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Abstract 
In this paper, we present a novel algorithm to generate 
visual skims, that do not contain audio, from computable 
scenes. Visual skims are useful for browsing digital 
libraries, and for on-demand summaries in set-top boxes. 
A computable scene is a chunk of data that exhibits 
consistencies with respect to chromaticity, lighting and 
sound. First, we define visual complexity of a shot to be 
its Kolmogorov complexity. Then, we conduct experiments 
that help us map the complexity of a shot into the 
minimum time required for its comprehension. Second, we 
analyze the grammar of the film language, since it makes 
the shot sequence meaningful. We achieve a target skim 
time by minimizing a sequence utility function. It is 
subject to shot duration constraints, and penalty functions 
based on sequence rhythm, and information loss. This 
helps us determine individual shot durations as well as 
the shots to drop. Our user studies show good results on 
skims with compression rates up to 80%. 

1. Introduction 

This paper deals with the problem of systematic generation 
of visual skims by condensing scenes via visual analysis. 
At present, our skims do not incorporate audio. The 
problem is important because unlike the static, image 
based video summaries [11], video skims preserve the 
dynamism of the original audio-visual data. Applications 
of visual skims include: (a) on demand summaries of the 
data stored in set-top boxes (b) in interactive television (c) 
browsing of digital archives (d) fast-forwarding through 
streaming video, while maintaining the original frame rate. 

There has been prior research on generating video skims. 
In the Informedia skimming project [1], important regions 
of the video were identified via a TF/IDF analysis of the 
transcript. Additionally, they use face detectors and motion 
analysis for additional cues. The MoCA project [7] worked 
on automatic generation of film trailers. They used 
heuristics on the trailers, along with a set of rules to detect 
certain objects (e.g. faces) or events (e.g. explosions). 
Work at Microsoft Research [6] dealt with informational 
videos; there, they looked at slide changes, user statistics 
and pitch activity to detect important segments.  

Clearly skims differ based on the need to preserve certain 
semantics [2], [7], the specific domain [6] and by user 
needs (e.g. searching for particular content). This work 
focuses on three specific areas that were not investigated in 
earlier work: (a) the relationship between the length of a 
shot in a film and its comprehension time (b) analyzing the  
syntactical structure in the film (c) defining the notion of a 
sequence utility function.  

We define the visual complexity of the shot to be the its 
Kolmogorov complexity. This measure can be bounded by 
using the Lempel-Ziv compression algorithm. We then 
conduct a series of experiments that measure the 
comprehension time of randomly chosen shots from six 
films, with respect to four questions. These are at a generic 
semantic level (e.g. who? where? what? why?). The 
timings are then analyzed to generate a bound on minimum 
time that must be allocated to a shot, for it to remain 
comprehensible.  

We also investigate the use of film-syntax for reducing the 
content of the scene. Film-syntax refers to the arrangement 
of shots by the director to give meaning to the shot 
sequence. Examples include, specification of (a) scale (b) 
duration (c) order of shots, amongst many others [8]. We 
investigate two simple rules governing the duration of the 
phrase and dialogues, for content reduction.  We also show 
how to guard against errors in shot-detection, in our 
framework. Then, we define a sequence utility function, 
and determine shot duration of each shot in the target skim 
using a maximization procedure subject to shot duration 
constraints and penalty functions based on sequence 
rhythm and information loss. The user studies show that 
the our scheme works well for compression rates up to 
80%, in addition to showing statistically significant 
improvements over earlier algorithms [10]. 

The rest of this paper is organized as follows. In the next 
section, we review the computable scene idea. In section 3, 
we derive the relationship between comprehension time 
and complexity. In section 4, we show how to exploit film 
syntax for scene condensation. We introduce the 
maximization procedure in section 5, we present 
experimental results in section 6, discuss the choices made 
in the algorithm in section 7, and present the conclusions in 
section 8. 



2. Computable Scenes 

A computable-scene [9] is defined to be a chunk of audio-
visual data with consistent chromaticity, lighting and 
ambient sound. Constraints on computable scenes stem 
from camera arrangement rules in film making and from 
the psychology of audition. We use these constraints along 
with analysis of five hours of commercial film data to 
come up with two broad categories of computable scenes. 
(a) N-type: show a long-term consistency with regard to 
chromatic composition, lighting conditions and sound. N-
type scenes typically consist of shots from the same 
physical location. (b) M-type: these are characterized by 
widely different visuals that create a unity of theme by 
their arrangement and also have a long-term consistency to 
the audio. 

In this paper we focus on scenes comprising two N-type 
scene structures. Progressive: a linear progression of 
visuals without any repetitive structure (the first part of 
figure 1, showing a sequence of shots of the river, is a 
progressive scene). Dialog: a simple repetitive visual 
structure amongst shots.  A discussion on M-type scenes 
can be found in [9]. In [9], we demonstrate a framework 
for detecting computable scenes and dialogs. The best 
results: scene detection: 88% recall and 72% precision, 
dialog detection: 91% recall and 100% precision. 

3. Visual Complexity 
In this section, we discuss the relationship between visual 
complexity of an image and its time for comprehension.  

3.1 Insights: film making and human learning 

In film-making, there is a relationship between the size1 of 
the shot and its apparent time (i.e. time perceived by the 
viewer).: 

“Close-ups seem to last relatively longer on the screen 
than long shots. The content of the close up is immediately 
identified and understood. The long shot on the other 
hand, is usually filled with detailed information which 
requires eye-scanning over the entire tableau. The latter 
takes time to do, thus robbing it of screen time”  [8]. 

                                                           
1 The size (long/medium/close-up/extreme close-up) refers to the size of 
the objects in the scene relative to the size of the image 

Recent results in experimental psychology [4] indicate the 
existence of an empirical law: the subjective difficulty in 
learning a concept is directly proportional to the Boolean 
complexity of the concept (the shortest prepositional 
formula representing the concept), i.e. to its logical 
incompressibility. Clearly, there is empirical evidence to 
suggest a relationship between visual “complexity” of a 
shot and its comprehensibility. 

3.2 Kolmogorov complexity 

We define the visual complexity of an shot to be its 
Kolmogorov complexity. Let x be a finite length binary 
string of length n. Let U(p) denote the output of an 
universal Turing machine2 U when input with program p. 
Then: 

: ( )
( | ) min ( ),U p U p x

K x n l p
=

�     <1> 

where, l(p) is the length of the program p, and n is the 
length of the string x and where KU(x | n) is the 
Kolmogorov complexity of x given n. Hence, the 
Kolmogorov complexity of x, with respect to an universal 
Turing machine U is the length of the shortest program that 
generates x. The Kolmogorov complexity of an arbitrary 
string x is non-computable due to the non-existence of an 
algorithm to solve the halting problem [3], [5]. Hence, we 
must generate a reasonable upper bound on Kolmogorov 
complexity. Lempel-Ziv encoding is a form of universal 
data coding that doesn’t depend on the distribution of the 
source [3]. We can easily show the following lemma by 
using results in [3], [5]. The proof has been omitted for the 
sake of brevity. 

Lemma 1: Let {Xi} be a stationary, ergodic process over a 
finite discrete sized alphabet. Let lLZ(X) be the Lempel-Ziv 
codeword length of a string X, where X = {X1, X2, …, Xn}. 
Then, 
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→
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Hence, we can use the Lempel-Ziv compression algorithm 
to upper bound the visual complexity of a shot.  

3.3 Generating estimates of complexity 

The complexity is estimated using a single key-frame3. 
Representing each shot by its key-frame is reasonable since 

                                                           
2 An universal Turing machine U is a Turing machine that can imitate 
the behavior of any other Turing machine T. It is a fundamental result 
that such machines exist and can be constructed effectively [5]. 
3 We choose the 5th frame after the beginning of the shot, to be its key-
frame. We acknowledge that there are other more sophisticated strategies 
for choosing key-frames.  

Figure 1: A progressive scene followed by a 
dialogue. 
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our shot detection algorithm [12], is sensitive to changes in 
color and motion. In this paper, we tested two lossless 
compressors — gzip [13] based on the Lempel-Ziv (LZ77) 
algorithm and bzip2 [14] based on the recent Burrows-
Wheeler transform (BWT) [1]. Algorithms based on the 
BWT have shown greater compression rates than those 
based on the well known Lempel-Ziv algorithm. In our 
experiments, the size of the bzip2 sequence was typically 5 
~ 10 % smaller than the corresponding gzip sequence. 
Bzip2 also produced a shorter sequence than gzip for every 
image in our corpus. Hence we estimated Kolmogorov 
complexity using bzip2. 

The output of a compressor operating on an image I is a 
program. This program, when input to a universal Turing 
machine emulating the compressor will decompress the 
program to output the original image I. Hence the length of 
the BWT sequence for the image I is just the size of the 
bzip2-ped file in bytes. We normalize the complexity by 
dividing it by the image size (this is just # bits / pixel). 

3.4 Complexity and comprehension time 

We conducted our experiments over a corpus of over 3600 
shots from six films. A shot was chosen at random (with 
replacement) and then its key-frame presented to the 
subject (the first author). Then, we measured the time to 
answer the following four questions (in randomized order), 
in an interactive session: (a) who: [man / woman / couple / 
people], (b) when: [morning / evening / afternoon], (c) 
what: [any verb e.g. looking, walking], (d) where: [inside/ 
outside] 1 . The subject was expected to answer the 
questions in minimum time and get all four answers right. 
This prevented the subject from responding immediately. 
We conducted ten sessions (to avoid fatigue), where the 
subject was questioned on 100 key-frames. In the end, we 
had the reaction times to 883 unique shots (we averaged 
the reaction times over duplicates). For each question, 
“none” or “ambiguous” was an acceptable answer. The 
response times in such cases are valid since they measure 
the time to reach a decision.  

3.5 Analysis of comprehension time 

We generate histograms of the average comprehension 
time (i.e. the average of the times to answer who? where? 
what? and when?) after discretizing the complexity axis. 
The lower-bound on the comprehension time is generated 
by determining a least squares fit to the minimum time in 
each histogram. The distribution of times in each 
histogram slice, above the minimum time, is well modeled 
by a Rayleigh distribution. By using the 95th percentile cut-
                                                           
1 Questions such as “How?” or “Why?” were not used in the experiment 
since they cannot be answered by viewing just one image. Such 
questions need an extended context (at least a few shots) for an answer. 

off for each histogram we get an estimate of the upper-
bound on the comprehension time. The resulting bounds 
are shown in figure 1. The equations for the lines are as 
follows: 

( ) 2.40 1.11,
( ) 0.61 0.68,

b

b

U c c
L c c

= +
= +

  <3> 

where c is the normalized complexity and Ub and Lb are 
the upper and lower bounds respectively, in sec. The lines 
were estimated for c ∈ [0.25, 0.55] (since most of the data 
lies in this range) and then extrapolated. Hence, given a 
shot of duration to and normalized complexity cS, we can 
condense it to at most Ub(cS) sec by removing the last to -  
Ub(cS) sec. Let us assume that we want to reduce a shot by 
75%. If the target time of the shot is less than the upper 
bound Ub for that shot, we use the upper bound. If the 
original length of the shot is less than the upper bound it is 
not reduced any further. 

Note that equation <3> indicates that both the lower and 
upper bounds increase with complexity, as they intuitively 
ought to. The upper bound comprehension time is actually 
a conservative bound. This is because of two reasons: (a) 
the shots in a scene in a film are highly correlated (not 
i.i.d ) and (b) while watching a film, there is no conscious 
attempt at understanding the scene.  

4. Film Syntax 
In this section we shall give a brief overview of “film 
syntax.” Then, we shall discuss its utility in films and then 
give syntax based reduction schemes for two syntactic 
elements. Finally, we show a technique to deal with shot-
detection errors. 

4.1 Defining film syntax 

The phrase film syntax refers to the specific arrangement 
of shots so as to bring out their mutual relationship [8]. In 
practice, this takes on many forms (chapter 2, [8]) : (a) 

Figure 2: Avg. comprehension time (sec.) 
vs. normalized complexity (x-axis) showing 
comprehension (upper/lower) bounds. It also 
shows the Rayleigh (95th percentile) bounds. 



minimum number of shots in a sequence (b) varying the 
shot duration, to direct attention (c) changing the scale of 
the shot (there are “golden ratios” concerning the 
distribution of scale) (d) the specific ordering of the shots 
(this influences the meaning). These syntactical rules lack 
a formal basis, and have been arrived at by trial and error 
by film-makers. Hence, even though shots in a scene only 
show a small portion of the entire setting at any one time, 
the syntax allows the viewers to understand that these shots 
belong to the same scene.  

4.2 Why should we use film syntax? 

Let us contrast shots with words in a written document. 
Words have more or less fixed meanings and their position 
in a sentence is driven by the grammar of that language. 
However, in films it is the phrase (a sequence of shots) that 
is the fundamental semantic unit. Each shot can have a 
multitude of meanings, that gets clarified by its 
relationship to other shots.  

The Informedia [1] and the MoCA [7] projects use object 
detectors (e.g. face detectors etc.) over the entire video, for 
selecting important segments. In the Informedia project [1] 
the audio was selected by first performing a TF-IDF 
analysis of the transcript and then selecting the complete 
phrase surrounding the highly ranked words. An object 
detector based approach (e.g. Informedia, MoCA) to 
skims, for films, at a conceptual level, makes the analogy 
“shots as words.” However, this is in contrast to the way 
film-makers create a scene, where the syntax provides the 
meaning of the shot sequence. Hence, while condensing 
films, we must honor the film syntax. 

The Informedia and the MoCA projects analyze data over 
the entire video. However, they do not perform scene level 
analysis for skim generation. In our current work, we 
analyze the data within one scene. In future work, we plan 
on utilizing the interesting syntactical relationships 
amongst scenes that exist in the video [8], for compression. 

4.3 Syntax rules for shot removal 

According to the rules of cinematic syntax [8], a phrase 
must have at least three shots. “Two well chosen shots will 
create expectations of the development of narrative; the 
third well-chosen shot will resolve those expectations.” 
Sharff [8] also notes that depicting a meaningful 
conversation between m people requires at least 3m shots. 
Hence in a dialogue that shows two participants, this rule 
implies that we must have a minimum of six shots. Let us 
assume that we have a scene that has k shots. Then, we 
perform three types of syntax reductions (break points 
based on heuristics) based on the on the number of shots k 
(Table 1). The number and the location of the dropped 
shots depend on k and the syntax element (i.e. dialog or 

progressive). In the following discussion, we use a fictional 
film with a character called Alice. 

Table 1: Three types of syntax reductions that depend 
on the element (dialog/progressive) and the number of 
shots k. 

Breakpoints for each type 
Element Min. phrase 

length I II III 

Dialog 6 k ≤ 15 15 < k < 30 k ≥ 30 

Progressive 3 k ≤ 6 6 < k < 15 k ≥ 15 

A phrase is a sequence of shots designed to convey a 
particular semantic. It is reasonable to expect that the 
number of phrases in a scene, increase with the number of 
shots. For short scenes (type I reduction) we assume that 
there is a single phrase, containing one principal idea, in 
the scene. For example, the director could show Alice, 
walking back to her apartment, in a short scene. 

In scenes of medium duration (type II reduction) we 
assume that there are at most two phrases. For example, 
<1st phrase>: Alice could be shown entering her room,  
switching on the lights, and be shown thinking. 
<2nd phrase>: then, she is shown walking to the shelves 
looking for a book, and is then shown with the book. We 
assume that scenes of long duration, (type III reduction) 
contain at most three phrases. Modifying the previous 
example — <1st phrase>: Alice is shown entering the 
room, <2nd phrase>: she is shown searching for the book, 
<3rd phrase>: she walks with the book to her desk and 
makes a phone call. Hence, the reduction attempts to 
capture the phrase in the middle and the two end phrases. 

In type I reduction, (figures 2 (I)–(III)) we drop shots from 
the right, since the director sets up the context of the scene 
using the initial shots. In type II, we expect an initial 
context, followed by a conclusion. Here, we start dropping 
shots from the middle, towards the ends. In type III, the 
scene is divided into three equal segments, and shots are 
dropped from the two interior segment boundaries.  

Unlike written text, there are no obvious visual 1 
“punctuation marks” in the shots to indicate a “phrase 
                                                           
1 However, we may be able to detect a “phrase change” within a scene, 
by analyzing the audio and the transcript. 

Figure 2: Three syntax reduction mechanisms. 
The black boxes are the minimal phrases and 
will not be dropped, while the gray shots can 
be dropped. 

( I ) ( II )

( III )



change.” Hence our syntax reduction strategy, which will 
capture the phrases in scenes of short and medium 
duration, may cause error in scenes of long duration.  

4.4 Incorporating shot detector uncertainty 

In this section we show how the statistical uncertainty in 
shot detection algorithms affect the rules of syntax. 
Practical shot-detection algorithms have misses and false 
alarms, each of which has a different effect on skim 
generation. Shot misses can cause our shot condensation 
algorithm (ref. section 3.5) to remove a missed shot. False 
alarms will cause our syntax based reduction algorithm to 
remove more shots than permitted by the minimum 
requirements. In this work, we only focus on false alarms. 
Since false alarms manifest themselves as an increase in 
the number of shots detected, we can compensate for them. 

Table 2: Shot detector variations. Each row show 
the in order: the motion and color parameter 
thresholds, recall, precision,  prob. of false alarm 
P(Fa),  P(Fa | Nd): prob. of false alarm give a non-
dialog scene. The 97.5% confidence upper bound 
for P(Fa | Nd). 

Motion Color Recall Precision P(Fa) P( Fa | Nd ) 97.5%
L L 0.97 0.72 0.28 0.55 0.64 
L M 0.96 0.71 0.29 0.55 0.65 
L H 0.96 0.71 0.29 0.55 0.65 
M L 0.92 0.93 0.07 0.14 0.23 
M M 0.91 0.94 0.06 0.12 0.21 
M H 0.91 0.94 0.06 0.12 0.21 
H L 0.90 0.94 0.06 0.11 0.19 
H M 0.86 0.95 0.05 0.10 0.18 
H H 0.84 0.95 0.05 0.10 0.18 

We conducted a test with nine variations of our shot 
detection algorithm [12]. The algorithm had two adjustable 
thresholds for motion and color, and each parameter was 
set to three possible values: {low, medium, high}. Table 2 
shows the results of the tests. We used 112 shots from four 
scenes, each from a different film. The test set had 54 
dialog shots and 58 non-dialog (i.e. progressive) shots. The 
shot detectors had no false alarms in the section which had 
dialogs. Hence we are interested in the probability of false 
alarm given a non-dialog scene: P(Fa | Nd). We use 
standard statistical techniques to compute the 97.5% 
confidence upper bound for P(Fa | Nd). In this current work 
we use the following shot detector: {motion: M, color: L}. 
The table implies that for this shot detector, P(Fa | Nd) ≤ 
0.23, with 97.5% confidence, over unseen data sets. 

The upper bound on P(Fa | Nd) is used to modify the 
minimum number of shots that must remain in a 
progressive scene. If the progressive scene contains N 
shots, with m  minimum number of shots (from the rules in 
section 4.3), then m is modified as:  

 ( )d| N 0.5am m N P F′ = + +  �  <4> 

where m� is the new minimum    is the floor function. 
function. The second part of equation <4>, is just the 
expected number of false alarms. For example, in a scene 
with type II reduction, assume that N = 12, then, m = 6 and 
∆m = 3. Hence the minimum number of shots to be 
retained is 9.  Modifying the minimum number of shots to 
drop ensures that we do not violate the minimum shot 
requirements of the syntactical elements of the scene. 

5. Skim Generation Constraints 

In this section, we derive the shot utility function using 
constraints on comprehension due to viewing time and shot 
complexity. We discuss penalty functions for skim rhythm 
and for dropping shots. We formulate a constrained 
minimization problem to determine the duration of each  
shot in sequence as well as the shots to be dropped, for a 
given target skim duration.  

In the sections that follow we assume the following 
notation. N is the total number of shots in the original 
sequence, To is the original duration of the sequence, the 
target duration is Tf, to,n represents the original duration of 
shot n in the scene. Define indicator sequence φ(n) = 1 iff. 
nth shot is present in the condensed scene. Define 
Nφ = � φ(n), the number of shots in the condensed scene.  

5.1 The need for an utility function 

The shot utility function, models the comprehensibility of a 
shot as a continuous function of its duration and its visual 
complexity. This idea is connected to the results in section 
3.5 in following way. Let us assume for the sake of 
definitiveness, that we have a 10 sec. shot of complexity 
0.5. Then the upper bound duration Ub = 2.23 sec. We 
have argued that that if we reduce the shot duration to its 
upper bound, then there is a high probability that it will 
still be comprehensible. However,  the results in section 
3.5 do not tell us how the comprehensibility of a shot 
changes when we decrease its duration. Hence the need for 
a shot utility function. The sequence of shots in a scene are 
assumed to be i.i.d. allowing us to model the utility of a 
shot independently of other shots. 

5.2 Defining the utility of a shot 

The non-negative utility function of a shot S(t, c), where t 
is the duration of the shot and c is its complexity, must 
satisfy the following constraints: 

1. For fixed c, S(t, c) must be a non-decreasing 
function of the duration t. 
i.e. 1 2 1 2, ( , ) ( , ).t t S t c S t c∀ ≤ ≤ This is intuitive 



since decreasing the shot duration by dropping 
frames from the end of the shot (section 3.5), 
cannot increase its comprehensibility. 

2. ( ,0) 0, ( ,1) 0.t S t S t∀ = =  This is because 
complexity c = 0 implies the complete absence of 
any information, while c = 1 implies that the shot 
is purely random.  

We model the shot utility function to be a bounded, 
differentiable, separable, concave  function: 

 ( , ) (1 ) (1 exp( )).S t c c c t= β − − −α�  <5> 

The exponential is due to the first constraint and the fact 
that the utility function is assumed to bounded. Symmetry 
with respect to complexity is again reasonable and the 
functional form stems from second constraint and 
concavity. We wished to avoid choosing a more general 
separable model (e.g. higher order polynomials) satisfying 
the constraints to avoid the possibility of over fitting.  

The utility function for the sequence of shots is the sum of 
the utilities of the individual shots. This follows from the 
i.i.d. assumption. 

 
: ( ) 1

1( , , ) ( , )i i
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where, 0 1: , ... Nt t t t
r

and 0 1 .: , ... Nc c c cr  represent the 
durations and complexities of the shot sequence.  

5.3 Rhythm penalty 

The original sequence of shots have their duration 
arranged in a specific proportion according to the aesthetic 
wishes of the director of the film. Clearly, while 
condensing a scene, it is desirable to maintain this “film 
rhythm.” For example, in a scene with three shots of 
durations 5 sec. 10 sec. and 5 sec. maintaining the scene 
rhythm would imply that we preserve the ratios of the 
duration (i.e. 1:2:1) of the shots. We define the rhythm 
penalty function as follows: 
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where R is the penalty function, and where, ti is the 
duration of the ith shot in the current sequence, while to,i is 
the duration of the ith shot in the original sequence. The 
ratios are recalculated with respect to only those shots that 
are not dropped, since the rhythm will change when we 

drop the shots. The penalty function is the familiar 
Kullback-Liebler distance function [3]. 

5.4 Shot dropping penalty 

We deem the penalty due to dropping a shot to be 
proportional to its utility evaluated at its lower bound. This 
is because the lower bound represents the minimum 
amount time required to understand the shot. The sequence 
penalty P(φ) given the indicator sequence φ, is defined as 
follows: 
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where, λ modulates the shot utility, tp,i is the proportional 
time for shot i i.e. , ,i f ot T Tο �  tLb,i and  tUb,i are the lower 
and upper time bounds for shot i, and S(t,c) is the shot 
utility function. The intuition for the modulation function 
λ, comes from observations in an earlier user study [10]. 
Users do not seem to mind dropped shots when average 
shot duration of the shots retained in the condensed 
sequence is large. However, when the average shot 
duration in the condensed sequence is close to the upper 
bound, they prefer to see the whole sequence.  

5.5 The sequence objective function 

We now define the objective function ( , )O t c
r r to determine 

the duration and number of shots allowed in the sequence 
given the target duration Tf as follows: 

 1( , , ) 1 ( , , ) ( , ) ( )O t c U t c R t Pοφ ≡ − φ + γ φ + γ φ
r r rr r  <9> 

where γo and γ1 are constant weights. Then, the individual 
shot durations and the indicator sequence is determined in 
the following way: 
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where, No is minimum number of shots to be retained in 
the scene. This value is obtained from Table 1. Note that 

, , ,  and Lb Ub pc t t t tο
r r r rr are constants during the minimization. 



Table 4

Table 3: Test scores from five users. The 
columns: the algorithm used, the film, 
compression rate, and the five questions. 

Also, the shots can be dropped only in a constrained 
manner using the rules in section 4.3. Due to constraints on 
Nφ, there are some target times not achievable with our 
constraints. Then the algorithm will generate a best-effort 
skim, with maximal number of shots dropped, with each 
retained shot reduced to its lower bound. 

6. Experiments 

The scenes used for creating the skims were from four 
films: Blade Runner (bla), Bombay (bom), Farewell my 
Concubine (far), Four Weddings and a Funeral (fou). The 
films were chosen for their diversity in film-making styles. 
While we arbitrarily picked one scene from each film, we 
ensured that each scene had one dialog segment. We 
detected shots using the algorithm to be found in chapter 2, 
[12], and with the shot-detector parameters {motion: M, 
color: L} (ref. Table 2). 

We used two different skim generation mechanisms: the 
algorithm presented in this paper and the algorithm created 
in an earlier work [10]. Briefly, in the earlier algorithm, we 
attempted reduction to the target time by proportionately 
reducing the duration of each shot. If the target time could 
not be met in this manner, we would then drop shots 
according to rules of syntax. In that algorithm, we did not 
incorporate shot detector uncertainty, nor did we define the 
notion of sequence utility.  

We created two skims (one from each algorithm) at each of 
the four different compression rates (90%, 80%, 70% and 
50%). Ideally, we would liked to have created one skim 
per compression rate, per film. However, this would have 
meant that the user would have to rate 32 skims, an 
exhausting task. We ordered the scenes according the 
number of shots, and the scene with the maximum number 
of shots was compressed at 90%; the scene with the next 
highest number of shots at 80% and so on. A little thought 
indicates that this is a difficult test set for testing our 
algorithm. The parameters α and β in U(t ,c ,φ) were 
estimated using the results of the user study in [10]. The 
parameters in this algorithm are: α = 2.397 and β = 4.0, 
γo = 0.2, γ1 = 0.25.  

We conducted a pilot user study with five graduate 
students. Each film was on the average, familiar to 2.25 
students. The testers were expected to evaluate (Table 3) 
each skim, on a scale of 1 - 7 (strongly disagree – strongly 
agree), on the following metric: Does the sequence tell a 
story? They were additionally asked to rate their 
confidence in answering the four generic questions of 
who? where? when? what? for the four skims (ref. section 
3.4). Each user watched the skims in random order. After 
the viewers had evaluated all the eight skims, we also 
asked the users to evaluate the two skims at each 
compression rate. For each pair, they were asked indicate 

(Table 4) degree of agreement (scale 1 - 7) with the 
statement: skim A is better than skim B. 

Algo. Film Rate Story? where? what? who? when? 

new / old bla 90 4.8 / 4.0 6.8 / 6.6 5.8 / 5.6 6.6 / 6.8 5.2 / 5.0 
change   + 0.8 + 0.2 + 0.2 - 0.2 + 0.2 

new / old far 80 5.8 / 5.2 7.0 / 6.8 6.4 / 6.2 7.0 / 6.8 6.4 / 6.4 
change   + 0.6 + 0.2 + 0.2 + 0.2 0.0 

new / old bom 70 6.4 / 5.6 7.0 / 6.8 6.4 / 6.2 7.0 / 7.0 6.2 / 6.2 
change   + 0.8 + 0.2 + 0.2 0.0 0.0 

new / old fou 50 6.4 / 5.8 7.0 / 7.0 6.4 / 6.0 7.0 / 6.8 5.8 / 5.4 
change   + 0.6 0.0 + 0.4 + 0.2 + 0.4 

 The test scores indicates that the new improved algorithm 
outperforms the old one at almost every compression rate 
and at every question. This improvement is statistically 
significant. We computed the students t-test on the result 
of the direct skim comparison. The null hypothesis that the 
two skim algorithms were identical was 
rejected at confidence level better than  
99.99%. Also, the excellent user 
feedback tapers off at the 80% 
compression rate (the story? 
column in Table 3), indicating that 
perhaps the syntax based reduction 
is too restrictive; at 90% 
compression rate it may be better to 
drop more shots thus increasing the average shot duration 
of the remaining shots.  

7. Discussion 

In this section, we discuss some of the choices made in our 
skim generation algorithm in greater detail.  

7.1 The comprehension time experiment 

We now discuss two aspects of the comprehension time 
experiment that are important: (a) use of a single still 
image and (b) the number of subjects in the experiment. 

There are two simplifying assumptions in this experiment: 
(a) the general level semantics of the shot (in terms of the 
four questions) are adequately captured by our key-frame, 
and (b) the semantics do not change during the course of 
the shot. (i.e. the answers to who / where / when / what do 
not change during the course of the shot). Clearly, in 
complex shots, both of these assumptions may be violated.  

Only the first author participated in the experiment. This is 
problematic and clearly, a more comprehensive study is 
needed. However, in order to compensate for this 
deficiency, the subject was tested on  1000 images, picked 
at random from a very diverse corpus, so as to generate 

Rate New > Old? 
90 % 5.0 
80 % 5.2 
70 % 6.2 
50 % 5.6 
All 5.50 



reliable statistics. The user study results from our current 
set of experiments as well as well as those found in [10] 
are encouraging. They indicate that the viewers find the 
skims resulting from the shots condensed to their upper 
bounds to be highly coherent, thus validating our 
comprehension experiment. 

7.2 Video segment selection 

We choose to keep the initial segment for the following 
reason — the director “sets-up” the shot (i.e. provides the 
context in which the action takes place) in the first few 
frames. Hence, by preserving the initial segment, we hoped 
to preserve the context. In a shot of long duration, the 
semantics of the shot can change considerably, and in such 
cases, our strategy will not capture the important 
information within the shot. 

We did consider several alternate strategies including sub-
sampling and alternate methods for segment selection. 
Sub-sampling the shot will cause the data will appear too 
quickly, with additional loss of lip synchronization. 
Another strategy is to sub-divide the original shot using a 
heuristic. This will create new shot boundaries and we 
conjecture that this will prove to be disconcerting to the 
viewers (particularly at high compression rates).  

7.3 Syntax analysis and object detection 

This work focuses on syntax analysis as a method to 
determine which shots should be removed. We did so since 
the content within film-data is completely unconstrained. 
However, object detectors and syntax analysis can 
complement each other. For example, when we are faced 
with the task of searching for specific information, the 
object detectors could serve to highlight important shots in 
scenes, in the video. Then, syntax analysis could be used to 
extract a visual phrase around the highlighted shot.  

8. Conclusions 

In this paper, we’ve presented a novel framework for 
condensing computable scenes. The solution has three 
parts: (a) visual complexity, (b) film syntax analysis and 
(c) determining the duration of the shots via an constrained 
utility maximization. We define the visual complexity of a 
shot to be its Kolmogorov complexity. Then, we showed 
how to effectively estimate this measure via the Lempel-
Ziv algorithm. Then we conducted an experiment that 
allowed us to map visual complexity of a shot to its 
comprehension time. After noting that the syntax of the 
shots influences the semantics of a scene, we devised 
algorithms based on simple rules governing the length of 
the progressive phrase and the dialog. We showed how we 
could guard against the errors in practical shot-detectors in 

our syntax reduction rules. Then, we developed a sequence 
utility function that was maximized subject to shot duration 
constraints and the two penalty functions. 

We conducted a pilot user study on four scenes, generating 
skims using two skim generation algorithms, at four 
different compression rates. The results of the user study 
shows that while all skims are perceived as coherent, the 
skims generated at less than 80% compression work well. 
We also showed that the improvement in skim 
comprehension,  due to the new algorithm over the old one 
is statistically significant. 

The algorithms presented here leave much room for 
improvement: (a) we are working on incorporating audio 
into the skims. (b) incorporating other elements of syntax 
such as scale and time distribution of shots and differential 
changes in scale. (c) additional experiments to verify the 
time-complexity curves as well as a large user study (>25 
subjects) are also needed. 
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