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ABSTRACT 
In this paper, we present a novel algorithm to condense 
computable scenes. A computable scene is a chunk of data that 
exhibits consistencies with respect to chromaticity, lighting and 
sound. We attempt to condense such scenes in two ways. First, 
we define visual complexity of a shot to be its Kolmogorov 
complexity. Then, we  conduct experiments that help us map the 
complexity of a shot into the minimum time required for its 
comprehension. Second, we analyze the grammar of the film 
language, since it makes the shot sequence meaningful. These 
grammatical rules are used to condense scenes, in parallel to the 
shot level condensation. We�ve implemented a system that 
generates a skim given a time budget. Our user studies show 
good results on skims with compression rates between 60~80%. 

1. INTRODUCTION 
This paper deals with the problem of creating video skims by 
condensing scenes via visual analysis. The problem is important 
because unlike the static, image based video summaries [9], 
video skims preserve the dynamism of the original audio-visual 
data. Skims based on visual analysis, are particularly important 
in the absence of any transcript in the video data. Applications 
include: (a) on demand summaries (b) facilitating browsing of 
digital archives (c) fast-forwarding through streaming video, 
while maintaining the original frame rate. 

There has been prior research on generating video skims. In the 
Informedia skimming project [1], important regions of the video 
were identified via a TF/IDF analysis of the transcript. 
Additionally, they use face detectors and motion analysis for 
additional cues. The MoCA project [6] worked on automatic 
generation of film trailers. They used heuristics on the trailers, 
along with a set of rules to detect certain objects (e.g. faces) or 
events (e.g. explosions). Work at Microsoft Research [5] dealt 
with informational videos; there, they looked at slide changes, 
user statistics and pitch activity to detect important segments. 
The work presented in this paper focuses on two specific areas 
that were not investigated in earlier work: (a) the relationship 
between the length of a shot in a film and its comprehension time 
(b) analyzing the  syntactical structure in the film.  

We define the visual complexity of the shot to be the its 
Kolmogorov complexity. This measure can be bounded by using 
the Lempel-Ziv compression algorithm. We then conduct a series 
of experiments that measure the comprehension time of 
randomly chosen shots from six films, with respect to four 
questions. The timings are then analyzed to generate an upper-
bound on the comprehension time as a function of the visual 

complexity of the shot. The upper bound then, is the minimum 
time that must be allocated to a shot, for it to remain 
comprehensible.  

We also investigate the use of film-syntax for reducing the 
content of the scene. Film-syntax refers to the arrangement of 
shots by the director to give meaning to the shot sequence. 
Examples include, specification of (a) scale (b) duration (c) order 
of shots, amongst many others [7]. We investigate two simple 
rules governing the duration of the phrase and dialogues, for 
content reduction. The results show that the upper bound based 
skim (compression rates between 60~80%) works well. 

The rest of this paper is organized as follows. In the next section, 
we review the computable scene idea. In section 3, we derive the 
relationship between comprehension time and complexity. In 
section 4, we show how to exploit film syntax for scene 
condensation. We discuss experiments in section 5, and present 
the conclusions in section 6. 

2. COMPUTABLE SCENES 
A computable-scene [8] is defined to be a chunk of audio-visual 
data with consistent chromaticity, lighting and ambient sound. 
Constraints on computable scenes stem from camera 
arrangement rules in film making and from the psychology of 
audition. We use these constraints along with analysis of five 
hours of commercial film data to come up with two broad 
categories of computable scenes. (a) N-type: show a long-term 
consistency with regard to chromatic composition, lighting 
conditions and sound. N-type scenes typically consist of shots 
from the same physical location. (b) M-type: these are 
characterized by widely different visuals that create a unity of 
theme by their arrangement and also have a long-term 
consistency to the audio. 

In this paper we focus on two N-type scene structures. 
Progressive: a linear progression of visuals without any repetitive 
structure (the first part of figure 1 is progressive). Dialog: a 
simple repetitive visual structure amongst shots.  A discussion on 
M-type scenes can be found in [8]. In prior work [8], we 
demonstrate a framework for detecting computable scenes as 
well as dialogs. The best results: scene detection: 88% recall and 
72% precision, dialog detection: 91% recall and 100% precision. 

Figure 1: A progressive scene followed by a dialogue. 
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3. VISUAL COMPLEXITY 
In this section, we discuss the relationship between visual 
complexity of an image and its time for comprehension.  

3.1 Insights: Film making and Human Learning 

In film-making, there is a relationship between the size1 of the 
shot and its apparent time (i.e. time perceived by the viewer).: 

�Close-ups seem to last relatively longer on the screen than long 
shots. The content of the close up is immediately identified and 
understood. The long shot on the other hand, is usually filled 
with detailed information which requires eye-scanning over the 
entire tableau. The latter takes time to do, thus robbing it of 
screen time�  [7]. 

Recent results in experimental psychology [3] indicate the 
existence of an empirical law: the subjective difficulty in 
learning a concept is directly proportional to the Boolean 
complexity of the concept (the shortest prepositional formula 
representing the concept), i.e. to its logical incompressibility. 
Clearly, there is empirical evidence to suggest a relationship 
between visual �complexity� of a shot and its comprehensibility.  

3.2 Kolmogorov Complexity 

We define the visual complexity of an shot to be its Kolmogorov 
complexity. Let x be a finite length binary string of length n. Let 
U(p) denote the output of an universal Turing machine2 U when 
input with program p. Then: 
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where, l(p) is the length of the program p, and n is the length of 
the string x and where KU(x | n) is the Kolmogorov complexity of 
x given n. Hence, the Kolmogorov complexity of x, with respect 
to an universal Turing machine U is the length of the shortest 
program that generates x. The Kolmogorov complexity of an 
arbitrary string x is non-computable due to the non-existence of 
an algorithm to solve the halting problem [2], [4]. Hence, we 
must generate a reasonable upper bound on Kolmogorov 
complexity. Lempel-Ziv encoding is a form of universal data 
coding that doesn�t depend on the distribution of the source [2]. 
We can easily show the following lemma by using results in [2], 
[4]. The proof has been omitted for the sake of brevity. 

Lemma 1: Let {Xi} be a stationary, ergodic process over a finite 
discrete sized alphabet. Let lLZ(X) be the Lempel-Ziv codeword 
length of a string X, where X = {X1, X2, �, Xn}. Then, 
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Hence, we can use the Lempel-Ziv compression algorithm to 
upper bound the visual complexity of a shot. We now 

                                                           
1 The size (long/medium/close-up/extreme close-up) refers to the size of 
the objects in the scene relative to the size of the image 
2 An universal Turing machine U is a Turing machine that can imitate the 
behavior of any other Turing machine T. It is a fundamental result that 
such machines exist and can be constructed effectively [4]. 

demonstrate how to map the normalized complexity (lLZ(X)/N) 
of an image X to its comprehension time. 

3.3 Complexity and Comprehension Time 

We conducted our experiments over a corpus of over 3600 shots 
from six films. A shot was chosen at random and then its key-
frame presented to the subject (the first author). Representing 
each shot by its key-frame is reasonable since our shot detection 
algorithm [10], is sensitive to changes in color and motion. Then, 
we measured the time to answer the following four questions (in 
randomized order), in an interactive session: (a) who: [man 
/woman/couple/people], (b) when: [morning/evening /afternoon], 
(c) what: [any verb e.g. looking, walking], (d) where: [inside/ 
outside]3. The subject was expected to answer the questions in 
minimum time and get all four answers right. This prevented the 
subject from responding immediately. We conducted ten sessions 
(to avoid fatigue), where the subject was questioned on 100 key-
frames. In the end, we had the reaction times to 883 shots (we 
averaged the reaction times over duplicates). 

3.4 Analysis of Comprehension Time 

The histograms of the average comprehension time (i.e. the 
average of the times to answer who? where? what? and when?)  
obtained by discretizing the complexity axis, indicate that each 
histogram slice is well modeled by a Rayleigh distribution. By 
using the 95th percentile cut-off for each histogram we get an 
estimate of the upper-bound on the comprehension time. The 
lower-bound on the comprehension time is generated by 
determining a least squares fit to the minimum time in each 
histogram. The resulting bounds are shown in figure 2. The 
equations for the lines are as follows: 

( ) 2.40 1.11,
( ) 0.61 0.68,

b

b
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where c is the normalized complexity and Ub and Lb are the 
upper and lower bounds respectively, in sec. The lines were 

                                                           
3 Questions such as �How?� or �Why?� were not used in the experiment 
since they cannot be answered by viewing just one image. Such questions 
need an extended context (at least a few shots) for an answer. 

Figure 2: Avg. comprehension time (sec.) vs. normalized
complexity (x-axis) showing comprehension (upper/lower)
bounds. It also shows the Rayleigh (95th percentile) bounds. 



estimated for c ∈ [0.25, 0.55] (since most of the data lies in this 
range) and then extrapolated. 

Hence, given a shot of duration to and normalized complexity cS, 
we can condense it to at most Ub(cS) sec by removing the last to -  
Ub(cS) sec. Let us assume that we want to reduce a sequence of 
shots by 75%. Then, the target time for each shot is 25% of its 
original length. If the target time of the shot is less than the upper 
bound Ub for that shot, we use the upper bound. Shots that are 
originally less than the upper bound are not reduced any further. 

Note that equation <3> indicates that both the lower and upper 
bounds increase with complexity, as they intuitively ought to. 
The upper bound comprehension time is actually a conservative 
bound. This is because of two reasons: (a) the shots in a scene in 
a film are highly correlated (not i.i.d ) and (b) while watching a 
film, there is no conscious attempt at understanding the scene. 

4. FILM SYNTAX 
In this section we shall give a brief overview of what constitutes 
�film syntax.� Then, we shall discuss its utility in films and then 
give time compression algorithms for two syntactic elements. 

4.1 Defining Film Syntax 

The phrase film syntax refers to the specific arrangement of shots 
so as to bring out their mutual relationship [7]. In practice, this 
takes on many forms (chapter 2, [7]) : (a) minimum number of 
shots in a sequence (b) varying the shot duration, to direct 
attention (c) changing the scale of the shot (there are �golden 
ratios� concerning the distribution of scale) (d) the specific 
ordering of the shots (this influences the meaning). These 
syntactical rules lack a formal basis, but have been arrived at by 
trial and error by film-makers. Hence, even though shots in a 
scene only show a small portion of the entire setting at any one 
time, the syntax allows the viewers to understand that these shots 
belong to the same scene.  

4.2 Why should we use Film Syntax? 

Let us contrast shots with words in a written document. Words 
have more or less fixed meanings and their position in a sentence 
is driven by the grammar of that language. However, in films it is 
the phrase (a sequence of shots) that is the fundamental semantic 
unit. Each shot can have a multitude of meanings, that gets 
clarified by its relationship to other shots. In the Informedia 
project [1] the authors used object detectors (e.g. face detectors 
etc.) to detect important shots; the audio was selected by a TF-
IDF analysis of the transcript and by selecting the complete 
phrase surrounding the highly ranked words. An object detector 
based approach (Informedia [1], MoCA [6]) to skims, for films, 
at a conceptual level, makes the analogy �shots as words.� 
However, this is in contrast to the way film-makers create a 
scene, where the syntax provides the meaning of the shot 
sequence. Hence, while condensing films, we must honor the 
film syntax.  

4.3 The Progressive Phrase 

According to the rules of cinematic syntax, a phrase must have at 
least three shots. �Two well chosen shots will create expectations 

of the development of narrative; the third well-chosen shot will 
resolve those expectations.� [7].  Let us assume that we have a 
progressive scene that has k shots and is of duration Tp and 
assume that we wish to reduce the duration by ∆tp. Then, we 
have three cases (break points based on heuristics) to deal with. 

k ≤≤≤≤ 6 : figure 3 (a) This contains only one major phrase. Hence, 
we start with the last shot and keep dropping shots one shot at a 
time, till either we have only three shots left or the scene 
duration has been reduced by ∆tp. 

6 < k < 15 : figure 3 (b) We assume that such a scene contains at 
most two phrases. Then, we start removing shots from the middle 
until the scene duration has been reduced by ∆tp or we are left 
with the phrase at the beginning and at the end.  

k  ≥≥≥≥ 15 : figure 3 (c) We assume that the scene contains at the 
most three phrases. We start removing shots till we have the 
phrase in the middle and the two end phrases or have reduced 
time by ∆tp. 

4.4 Dialogues 

Depicting a meaningful conversation between m people requires 
at least 3m shots [7]. Hence in a dialogue that shows two 
participants, this implies that we must have a minimum of six 
shots. Let us assume that we have a dialogue scene that has k 
shots and is of duration Td and assume that we wish to reduce the 
duration by ∆td. The procedure for reducing dialogues is as 
follows (figure 4): Start with the end of the dialogue and start 
dropping shots till either we have six shots left or until we have 
reduced the length of the dialogue by ∆td. 

Note that reductions due to syntactical rules are at a different 
level to the reductions due to visual complexity. The rules of film 
syntax let us decide the number of shots to retain while 
complexity analysis helps us determine the length of those shots. 

5. EXPERIMENTS 
The scenes used for creating the skims are from four films: Blade 
Runner (bla), Bombay (bom), Farewell my Concubine (far), Four 
Weddings and a Funeral (fou). The films were chosen since they 
exhibit diversity in film-making styles. We arbitrarily used the 
opening scene from each film for skim creation. We detect shots 
using the algorithm to be found in chapter 2, [10]. 

Figure 4: We start eliminating shots from the right. 

Figure 3: The black shots will not be dropped, and the 
number of gray shots dropped will depend on  ∆tp. The 
arrows show the direction in which we start dropping shots. 

(a) (b) 
(c)



Figure 5: The interface for 
specifying the skim length. 

We created an user interface 
(figure 5) to specify target skim 
length. The skim had to be 
specified to use at least one of 
the two reduction techniques: 
(a) complexity reduction 
(upper/lower bound) (c) syntax 
reduction (yes/no).    

The skims were of the 
following types: (a) upper 
bound (Ub) (b) lower bound (Lb) (c) pure syntax (Ps) (d) syntax 
with upper bound (Ps-Ub) (e) syntax with lower bound (Ps-Lb). 
Each skim represents a maximally reduced skim for that type 
(table 1).  Ub and Lb only use visual complexity, Ps uses syntax 
only while other two use complexity and syntax based reduction.  

Table 1: Skims lengths in seconds for each clip and skim type. 
The numbers in brackets represent the percentage reduction. The 
films in order: Blade Runner, Bombay, Farewell my Concubine, 
Four Weddings and a Funeral. 

Film Orig. Ub Lb Ps Ps-Ub Ps-Lb 
bla 184 44 (76) 21 (89) 114 (38) 35 (81) 16 (91)

bom 114 45 (60) 21 (82) 41 (64) 22 (81) 10 (91)
far 153 53 (65) 26 (83) 103 (33) 31 (80) 15 (90)
fou 165 31 (81) 14 (92) 58 (65) 17 (90) 8 (95) 

We conducted a pilot user study with five PhD students. The 
study used four films (one clip from each), with five skims per 
clip. Each clip had progressive and a dialog scene. The testers 
were largely unfamiliar with the films (each film on the average 
was familiar to 1.5 students) and  were expected to evaluate the 
skims on two metrics: (a) coherence: do the sequence of shots 
tell a story? and (b) skip original?: confidence that having seen 
the skim, there is no need to see the original. The metrics were 
on a scale of 1-7 (strongly disagree = 1 and strongly agree = 7). 
None of the clips or the skims had audio. We additionally asked 
each tester to rate the �best� and the �worst� skim per clip. In 
case of ambiguity, they could name more than one �best/worst� 
skim. 

Table 2: Test scores from five users. C: coherence, So: skip 
original? The last two rows represent best/worst preferences.  

Film Ub Lb Ps Ps-Ub Ps-Lb 

 C So C So C So C So C So 
bla 5.8 4.6 5.0 4.0 6.8 5.6 5.2 4.2 5.4 4.2 

bom 6.6 6.4 5.6 5.6 6.0 5.0 5.0 4.0 4.6 3.8 
far 6.2 5.6 5.8 5.6 5.4 4.2 3.8 3.6 4.0 3.6 
fou 6.0 4.6 5.4 4.4 5.6 3.8 5.4 3.0 4.8 3.0 
all 6.15 5.3 5.45 4.9 5.95 4.65 4.85 3.7 4.7 3.65 

best 9 5 4 2 1 
worst 1 3 3 6 9 

We showed the users a test clip and explained the two questions 
of coherence and �skip original?� We then showed the original 
clip, two skims, the original clip again and then followed by 
three more skims. The original was shown first to establish a 
context and then shown again in the middle of the test to refresh 
the user. This procedure was repeated for the remaining three 
clips. For each clip and each test taker, we randomized the order 
of the skims. The results are shown in table 2. 

The raw test scores as well as the �best/worst� classification by 
the user (table 2) clearly indicate that the upper bound (Ub) 
works well. The use of syntax has mixed results; while Ps and Ps-
Ub get high coherence scores, they are not consistently judged to 
be the best (only 6/21). Ps-Lb has the maximum data reduction, 
hence it is not surprising that it fares poorly.  

6. CONCLUSIONS 
In this paper, we�ve presented a novel framework for condensing 
computable scenes. The solution has two parts: (a) visual 
complexity and (b) film syntax analysis. We define the visual 
complexity of a shot to be its Kolmogorov complexity. Then, we 
showed how to effectively estimate this measure via the Lempel-
Ziv algorithm. Then we conducted an experiment that allowed us 
to map visual complexity of a shot to its comprehension time. 
The arrangement of shots in a scene gives meaning to the scene. 
In this work, we devised algorithms based on simple rules 
governing the length of the phrase and the dialog.  

We conducted a pilot user study on four clips by using five 
different skim types, each generated at maximal compression. 
The results of the user study indicate that while all skims are 
perceived as coherent (C>4.7) the upper bound based skim 
(60~80% compression) works the best with the syntax based 
summaries providing mixed results.  

The algorithms presented here leave much room for 
improvement: (a) we are working on incorporating audio into the 
skims. (b) incorporating other elements of syntax such as scale 
and time distribution of shots and differential changes in scale. 
(c) we are conducting experiments to determine the robustness of 
the proposed algorithm against different shot detection methods. 
(d) additional experiments to verify the time-complexity curves 
as well as a statistically significant user study (>25 students) are 
also needed. 
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