

Structure Parsing and Event Detection for Sports Video

Di Zhong and Shih-Fu Chang

Department of Electrical Engineering, Columbia University

December 27, 2000

1 Introduction

For video indexing, typically videos are first processed to obtain constituent objects and features.

These extracted entities provide an intermediate content model to effectively describe videos. In

earlier chapters, we have studied temporal segmentation that generates elementary video shots, and

spatial-temporal segmentation that extracts video regions and objects. We also developed feature

matching algorithms and query methods to support visual similarity search. These works provide

very useful tools for accessing online digital videos.

 However, the objects and features we have extracted so far contain little information at the

semantic level. To solve this problem, we can explore the knowledge and constraints in specific

domain and apply domain-specific rules and/or unsupervised machine learning techniques. In this

chapter, we present an event detection and structure parsing system for sports videos. This system

is built on top of segmentation and search techniques we have presented in prior chapters. We also

demonstrate a summarization and browsing interface that allows users to easily access content

structure and event index of video data.

 Combining domain knowledge and automatically extracted low-level features have been seen in

many works. In [7], an edge model is used to match anchorperson views in specific news programs.

The story structure is then reconstructued by finding anchorperson views as well as commercials.

Columbia University ADVENT Technical Report #091, Dec. 2000.

 1

In [2], logical story units (LSU’s) are extracted from movies according to global temporal

consistency. The consistency is based on the assumption that an event is related to a specific

location and to certain characters. Sports videos have different characteristics. A sports game

usually occurs in one specific playground, contains abundant motion information and has well-

defined content structures. Event detection in basketball and tennis videos has been studied in [5]

and [6] respectively, but without attempts to reconstructing high-level structures. We will further

discuss these two in later sections.

 In this chapter, we present a real-time structure parsing and event detection system for sports

videos. Compared to existing work, our solution has the following unique features.

• A general framework for video structure discovery and event detection.

• Combination of domain-specific knowledge and generic machine learning techniques.

• Multi-stage scene detection algorithms using our unique moving object segmentation and

feature extraction methods.

• Real time processing performance by exploring redundancy in the compressed video streams.

• Higher accuracy demonstrated in specific sports domains such as tennis and baseball.

 We will present our real-time prototype systems demonstrating results in tennis and baseball

videos.

2 Semantic Content in Sports Video

Sports video is a major part in most broadcasting TV programs, and have a large number of

audience. Compared to other videos such as news and movies, sports videos have well-defined

content structure and domain rules.

 2

 First, sports videos are structured. A long sports game is often divided into a few segments.

Each segment may again contain some sub-segments. Furthermore, there are a fixed number of

cameras in the field which result in unique scenes during each segment. For example, in football, a

game contains two halves, and each half has two quarters. Within each quarter, there are many

plays, and each play starts with the formation in which players line up on two sides of the ball. A

tennis game is divided first into sets, then games and serves (Figure 1). Usually when a serve

starts, the scene is switched to court views (Figure 2). In addition, for TV broadcastings, there are

commercials or other special information (e.g., score board, player’s name) inserted between

segments.

Figure 1 The temporal structure of a typical tennis video

 The above characteristics of specific domains provide some opportunities for developing new

algorithms and tools to parse video structures, and to reconstruct some kinds of build table-of-

contents for sports video inedxing. As the structure is fixed given a type of sports, domain models

can be used to greatly improve detection accuracy. The resulting systems and tools will enable

Entire Tennis Video

Set

Game

……

……

……

……

Serve

Elementary Shots

Commercials

 3

users to have access any arbitary segment at the desired level based on the intuitive and informative

structure.

Figure 2 Scenes from four different tennis games

 Another property of sports videos is that there are many special events in the video that are

interesting to most audience. Typical examples include touch-downs in football, shots in basketball,

home-runs in baseball, aces in tennis and so on. Within one sports, an event usually has similar

visual-audio attributes that do not vary greatly from game to game. Baseball games are played in

grass fields, and when there is a home-run, the camera will quickly follow the ball across the field

and there will be loud screams from the audience. Tennis courts typically have uniform ground

colors and white court lines, and within a serve, the camera is typically placed at shots from the

top-rear position (e.g., a few scenes from different games are shown in Figure 2). These

characteristics allow us to adopt some domain-specific rules and apply machine-learning

 4

techniques using automatically segmented objects and features to detect interesting events. Hence,

given a sports video, we can identify some important events that are interesting to most audience,

and automatically or semi-automatically build an index to all the occurrences of these events.

Similar to the keyword index in a book, this event index enables viewers to access desired scenes

much more intuitively and efficiently compared to traditional fast forward and backward search.

 A few works have been conducted to analyze sports videos. In [5], a basketball annotation

system is presented. Using prior knowledge of basketball games, the system detects wide-angle

shots versus close-up shots. Camera motions are further analyzed within wide-angle shots and used

to detect possible fast break, steal and probable shots. When users want to retrieve one type of

event (e.g., fast break), only sequences satisfying corresponding motion criteria are shown. Tennis

videos are studied in [6]. The approach is based on the extraction of a model for the tennis court-

lines from videos. A player tracking algorithms is developed to track players, and then a reasoning

module is used to map low-level positional information to high-level tennis play events.

 The issue addressed in above researches is to detect certain events using low-level features such

as motion and position. The well-defined temporal structures were not explored. Another

challenging problem that has not been well addressed is the real time constraint. Sports video

broadcasting is mostly live, and interests of audience go down greatly after the results are known.

The real-time capability in generating event indices is critical in practical applications for sports

videos.

 In this chapter, we present a general framework to parse temporal structure of live broadcasted

sports videos. In the proposed approach, parsing rules are first built through a training phase. In the

operation phase, these rules are updated to adapt to new data in live inputs. We will also show

innovative event detection tools using segmentation techniques we have developed in previous

 5

chapters.

3 Real Time Video Analysis System

We briefly describe the system architecture of the real time sports video analysis platform. Details

about how segmentation and feature extraction algorithms are adapted to meet the real-time

requirement will be included in later sections where structure parsing and event detection are

discussed.

Figure 3 System architecture of the real time video analysis platform

 The system is built on a personal computer with Microsoft Window NT 4.0. Real-time

performance is reached on a Pentium-III 600 dual CPU machine. The system allows users to build

digital video database taking regular analog video sources such as TV broadcast, cable, VCR, or

video camera. As shown in Figure 3, the dashed arrows indicate real-time flow of video data.

Some main function modules are as follows.

• Capture and Compression – An MPEG compression card is used to capture and compress

video and audio signals. Text decoder card can be added to obtain closed caption signal.

Online
Users

Video DB:
- videos
- indices
- structure

Capture/
Compression

Live
Video

Video
Streaming

Scene Cut

Annotation
Retrieve

Object
Segmentation

Semantic
Detection

Editing

 6

• Scene Cut Detection – The scene cut detection scheme presented in chapter 2 is used. It detects

scene cuts first in MPEG compressed domain with partial decoding. For gradual scene

changes, chrominance and edge features are compared in the un-compressed domain. To

achieve real-time performance, we only decompress and analyze I-frames. The output scene

cut positions and representative frames (e.g., the first I-frame after a scene cut) are stored in

the video database.

• Object Segmentation and Feature Extraction – Object segmentation and feature extraction are

the most time-consuming processes, and cannot be applied to all frames. To spot important

scenes, representative frames are always examined first. When a potential candidate is located,

segmentations and more detailed features are computed and used in the subsequent semantic

detection module. Thus, although the mission of this module is to extract visual features, it

requires a semantic filtering component. The component depends on domain knowledge and

should use only simple features that can be quickly computed, such as global color histograms.

• Semantic Detection – The detection tasks can be classified into two categories: one is to parse

the structure information; another is to find interesting events. The detection process can also

be divided into 1) local, which is applied to individual frames; 2) temporal, which is applied to

one or more videos shots. The former one usually precedes the later one. All detected results

are stored into the video database to construct structure table or event index.

• Video Streaming –Videos are delivered to users in real-time together with structure parsing

and event detection results. The semantic and event information can be used to filter the video

content and send a personalized version of the video to each individual user.

• Annotation, Editing – These are usually post processing with manual interactions. However,

they may be applied in real time too. For example, when certain events or objects are detected,

 7

additional information such as hyperlinks or highlights can be immediately inserted or overlaid

to the original streams. It is also possible to cut and/or replace some portions of broadcasted

videos in real time (as in advertisement insertion).

• Retrieve – With our real-time analysis system, a live video can be searched right after, or even

during the broadcasting time.

 In summary, our scene analysis algorithms work as modules along a streaming pipeline. Such a

stream-line architecture is important in applications that may need real-time performance or

application specific customization.

 The above real-time parsing and indexing system has a lot of applications. It can be used to

create large searchable video archives. It can also be used in web-casting of sports programs in

which game outlines and scene highlights can be rapidly developed on web sites. The system can

also be combined with existing sports annotation software, which allow reporters to annotate and

log a game in real time. In interactive applications, interactive user interface with virtual-reality

like environments can be enhanced with simultaneous displays of graphics and synchronized video

clips.

4 Structure Parsing

Given the structure model of a game, we need to detect visual cues that indicate the beginning

and/or ending of each section or sub-section. Some common features occurring between top-level

sections are commercials, embedded texts and special logos. Many methods have been proposed

for commercial and text detection [3,4]. Here we will study the detection of basic units within a

game, such as serves in tennis. These units usually start with a special scene. Simple color based

approaches have been suggested [6]. Based on our experiments to be described later, this type of

 8

approaches can only reach about 80 percent accuracy. Furthermore, as color information varies

from game to game, adaptive methods need to be exploited to handle such variation. In our real-

time framework, we first use a fast adaptive color filtering method to select possible candidates,

then apply more complicated features to verify them against domain specific rules or models. In the

following we present the system using serves in tennis as an example.

4.1 Color Based Adaptive Filtering

Color based filtering is applied to key frames of video shots. First, the filtering models are built

through a clustering based training process. The training data should contain enough games so that

a new game will be similar to some in the training set. Assume ih , i=1…,N are color histograms of

all serve scenes in the training set. A k-means clustering is used to generate K models (i.e.,

clusters), 1M ,…, KM , such that,

ji Mh ∈ , if)),((min),(
1 kik

K

ji MhDMhD
=

= (1)

where),(ki MhD is the distance between ih and the mean vector of kM , i.e. ∑
∈

=
ki Mh

i
k

k h
M

H 1 and

kM is the number of training scenes being classified into the model kM . This means that for each

module kM , kH is used as its the representative feature vector.

 When a new game coming in, proper models need to be chosen to spot serve scenes. This raises a

typical egg-and-chicken problem, as we need to know serve scenes to select a correct model. To

solve the problem, we detect the first L serve scenes using all models, 1M ,…, KM . That is to say,

all models are used in the filtering process. If one scene is close enough to any model, the scene

will be passed through to subsequent verification processes (Eq 2).

 9

ji Mh ∈' , if)),((min),('

1

'
kik

K

ji MhDMhD
=

= and THMhD ji <),(' (2)

where '
ih is the color histogram of the ith shot in the new video, and TH is a given filtering

threshold to accept shots with enough color similarity. Shot i is detected as a serve scene if the

segmentation based verification, which will be described in 4.2, is also successful, and we mark

this serve as being founded by model jM (i.e., classify the scene into the model jM). If the

verification fails, '
ih is removed from the set of jM .

 After L serve scenes are detected, we find the model oM , which leads to the search for the

model with the most serve scenes.

)(max
1 kk

K

o MM
=

= (3)

where kM is the number of incoming scenes being classified into the model kM . In the filtering

process for subsequent shots, model oM and a few of its most close neighboring models are

applied in a same way as define in Eq 2.

4.2 Segmentation Based Verification

The salient feature region extraction and moving object detection we proposed in chapter 3 and

section 4.3 can be utilized here to produce localized spatial-temporal features. Compared with

global features, such as color histograms, spatial-temporal features are more reliable and invariant

to detect given scene models. Especially in sports videos, special scenes are often made of several

objects at fixed locations. The similarity matching scheme of visual and structure features we

studied in previous chapters can also be easily adapted here for model verification.

 To verify serve scenes, the moving object detection algorithm (section 4.3) is applied. To

 10

achieve real-time performance, segmentation is performed on the down-sampled images of the key

frame (which is chosen to be an I-frame) and its successive P-frame. The down-sampling rate used

in our experiment is 4, both horizontally and vertically, which results in images with size 88x60.

Motion fields are estimated using the hierarchical approach as proposed in [1]. An example of

segmentation and detection results is shown in Figure 4.

Figure 4 An example of automatic region segmentation and moving object detection

 Figure 4 (b) shows the region segmentation result. The court is segmented out as one large

region, while the player closer to the camera is also extracted. The court lines are not preserved due

to the down-sampling. Black areas shown in (b) are tiny regions being dropped at the end of

segmentation process. Figure 4 (c) shows the moving object detection result. In this example, the

result is quite satisfactory, and only the desired player is detected. Sometimes a few background

regions may also be detected as foreground moving object. We will address this issue in section 5

when discussing the player tracking algorithm. Here for verification purpose, as we will describe

below, the important thing is not to miss the player.

 Following rules are applied in scene verification. First, there must be a large region (e.g. larger

than two-thirds of the frame size) with consistent color (or intensity for simplicity). This large

region corresponds to the tennis court. The uniformity of a region is measured by the intensity

variance of all pixels within the region (Eq 4).

a. original key frame b. region segmentation c. moving object detection

 11

2

1

)]()([1)(pIpI
N

pVar
N

i
i∑

=

−= (4)

where N is the number of pixels within a region p.)(ipI is the intensity of pixel I and)(pI is the

average intensity of region p. If Var(p) is less than a given threshold, the size of region p is

examined to decide if it corresponds to the tennis court.

 Secondly, the size and position of player are examined. The condition is satisfied if a moving

object with proper size is detected within the lower half part of the previously detected large

“court” region. In a downsized 88x60 image, the size of a player is usually between 50 to 200

pixels. As our detection method is applied at the beginning of a serve, and players are always at the

bottom line to start a server, the position of a detected player has to be within the lower half part of

the court.

4.3 Edge Based Verification

One unique characteristic of serving scenes in tennis game is that there are horizontal and vertical

court lines. Ideally if a camera shots straightforward from top-rear point of the court and all court

lines are captured (Figure 1), rules for a complete court can be used to verify serve scenes with

high precision. However, in a real scene, due to the camera panning and zooming, or object

occlusion, usually not all court lines are viewable. Trying to match a full court will result in a low

recall rate of serve scenes.

 Since we already go through color based filtering and region based verification processes,

relatively loosen constraints are enforced on court lines. An example of edge detection using the

5x5 Sobel operator is given in Figure 5.

 12

Figure 5 Edge detection within the court region

Figure 6 Local windows for hough-transform based line detection

 Note that the edge detection is performed on a down-sampled (usually by 2) image and inside

the detected court region. Hough transforms are conducted in four local windows to detection

straight lines (Figure 6). Windows 1 and 2 are used to detect vertical court lines, while windows 3

and 4 are used to detect horizontal lines. It greatly increases the accuracy in detecting straight lines

to use local windows instead of a whole frame. As shown in the figure, each pair of windows

roughly cover a little bit more than half of a frame, and are positioned somewhat close to the

bottom border. This is based on the observation of the usual position of court lines within court

views.

 The verifying condition is that there are at least two vertical court lines and two horizontal court

lines being detected. Note these lines have to be apart from each other for a certain distance, as

noises and errors in edge detection and Hough transform may produce duplicated lines. This is

based on the assumption that despite of camera panning, there is at least one side of the court,

1 2
3

4

 13

which has two vertical lines, being captured in the video. On the other hand, camera zooming will

always keep two of three horizontal lines, i.e., the bottom line, middle court line and net line, in the

view.

4.4 Experiments and Discussion

 The above scheme shows very good performance on tennis videos. Our experiment on a one-

hour tennis video is shown in Table 1. The recall rate is about 93% and the precision is about 97%.

Table 1 Detection result for serve scenes
of Serve Scene

(ground truth)
of Miss # of False

89 7 2

 This result is very good compared to approaches using only colors. Based on our experiments,

previously proposed approaches using color histogram filtering can only achieve about 80%

precision rate in order to obtain near 100% recall. No serve scenes should be dropped in the first

filtering stage (i.e., recall rate is maximized), thus a low filtering threshold is used. Furthermore,

despite of using advanced segmentation and feature extraction, our proposed scene detection and

verification process is performed in real time.

 One thing to point out here is that the color models used in the first filtering stage include

clusters extracted from the first 10 minutes of the testing video as well as some videos from three

other games (from different channels or games). As different games may have different color

distributions, in real applications, we need to have a fairly comprehensive color models extracted

from different games in order to properly process new incoming games. While this is a critical

issue for color only approaches, our approach is quite flexible in handling such situations.

Considering there are only limited types of play fields, we can lower our filtering threshold to allow

more false alarms in the first stage, and rely on the feature based verification process to improve

 14

precision rate.

5 Event Detection

In parsing the game structures, we have presented a scene detection approach using spatial-

temporal features. In this section, focus will be on detecting and summarizing what happened in an

interesting scene. Especially, we will adapt our moving object detection algorithm to track a tennis

player in real-time, and analyze his or her trajectory to obtain certain play facts.

5.1 Player Tracking

In chapter 4, we presented an automatic moving object detection method that contains two stages:

an iterative motion layer detection step being performed at individual frames; and a temporal

detection process combining multiple local results within an entire shot. Here we adapt this

approach to track tennis players within court view in real time. Currently we focus on the player

who is close to the camera. The player at the opposite side is smaller and not always in the view. It

is harder to track small regions in real time because we need to down-sample spatially to reduce

computation complexity.

 The local motion layer detection process is similar to what we previously explained in 4.2

(Figure 5), down-sampled I- and P-frames are segmented and compared to extract motion layers.

The reason to skip B-frames is because bi-direction predicted frames require more computation to

decode. To ensure real-time performance, only one pair of anchor frames are processed every half

second. For a MPEG stream with a GOP size of 15 frames, the I-frame and its immediate following

P-frame are used. Motion layer detection is not performed in later P frames in the GOP. This

change requires a different temporal detection process to detection moving objects. The process is

 15

described as follows.

 As half second is a rather large gap for the estimation of motion fields, motion-based region

projection and tracking from I frame to another I frame are not reliable, especially when a scene

contains fast motion. Thus, a different process is required to match moving layers detected at

individual I-frames. We use the following temporal filtering process to select and match objects

that are detected at I frames.

 Assume k
iO is the kth object (k=1,…,K) at the ith I-frame in a video shot, k

ipr , k
icv and k

is are the

center position, mean color and size of the object respectively. We define the distance between k
iO

and another object at jth I-frame, l
jO , as weighted sum of spatial, color and size differences.

l
j

k
is

l
j

k
ic

l
j

k
ip

l
j

k
i sswccwppwOOD −+−+−= vvvv),((5)

where pw , cw and sw are weights on spatial, color and size differences respectively. If),(l
j

k
i OOD

is smaller than a given threshold, O_TH, objects k
iO and l

jO match with each other. We then

define the match between an object with its neighboring I-frame δ+i as follows,



 <∃

=+ ++

otherwise
THOOODO

iOF
l
i

k
i

l
ik

i
_),(,

0
1

),(δδδ (6)

where n,...,1±=δ . Let ∑
±=

+=
n

k
i

k
i iOFM

,...,1

),(
δ

δ be the total number of frames that have matches of

object k
iO (k=1,…,K) within the period δ−i to δ+i , we select the object with maximum k

iM .

This means that if)(max
,...,1

k
iKk

r
i MM

=
= , the rth object is kept at the ith I-frame. The other objects are

dropped. The above process can be considered as a general temporal median filtering operation.

 After the above selection, we obtain the trajectory of the lower player by sequentially taking the

center coordinates of the selected moving objects at all I-frames. There are some issues that need

 16

some discussion here. First, if no object is found in a frame, linear interpolation is used to fill the

missing point. When there are more than one objects being selected at a frame (in the situation

when more than one objects have the same maximum number), the one that is spatially close to its

precedent is used. In addition, for speed reason, instead of using affine model to compensate

camera motion, here we use the detected net lines to roughly align different instances.

 Experimental tracking results of one sever scene is shown in Figure 7.

Figure 7 Tennis player tracking within a serve scene (results are shown on 8 I-frames with a 15-frame interval)

 The first row shows down sampled frames. The second row contains final player tracking

results. The body of the player is well tracked and detected. Successful tracking of tennis players

provides a foundation for high-level semantic analysis. Compared with the tracking algorithm in

[6], which computes residual errors to find moving objects and then searches players in pre-defined

windows, our approach provides more accurate as well as real time performance.

5.2 Trajectory Analysis

The extracted trajectory is analyzed to obtain play information. Presently, we focus on two aspects.

The first one is the position of a player. As players usually play at bottom lines, we want to find

cases when a player moves to the net zone. The second one is to estimate the number of strikes a

player conducted within a serve. Users who want to learn stroke skills or play strategies may be

interested in serves with more strikes.

 Given a trajectory containing K coordinates, kpv (k=1,…,K), at K successive I-frames, we first

 17

detect “still points” and “turning points”. kpv is a still point if,

THpppp kkkk <−− +−),min(11
vvvv (7)

where TH is a pre-defined threshold. Furthermore, two consecutive still points are merged into

one. If point kpv is not a still point, the angle at the point is examined. kpv is a turning point if

o
kkkk pppp 90),(11 <∠ +− (8)

 An example of object trajectory is shown in Figure 8. After detecting still and turning points, we

use them to judge the player’s positions. If there is a position close to the net line (vertically), the

serve is classified as net-zone play. The estimated number of strokes is the sum of the numbers of

turning and still points.

Figure 8 Detection of still and turning points in object trajectory

 Experiment results of the above one-hour video are given in Table 2.

Table 2 Trajectory analysis results for one hour tennis video
 # of Net Plays # of Strokes

Ground Truth 12 221
Correct Detection 11 216
False Detection 7 81

 In the video, the ground truth includes 12 serves with net play within about 90 serve scenes (see

Table 1), and totally 221 strokes in all serves. Most net plays are correctly detected. False detection

of net plays is mainly caused by incorrect extraction of player trajectories or court lines. Stroke

detection has a precision rate about 72%. Beside the reason of incorrect player tracking, some

errors are caused by limitations of our estimation model. First, at the end of a serve, a player may or

still point

turning point

 18

may not strike the ball in his or her last movement. Many serve scenes also show players walking

in the field after the play. In addition, a sever scene sometimes contain two serves if the first serve

failed. These may cause problems since currently we detect strokes based on the movement

information of the player. To solve these issues, more detailed analysis of motion such as speed,

direction, repeating patterns in combination with audio analysis (e.g., hitting sound) will be very

useful.

6 A Summarization and Browsing Interface

As we have observed, video data contain large amount of visual and semantic information. Even

after content indices are generated, how to show these indices in a limited display is still a

challenging issue. In this section, we present a system for video browsing and summarization using

the structure parsing and event detection results presented in this thesis. The system has two unique

access methods for users to find desired video shots.

 First, the system provides a summarization interface (Figure 9a). It shows the statistics of video

shots, such as number of long, intermediate and short shots. It also shows the number of some

common kinds of scenes in a specific domain. For instance, in tennis, there are serve, net-zone

play, commercial and etc.). Seeing these summaries, users may follow up with more specific

request by choosing a category (e.g., serve). As shown in Figure 9b, from here users can directly

go to any interesting scenes.

 19

(a) (b)

Figure 9 Summarization interface providing scene index to video

 The second interface combines the sequential temporal order and the hierarchical structure

among all video shots within a video. As shown in Figure 10, the structure tree is in the left

window. In this example, games are listed at the top level. There are commercial breaks between

games. Under each game, there are many serves. Each serve contains the serving shots and a few

follow-up shots.

 In the video shown in Figure 10, the first game includes 16 serves. Each serve segment is

labeled with the length of the segment, type of play in this serve and the approximate number of

strokes in a serve. For example, a label “(L) S B 4” means long segment, server, base-line play and

approximately 4 strokes.

 All these elements are organized as nodes in a tree. This allows users to navigate from more

abstracted top levels to detailed levels. When users click on any nodes, the corresponding key

frame will be shown in the right window, and users can start to play the video at the corresponding

moment.

 20

Figure 10 Browsing interface providing hierarchical structure

7 Conclusion and Open Issues

In this chapter, we presented a general framework for structure parsing and high-level event

detection for sports videos, using tennis as an example. We have also tested this performance in

baseball videos. It combines domain-specific knowledge with automatically segmented objects and

features using generic machine learning techniques. Real time processing performance is achieved

by exploring redundancy in the compressed video streams. Our experiments have demonstrated

high accuracy in specific sports domains such as tennis and baseball.

Game 1

Game 2

Commercial

Serve 1, base-line play, 2 strokes

Serve 2

Key Frame

 21

 Under the framework we have developed, there are many more issues that can be studied to

produce a comprehensive summary of sports videos. For tennis videos, we can include audio

information to detect the number of strokes within each serve more accurately. Score boards are

common in all broadcasted sports programs. By detecting these text boxes and recognizing scores,

we can understand the status of a game. For example, in a baseball game, we will be able to know

when there is a new player entering the field. We can also exam object and/or camera motion at or

around special scenes (e.g., serve in tennis, pitch view in baseball) to understand if any interesting

events happen. In baseball, when a batter hits the ball, the camera will usually follow the flying

ball or the running players.

 By analyzing structures and detecting interesting events in videos, we will able to provide

efficient browsing, searching and summarization functions to users, possibly in real time for live

contents. We can also generate short highlights of important portions within a long game.

 22

References

1. M. Bierling, "Displacement Estimation by Hierarchical Block Matching", SPIE Vol 1001,
Visual Communication & Image Processing, 1988.

2. A. Hanjalic, R.L. Lagendijk, J. Biemond: Automated High-Level Movie Segmentation for
Advanced Video Retrieval Systems, IEEE Transactions on Circuits and Systems for Video
Technology, Vol.9, No.4, June 1999

3. Rainer Lienhart, Christoph Kuhmunch and Wolfgang Effelsberg, “On the Detection and
Recogonition of Television Commercials”, Proc. of IEEE International Conference on
Multimedia Computing and Systems, June, 1997, Ottawa, Canada

4. Toshio Sato, Takeo Kanade, Ellen K. Hughes, Michael A.Smith, “Video OCR for Digital News
Archives”, Proc. Of the 1998 International Workshop on Content-based Access of Image and
Video Database, January 3, 1998 Bombay, INDIA

5. Drew D.Saur, Yap-Pen Tan etc. “Automated Analysis and Annotation of basketball Video”,
Proceedings of SPIE's Electronic Imaging conference on Storage and Retrieval for Image and
Video Databases V, Feb 1997.

6. G. Sudhir, John C.M. Lee and Anil K. Jain, “Automatic Classification of Tennis Video for
High-level Content-based Retrieval”, Proc. Of the 1998 International Workshop on Content-
based Access of Image and Video Database, January 3, 1998 Bombay, INDIA

7. H. J. Zhang et al., “Automatic Parsing and Indexing of News Video”, Multimedia Systems, 2
(6), pp. 256-266, 1995.

