA 1990.

21. B. Gunsel, A.M. Ferman, and A.M. Tekalp, “Temporal video segmentation using
unsupervised clustering and semantic object tracking,” IS&T/SPIE Journal of Electronic
Imaging, 7(3):592-604, July 1998.

22. D. Healey, “Preattentive Processing in Visualization,”
http://www.cs.berkeley.edu/~healey/PP/PP.shtml

23. K. Ikeuchi, and M. Veloso, editors. Symbolic Visual Learning. Oxford University Press, New
York, 1997.

24. A. Jaimes, and S.-F. Chang, “Concepts and Techniques for Indexing Visual Semantics”, in
L.D. Bergman, and V. Castelli, editors. Image Databases, Search and Retrieval of Digital
Imagery. John Wiley & Sons, New York (forthcoming).

25. A. Jaimes, J.B. Pelz, T. Grabowski, J. Babcock, and S.-F. Chang, “Using Human Observers'
Eye Movements in Automatic Image Classifiers” in proceedings of SPIE Human Vision and
Electronic Imaging VI, San Jose, CA, 2001.

26. A. Jaimes, A.B. Benitez, S.-F. Chang, and A.C. Loui, “Discovering Recurrent Visual
Semantics in Consumer Photographs,” invited paper, International Conference on Image
Processing (ICIP 2000), Special Session on Semantic Feature Extraction in Consumer
Contents, Vancouver, Canada, September 10-13, 2000.

27. A. Jaimes and S.-F. Chang, “Model-Based Classification of Visual Information for Content-
Based Retrieval,” in proceedings of SPIE Storage and Retrieval for Image and Video
Databases VII, vol. 3656:402-414, San Jose, CA, January 1999.

28. A. Jaimes and S.-F. Chang, “Integrating Multiple Classifiers in Visual Object Detectors
Learned from User Input,” Invited paper, session on Image and Video Databases, 4th Asian
Conference on Computer Vision (ACCV 2000), vol. 1:376-381, Taipei, Taiwan, January 8-11,
2000.

29. A. Jaimes and S.-F. Chang, “Automatic Selection of Visual Features and Classifiers,” in
proceedings of SPIE Storage and Retrieval for Media Databases 2000, vol. 3972:346-358,
San Jose, CA, January 2000.

30. A. Jaimes and S.-F. Chang, “A Conceptual Framework for Indexing Visual Information at
Multiple Levels,” in proceedings of SPIE Internet Imaging 2000, vol. 3964:2-15. San Jose,
CA, January 2000.

31. A. Jain and D. Zongker, “Feature Selection: Evaluation, Application, and Small Sample
Performance,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
19(2):153-158, February 1997.

32. G.H. John, R. Kohavi, and K. Pfleger, “Irrelevant Features and the Subset Selection Problem,”
in proceedings of 11th International Conference on Machine Learning (ICML '94), pages 121-
129, 1994.

33. C. Jorgensen, A. Jaimes, A. B. Benitez, and S.-F. Chang, “A Conceptual Framework and
Research for Classifying Visual Descriptors,” invited paper, Journal of the American Society
for Information Science (JASIS), special issue on “Image Access: Bridging Multiple Needs
and Multiple Perspectives,” Spring 2001 (to appear).

34. R. Kasturi and R.C. Jain, editors. Computer Vision: Principles. IEEE Computer Society Press,
1991.

35. J.M. Keller, M.R. Gray and J.A. Givens Jr., “A fuzzy k-nearest neighbor algorithm,” IEEE
Transactions on Systems Man, and Cybernetics, 15(4):580-585, July/August 1985.

36. R. Kohavi, “Feature Subset Selection Using the Wrapper Model: Overfitting and Dynamic
Search Space Topology,” in proceedings of First International Conference on Knowledge
Discovery and Data Mining, pages 192-197, 1995.

37. R. Kohavi, “A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model

Selection,” in proceedings of the 14th International Joint Conference on Artificial Intelligence
(JCAI '95), pages 1137-1143, Morgan Kaufmann Publishers, Inc., 1995.

38. R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger, “MLC++: A Machine Learning
Library in C++,” in proceedings of Conference on Tools with Artificial Intelligence 94, 1994.

39. D. Koller and M. Sahami, “Toward Optimal Feature Selection,” in proceedings of 13th
International Conference on Machine Learning (ICML), Bary, Italy, July 1996.

40. P. Lipson, “Context and Configuration Based Scene Classification,” Ph.D. thesis, MIT
Electrical and Computer Science Department, September 1996.

41. D.G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publishers,
Boston, 1985.

42. D. Marr. Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. W. H. Freeman and Company, San Francisco, 1982.

43. J. Meng and S.-F. Chang, “Tools for Compressed-Domain Video Indexing and Editing,” in
proceedings of SPIE Conference on Storage and Retrieval for Image and Video Database, vol.
2670:180-191, San Jose, February 1996.

44. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, New York, 1992.

45. T. Minka, and R. Picard, “Interactive Learning Using a Society of Models,” Pattern
Recognition, 30(4), 1997.

46. T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
47. A.W. Moore and M.S. Lee, “Efficient Algorithms for Minimizing Cross Validation Error,” in

proceedings of the 11th International Conference on Machine Learning, Morgan Kaufmann,
1994.

48. MPEG Multimedia Description Scheme Group, "Text of ISO/IEC CD 15938-5 Information
technology - Multimedia content description interface: Multimedia description schemes",
ISO/IEC JTC1/SC29/WG11 MPEG00/N3705, La Baule, France, Oct. 2000 (see also MPEG-7
website: http://drogo.cselt.stet.it)

49. P.M. Murphy, UCI Repository of Machine Learning Databases- a machine-readable data
repository, Maintained at the department of Information and Computer Science, University of
California, Irvine. Anonymous FTP from ics.uci.edu in the directory pub/machine-learning-
databases, 1995.

50. M.R. Napahde, and T.S. Huang, "A Probabilistic Framework for Semantic Video Indexing,
Filtering, and Retrieval," IEEE Transactions on Multimedia, 3(1): 141-551, March 2001.

51. S. Nayar and T. Poggio, editors. Early Visual Learning. Oxford University Press, New York,
1996.

52. A.Y. Ng, “On Feature Selection: Learning with Exponentially many Irrelevant Features as
Training Examples,” in proceedings of International Conference on Machine Learning
(ICML), 1998.

53. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C.
Faloutsos and G. Taubin, “The QBIC Project: Quering Images by Content Using Color,
Texture, and Shape,” in proceedings of SPIE Storage and Retrieval for Image and Video
Databases, vol. 1908:173-187, February 1993.

54. S. Paek, and S.-F. Chang, “The case for Image Classification Systems Based on Probabilistic
Reasoning,” in proceedings, IEEE International Conference on Multimedia and Expo (ICME
2000), New York City, July, 2000.

55. S. Paek, C. L. Sable, V. Hatzivassiloglou, A. Jaimes, B. H. Schiffman, S.-F. Chang, K. R.
McKeown, “Integration of Visual and Text based Approaches for the Content Labeling and
Classification of Photographs,” in proceedings of ACM SIGIR '99 Workshop on Multimedia
Indexing and Retrieval, Berkeley, CA. August, 1999.

56. E.G.M. Petrakis and C. Faloutsos, “Similarity searching in large image databases,” University
of Maryland Department of Computer Science, Technical Report, No. 3388, 1995.

57. R.W. Picard, “Computer Learning of Subjectivity,” ACM Computing surveys, 27(4):621-623,
December 1995.

58. R.W. Picard, “A Society of Models for Video and Image Libraries,” MIT Media Laboratory

Perceptual Computing Section Technical Report, No. 360, Cambridge, Massachusetts, 1996.
59. C.M. Privitera, and L.W. Stark, “Algorithms for Defining Visual Regions-of-Interest:

Comparison with Eye Fixations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 22(9):970-981, September 2000.

60. T.R. Reed and J.M. Hans Du Buf, “A Review of Recent Texture Segmentation and Feature
Extraction Techniques,” Computer Vision, Graphics, and Image Processing (CVGIP): Image
Understanding, 57(3), May 1993.

61. H.A. Rowley, S. Baluja, and T. Kanade, “Human Face Detection in Visual Scenes,” Carnigie
Mellon University Technical Report CMU-CS-95, 158, 1995.

62. Y. Rui, T.S. Huang, and S.-F. Chang, “Image Retrieval: Current Directions, Promising
Techniques, and Open Issues,” Journal of Visual Communication and Image Representation,
No. 10:1-23, 1999.

63. Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra, “Relevance Feedback: A Power Tool for
Interactive Content-Based Image Retrieval,” IEEE Transactions on Circuits and Video
Technology, 8(5):644-655, September 1998.

64. J. Russ. The Image Processing Handbook. 3rd edition, CRC Press, Boca Raton, Fl, 1999.
65. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall series in

artificial intelligence, Prentice Hall, Englewood Cliffs, N.J., 1995.
66. S.L. Salzberg, “On Comparing Classifiers: A Critique of Current Research and Methods,”

Data Mining and Knowledge Discovery, 1:1-12, 1999.
67. A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-Based Image

Retrieval at the End of the Early Years”, in IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 22(12):1349-1380, December 2000.

68. J.R. Smith, and S.-F. Chang, “Multi-stage Classification of Images from Features and Related
Text,” in proceedings Fourth DELOS workshop, Pisa, Italy, August, 1997.

69. J.R. Smith and S.-F. Chang, “An Image and Video Search Engine for the World-Wide Web,”
in proceedings of SPIE Storage & Retrieval for Image and Video Databases V, vol. 3022:84-
95, San Jose, CA, February 1997.

70. J.R. Smith and S.-F. Chang. “VisualSEEk: a fully automated content-based image query
system,” in proceedings of the ACM Conference on Multimedia (ACM MM '96), pages 87-98,
November, 1996.

71. U. Srinivasan, C. Lindley, and B. Simpson-Young, “A Multi-Model Framework for Video
Information Systems,” in Database Semantics: Issues in Multimedia Systems, pages 85-108,
Kluwer Academic Publishers, January 1999.

72. D.L. Swets and J.J. Weng, “Efficient Content-Based Image Retrieval using Automatic Feature
Selection,” in proceedings of International Conference on Computer Vision (ICCV '95), Coral
Gables, Florida, November 1995.

73. T.F. Syeda-Mahmood, “Data and Model-Driven Selection Using Color Regions,”
International Journal of Computer Vision, 21(1/2):9-36, 1997.

74. M. Szummer and R.W. Picard, “Indoor-Outdoor Image Classification,” in proceedings of
IEEE International Workshop on Content-based Access of Image and Video Databases, pages
42-51, Bombay, India, 1998.

75. H. Tamura, S. Mori, and T. Yamawaki, “Textural Features Corresponding to Visual
Perception,” IEEE Transactions on Systems, Man, and Cybernetics, SMC-8:6, June 1978.

76. A. Triesman, “Preattentive Processing in Vision,” Computer Vision, Graphics, and Image
Processing (CGVIP), 31:156-177, 1985.

77. A. Vailaya, M. Figueiredo, A. Jain, and H.J. Zhang, “Image Classification for Content-Based
Indexing,” IEEE Transactions on Image Processing, 10(1): 117-130, January, 2001.

78. A. Yoshitaka, and T. Ichikawa, “A Survey on Content-Based Retrieval for Multimedia
Databases,” IEEE Transactions on Knowledge and Data Engineering, 11(1):81-93,
January/February 1999.

79. D. Zhong and S.-F. Chang, “Video Object Model and Segmentation for Content-Based Video
Indexing,” in proceedings of IEEE International Conference on Circuits and Systems, Special
session on Networked Multimedia Technology & Applications, vol. 2:1492-1495, Hong Kong,

June, 1997.
80. D. Zhong and S.-F. Chang, “Structure Analysis of Sports Video Using Domain Models”, IEEE

International Conference on Multimedia and Expo (ICME 2001), Tokyo, Japan, 2001
(submitted).

Alejandro Jaimes received the Computing Systems Engineering degree
from Universidad de los Andes (Bogotá, Colombia) in 1994, and the M.S.
in Computer Science from Columbia University (New York City) in 1997.

At Columbia University he is currently pursing a Ph.D. degree in Electrical
Engineering. Before joining the Ph.D. program in 1997, he was a member

of Columbia’s Robotics and Computer Graphics groups. He was also a member of
Columbia's Digital Libraries group. His recent work has focused on the use of learning
techniques in content-based retrieval, the development of interactive frameworks for
organizing digital image collections, MPEG-7, and human understanding of image and
video content.

Shih-Fu Chang is an Associate Professor of Electrical Engineering at
Columbia University. Prof. Chang received a Ph.D. degree of EECS from
U.C. Berkeley in 1993. He currently leads Columbia's ADVENT industry-
university research consortium, which focuses on representation,
manipulation, searching, and transmission of multimedia content.

Prof. Chang also leads digital video research within several cross-
disciplinary projects at Columbia, including Columbia's Health Care Digital Library
Project supported by NSF's DLI Phase II initiative. He actively participates in
international conferences and standardization efforts, such as MPEG-7. Prof. Chang has
been a general co-chair of ACM Multimedia Conference 2000, an associate editor for
several journals, and a consultant in several new media startup companies.

Prof. Chang has been awarded a Navy ONR Young Investigator Award in 1998, a
Faculty Development Award from IBM in 1995, a CAREER Award from the National
Science Foundation in 1995, and three best paper awards in the areas of video
representation and searching. He is currently a Distinguished Lecturer of IEEE Circuits
and Systems Society in the area of multimedia technologies and applications.

	INTRODUCTION
	Related Work
	Outline

	USING LEARNING IN CBR
	THE VISUAL APPRENTICE
	OVERVIEW
	USER INPUT
	FEATURE EXTRACTION AND LEARNING
	Feature Extraction
	Learning of Classifiers and Feature Selection
	Selection and Combination of Classifiers

	CLASSIFICATION

	EXPERIMENTAL RESULTS
	
	Baseball Video
	Handshakes and skies

	DISCUSSION
	Extensions to the framework
	On Applications

	CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES

