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1  Overview 

Shot based indexing techniques have been widely used to organize video data. Scene change 

detection is the most commonly used method to segment image sequences into coherent units for 

video indexing. A shot is a sequence of contiguous frames that are recorded from a camera. There 

is usually one continuous action within a shot, with no major change of scene content.  However, 

there are still many different changes in a video (e.g. object motion, lighting change and camera 

motion), it is a nontrivial task to accurately detect scene changes. Furthermore, the cinematic 

techniques used between scenes, such as dissolves, fades and wipes, produce gradual scene changes 

that are harder to detect. 

     Scene cut detection algorithms have been studied since the early 90’s. The basic method is to 

measure the pixel difference frame-to-frame in terms of intensity or color [8]. In [8], the number of 

changed pixels is counted and if the number exceeds a certain percentage, a scene cut is detected. 

This method is not robust due to the camera and object motions that can cause large pixel value 

differences. 

      Color histograms have been used to overcome the problem, as color distributions in successive 

frames are not significantly affected by camera or object motions. Assume iH  is an N-bin color 
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histogram extracted from frame i, the frame difference is defined as :  
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      If iD is larger than a given threshold, a scene cut is detected at the frame i+1. A more efficient 

distance measure, 2χ -test, is proposed in [5], and shown to have better performance in experiments 

compared to other measures. In the 2χ -test, the distance between two color histograms iH  and 

1+iH  is defined as: 
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      Although direct comparison of frame-to-frame color difference is good for direct scene 

changes, gradual transitions such as fade-in, fade-out, dissolve and wipe cannot be accurately 

detected in the same way. As shown in Figure 1, the frame-to-frame color differences within a 

gradual scene change are much smaller than that of a direct scene cut. In the meanwhile, gradual 

transitions last much longer (more than 1 second) compared to direct scene changes. 

 

 

Figure 1   Comparison of direct scene cut and gradual 
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     Because of the low difference values of gradual scene changes, a single threshold cannot 

distinguish them from camera or object motions. To resolve this problem, a twin-comparison 

algorithm is developed in [8]. This method requires two cutoff thresholds, one higher threshold for 

direct changes and a lower one for gradual transitions. The higher threshold is applied first. If there 

is no direct scene cut, the lower threshold is then used to detect potential transitions. Once a 

candidate transition is detected, frame-to-frame differences are accumulated for successive frames.  

If the accumulated distance is larger than the higher threshold, a gradual transition is declared. Note 

that this is based on the assumption that transitions last over a certain period, and frame-to-frame 

differences within the transition period do not drop below the lower threshold.  In [7], an edge 

based approach is proposed to detect direct scene cuts and gradual transitions at the same time. It 

computes the percentages of edges that enter and exit between two frames. Shot boundaries are 

detected when the percentage is over a given value. Dissolves and fades are detected by comparing 

the enter and exit percentages. 

     Scene cut detection often includes feature extraction and comparison for suucessive pairs of 

successive frames. It is a time consuming process that cannot be done in real time on a regular PC 

or workstation. As most digital videos are compressed in MPEG, detecting scene changes directly 

in the compressed domain has been studied to accomplish real time performance. In [3], statistics 

of motion vectors are used to detect scene cut. For a P-frame, the ratio of the number of intra-coded 

blocks and the number of inter-coded blocks is computed. For a B-frame, the ratio of the number of 

backward motion vectors and the number of forward vector is computed. High ratio values indicate 

shot changes at P- or B-frames. On the other hand, a low ratio on a B frame indicates that there is a 

scene cut at its preceding I-frame (in transmission order).  

     In this chapter, we present a new scene cut detection scheme which combines multiple visual 
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features in both the compressed and uncompressed domains. The main contribution of our work 

includes: 

• An effective scheme to combine motion and color features in both the compressed and 

uncompressed domains. 

• New algorithms to detect gradual transitions, as well as flash lights, lighting changes and 

camera motions.  

• A multi-level scene change detection for browsing and correction. 

• Demonstrated real time performance with high accuracy 

• Extensive experiments on large amount of various types of videos 

 

2 A New Scheme Combining Multiple Visual Features 

Although abrupt shot boundaries have been well studied in existing works, robust detection of 

gradual transitions is still a challenging issue.  In [1], a comparison of many existing scene cut 

detection algorithms is conducted. Around 90 percent accuracy is reported for direct cut detection. 

For gradual scene changes, the accuracy is in the range of 70 to 80 percent. While building a real-

time video parsing and analysis framework that can be applied to live videos, we also met some 

other challenging issues. First, the real-time requirement usually conflicts with high detection 

accuracy. More complicated visual features, which are used to obtain accurate scene cuts, can 

hardly be computed in real time. Furthermore, lighting changes, e.g., flashlights that occur often in 

home videos, raise another problem that causes false detection results.  

    To address these issues and further improve scene detection accuracy, we developed a multi-

statge scene cut detection scheme that combines motion, color and edge information. Although 

various visual features and comparison methods have been studied, it is agreed that no single 
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feature works better in all situations [1].  How to effectively combine visual features to obtain 

robust scene cuts is an open issue. We use machine-learning techniques (i.e. decision tree) to find 

combined measure metrics and thresholds. Compressed-domain features are applied before those in 

the un-compressed domain in order to accomplish real-time performance. We also developed 

special modules to detect flashlights and lighting changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  The scene cut detection schema that combines multiple visual features 
 
     The diagram of the schema is shown in Figure 2. An overview of the scheme is given below. 
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Detailed algorithms will be described in the following sections. 

     Compress domain features are first extracted. Motion statistics are computed from different 

types of motion vectors in P or B frames. Color differences are extracted from the DC images of I- 

or P- frames. It only requires partial decoding without inverse DCT to extract these features, and 

thus the process is faster than real-time even on a regular Pentium II 300 PC. The next module 

detects possible flashlights. It is based on the comparison of the frame-to-frame color difference 

and the long term color difference.  If a flashlight is detected at a frame, no scene cut detection will 

be performed on this frame. Otherwise, scene cut detection algorithms are applied.  

     Because direct scene changes can be detected accurately, we first check if there is a direct cut at 

the frame. If no cut is detected, we then check if there is a gradual transition by detecting starting 

and ending edges of transitions. As gradual scene transitions are opted to be confused with camera 

motions or aperture changes, when a potential gradual transition is found, we first check camera 

motions based on motion vectors in the MPEG compressed domain. If there is no camera motion, 

we extract edge and chrominance features from de-compressed frames, and compute the 

differences to examine whether the difference is caused by aperture changes. In case of aperture 

changes, scene structure and chrominance are not affected as much as brightness. A gradual 

transition is declared only if image edges or chrominance are significantly changed.  

     In the following sections, we will give a detailed explaination of the above modules and 

algorithms in the order that they are applied. 

 

3  Feature Extraction in the MPEG Compressed Domain 

As digital video sequences are usually compressed for storage and transmission, it has been 

proposed in some works to detect scene cuts directly in the compressed domain without fully 
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decoding the bitstream. Here we focus on the most popular MPEG-1 or MPEG-2 compressed 

videos. We adopt the motion statistic features proposed in [3], and define two more color statistic 

features that are also extracted in the DCT-based compressed domain. As there are three different 

types of compressed frames [2], different feature extraction methods are used. 

     MPEG video sequences are composed of three types of frames, i.e., I, P and B. An I-frame is 

completely intra-coded without motion prediction. A P-frame is inter-coded based on motion 

prediction errors from its past I- or P- frame. A B-frame is coded based on bi-directional motion 

prediction from its past and later I- or P- frames. I- and P- frames are also referred as anchor 

frames.  

     For an I-type frame, the frame-to-frame and long-term color differences are computed. The 

color difference between two frames i and j is computed in the YUV space, and is defined as 

follows. 

)(*),( j
V

i
Vji

j
U

i
Uji

j
Y

i
Yji VVUUwYYjiD σσσσσσ −+−+−+−+−+−=              (3) 

where VUY ,, are the average Y, U and V values computed from the DC images of the frame i and 

j; VUY σσσ ,, are the corresponding standard deviations of the Y, U and V channels; w is the weight 

on chrominance channels U and V.  The frame-to-frame color difference is computed between the 

I-frame and its previous P-frame (Eq 4). Note that the DC image of a P-frame is interpolated from 

its previous I- or P- frame based on the forward motion vectors.  

)1,()( −−=−− MiiDiD frametofram                                                       (4) 

where M is the number of B-frames between a pair of successive anchor frames. 

    The long-term color difference is computed between the I-frame and its kth previous P or I 

frame, which is : 

)*)1(,()( kMiiDiD termlong +−=−                                                    (5) 
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where k>1 and is usually set to the range from 5 to 10, which corresponding to a 0.2 second to 0.4 

second time interval for typical MPEG videos. 

     For a P-type frame, the computation of frame-to-frame and long-term color differences is the 

same as an I-type frame. Color statistics are extracted from interpolated DC images. In addition, the 

motion measure Rp is computed. Rp is the ratio of intra coded blocks to forward motion vectors in 

the P-frame (detail can be found in [3]). Here forward motion vectors in a P-frame refer to motion 

estimation from its former I or P frame. 

     For a B-type frame, we only compute two motion-based measures, Rf and Rb. Rf is the ratio 

between forward and backward motion vectors in the B-frame. Rb is the ratio between backward 

and forward motion vectors in the B-frame (again, detail can be found in [3]). Note that backward 

motion vectors in a B-frame refer to motion estimation from its next anchor frame, while forward 

motion vectors refer to motion estimation from its former anchor frame, all in the display order. 

 

4  Flashlights Detection 

Flashlights occur frequently in home videos (e.g. ceremonies) and news programs (e.g. news 

conferences). They cause abrupt brightness changes of a scene and will be detected as false scene 

changes if not handled properly. We apply a flash detection module before the scene change 

detection process. If a flashlight is detected, the scene cut detection is skipped for the flashing 

period. As we will demonstrate, when a scene cut happens at the same time of a flashlight, our 

algorithm will not detect the flashlight and can still detect the scene cut correctly. 

     Flashlights usually last less than 0.02 second. Thus for normal videos with 25 to 30 frames per 

second, one flashlight will affect at most one frame. An example of flashlights is show in Figure 3. 

As we can see, the affected frame has a very high brightness. 
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Figure 3  The effect of flashlights on a scene (video shot by Prof. Shih-Fu Chang) 
 
     Based on our observation of home videos, a flashlight causes the following changes in a 

recorded video sequence. First, it may generate a bright frame. Note that because the frame interval 

is longer than the time of flashlights, a flashlight does not always generate the bright frame. 

Secondly, a flashlight often causes the aperture change of a video camera, and generates a few dark 

frames in the sequence right after the flashlight. The average intensities over the flashlight period in 

the above example are shown in Figure 4. 

    As shown in Figure 4, the intensity jumps to a high level at the frame where the flashlight 

occurs. The intensity goes back to normal after a few frames (e.g., 4 to 8 frames) due to aperture 

change of video cameras. On the contrary, for a real scene cut, the intensity (or color) distribution 

will not go back to the original level. Based on this feature, we use the ratio of the frame-to-frame 

color difference and the long-term color differences, to detect the flashes. The ratio is defined as 

follows.  

)1,(/)1,()( −+−= iiDiiDiFr δ                                                        (6) 

where i is the current frame, and δ  is the average length of aperture change of a video camera (e.g. 

a. the frame before a flashlight b. the frame of a flashlight 
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5).  If the ratio )(iFr  is higher than a given threshold (e.g. 2), a flashlight is detected at the frame i. 

Obviously, if we use the long term color difference at frame δ+i  to detect flashlight at frame i, this 

will become a non-causal system. In actual implementation, we need to introduce a latency not less 

than δ in the detection process. Also, in order to determine the threshold value, we use a local 

window centered at the frame being examined to adaptively set thresholds. 

 

Figure 4  Typical intensity changes in a video sequence due to a flashlight 
 

     Note that the above flash detection algorithm only applies to I- and P- frames, as we do not 

extract color features at B frames. However, a flashlight occurring at a B-type frame (i.e. bi-

direction projected frame) does not cause any problem in the scene cut detection algorithm we 

adopted and modified in [3]. This is because a flashed frame is almost equally different from its 

former and successive frames, and thus forward and backward motion vectors are equally affected 

[2]. 

     In occasions where a scene cut happens at or right after a flashlight, the flashlight will not be 

detected because the long-term color difference is also large due to the scene cut. As our goal is to 

detect actual scene cuts, misses of flashlights are acceptable. Furthermore, as we will discuss in the 

next section, our algorithms are able to pick the right scene cut position under this situation.  

Flashlight 

Aperture 
change  
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5 Scene Cut Detection 

Given the color and motion measures of the frame-to-frame differences, the scene cuts can be 

detected by identifying peak values of these measures. As scene changes in videos from different 

sources usually have different characteristics, it is hard to set a global threshold that can detect peak 

values in different videos. Even within the same video (e.g., a news program), different parts may 

have different levels of peak values. To solve the problem, we use a local window to detect peak 

values. The size of the window is usually 30 to 60 frames, and is centered at the frame that is being 

examined for scene cuts. 

     Assume the size of window is 1*2 +δ , feature values for each frame are divided by their 

corresponding average values over the window ],[ δδ +− ii . These new peak-to-average ratios 

(PA) are defined as follows. 
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     Note that because different frame types have different features, the sum in the above equation is 

conducted only over the frames where the corresponding feature is available. For an I frame, PA of 

frametoframeD −−  is computed. For a P frame, PA’s of frametoframeD −−  and pR  are computed. For a B 

frame, PA’s of bR  and fR  are computed.  

     Given all these PA ratios within a local window, it is not trivial to combine them in a single 

decision process that detects scene cut on a given frame. One approach is to try different 

combinations manually, and then compare their performances to find the most appropriate model. 

Considering there are many thresholds involved in various combinations, such manual selection 
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process are complex and time-consuming. In this work, we adopt a decision tree based learning 

process to find proper decision models and approximated thresholds. 

 

5.1 Combining Color and Motion Features Using Decision Tree 

Decision tree is a popular, simple machine learning technique. It involves a tree in which a non-leaf 

node is labeled with a feature. The branches at the non-leaf node correspond to the possible values 

or ranges of the feature. As an example in Figure 5, the feature at the top level is frame-to-frame 

color difference, the branches below the node are the possible value ranges of the feature, e.g., 

more than 100 and less or equal 100. Leaf nodes are labeled with a class, i.e. scene cut or no scene 

cut. Decision trees are used for classifying instances - one starts at the root of the tree, then, taking 

appropriate branches according to the feature at each branch node, and eventually comes to a leaf 

node. The label on that leaf node is the class for that instance. 

 

 

 

 

 

 

 

 

Figure 5  An example of decision tree 
 

     Similar to other machine learning techniques, feature selection is the key to success in 

developing decision tree techniques. Simply putting all measures together without identifying 
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proper features will result in ineffective solutions. Based on the characteristics of compressed data, 

we choose to build scene cut decision trees for I, P and B frames separately. This is because 

different types of frames have different characteristics as well as features. We expect that decision 

rules are different for different types of frames. Furthermore, direct scene cuts and gradual 

transitions are also handled separately because their detection models are different. Gradual 

transitions last longer than direct scene cuts, and will be detected only based on color differences. 

Thus we need to build and train four different decision trees: three for direct scene cut detection 

and one for gradual transition detection. 

    Our training videos include baseball, news, sitcom and home videos. We manually labeled each 

scene cut and its corresponding frame type. We use the public domain induction tool OC1 (Oblique 

Classifier 1 [4]) to build our scene cut classifier. Oblique decision tree methods are tuned especially 

for domains in which attributes are numeric. After the training, we manually prune and merge deep 

level nodes in the output trees to obtain simplified final decision models. These models are 

discussed in the following sections, i.e., 5.2 to 5.4.  

 

5.2 Direct Scene Cut Detection 

     Direct scene cuts are detected at all three types of frames. As we mentioned before, detection of 

direct scene cuts is relatively easy. If we detect a peak difference within a local window, it indicates 

a scene cut. Here we examine the PA ratios to find peak values. The decision tree is trained to learn 

the order of the color and motion features to be compared in the detection process. 

     For the kth frame, if it is an I frame, we use the following PA ratios : )(kPA
frametoframeD −−

, 

)1( ++
−−

MkPA
frametoframeD  and )( jkPARb +  where j=1…M. Here M is the number of B frames 

between the I frame and its next P frame. Note here the frame numbers are in transmission order. 
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An example of M=2 is shown in Figure 6. Note here frame k+1 and k+2 are B frames displaying 

before the I frame (k), but being transmitted afterwards due to the frame prediction procedure used 

in MPEG. 

 

 

 

 

 

 

Figure 6  PA ratios used in I frame scene cut detection 
 
 
     In addition to )(kPA

frametoframeD −−
 that is used to check if there is a peak at frame k, 

)1( ++
−−

MkPA
frametoframeD  is checked to make sure that there is no peak value at frame k+M+1 (as we 

can safely assume there is no two scene cuts with a few frames).  This is mainly to handle very fast 

camera motions that result in large frame differences in consecutive frames (instead of only in one 

frame for regular direct scene cut). )( jkPARb +  is checked to see if the scene cut occurs at the 

frame k+j [3], which is displayed before the frame k. This is because the frame k is compared with 

its former P frame to obtain the frame-to-frame color difference, and will also have a peak 

difference when a scene cut actually occurs at one of the B frames before it (in the display order). 

The decision tree derived is shown in Figure 7. 

     The threshold TH to detect peak PA ratios of the frame-to-frame color difference is about 5 to 6, 

which are obtained from the training process. The TH_Rb to detect peak PA ratios of bR  is around 

2 to 3. As discussed in [3], a large bR  indicates that there is a direct scene cut at the B frame. The 
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optimal thresholds are slightly different for different type of videos (e.g., baseball and home video). 

As we will discussed in the section 5.4, in practice, a general multi-level schema can be used to 

enable users to easily correct false alarms and misses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7  Direct scene cut detection at I-type frames 
 
     If the kth frame is a P frame, )(kPARp is checked in addition to the features that are checked for 
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process is followed to make sure there is no peak at the frame k+M+1, and there is no scene cuts at 

its following B frames. Here TH_Rp is in the range of 15 to 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  Direct scene cut detection at P-type frames 
 

    For a B-frame, we check RbPA  and RfPA  ratios at the frame k and its successive B frames. As 

shown in Figure 9, assume L is the frame number of the last B frame before the next anchor frame, 

the kth frame is a direct scene cut point if RbPA  value of the frame k and all its following B-frames 
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detected as a scene cut. This approach is an enhanced version of what has been proposed in [3]. 

Instead of only examining one B-frame, the new approach checks more B-frames to improve 

accuracy and robustness.   

 

 

 

 

 

 

 

 

 

 

 
Figure 9  Direct scene cut detection at B-type frames 

 

 

5.3 Gradual Transition Detection 

    If no direct scene change is detected, the algorithm checks for gradual transitions that do not 

show high peak values in above modules. The widely used twin-comparison algorithm is designed 

to track a transition assuming that frame-to-frame differences do not drop below a threshold within 

the whole period. However, for long transitions in some videos (e.g. sports or sitcom), differences 
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intensity variance and then detect parabolic curves to find dissolve or fade related transitions. Due 

to noise and motion, it is hard to find desired parabolic shapes without introducing many false 

alarms. 

     Using the learning method of decision tree, we find it is rather simple and robust to detect the 

beginning and ending edges of transitions, which have the shape of up and down steps respectively. 

An example transition is shown in Figure 10, b1-b6 and e1-e6 are PA ratios of frame-to-frame 

color differences computed at anchor frames (Eq 2.4).  

 

 

 

Figure 10  The beginning and ending edges of a gradual scene change 
 
    Based on induction results from the decision tree learning, we use color differences at six 

successive anchor frames to detect the beginning and ending steps (note that we do not compute 

color measures at B-frames). The final decision rules are summarized as follows. 

• If b1, b2 and b3 are smaller than TH_G1, and b4, b5 and b6 are larger than TH_G2, a 

beginning edge is detected at the frame of b4 

• If e1, e2 and e3 are larger than TH_G2, and e4, e5 and e6 are smaller than TH_G1, an 

ending edge is detected at the frame of e4 

    The above rules are inducted from MPEG-1 sequences with 30 frames per second and two B-

frames between each pair of anchor frames. Thus, in general, we need to examine a window of 

about half second to properly detect steps. From our experiments, the threshold TH_G1 is around 

1.1 to 1.3; the threshold TH_G2 is from 0.7 to 0.8. As frame-to-frame variances always exist at the 

boundaries of a transition (which may not be true within a transition), and are usually noticeable 

(i.e. large), our detection method can pick beginning and ending edges with a high recall rate. 
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     The remaining problem, which also exists in other scene cut detection algorithms, is that fast 

camera or object motions may produce similar up and down steps, which will cause false positives 

and therefore reduce precision.  To alleviate the problem, we check the distance between a pair of 

beginning and ending steps. In detail, when a ending step is detected, the distance with the last 

beginning step, L, is computed, and  

• If L>L1 and L<L2, then there is a transition. Otherwise there is no transition. 

Here L1 is the minimum length of a transition (e.g. 10 frames or 0.3 second). L2 is the maximum 

length of a transition (e.g. 60 frames or 2 seconds).  

     The length constraint removes most false alarms since up and down steps caused by motions 

typically do not come up in pairs within short periods. One most likely false situation is when there 

is a sudden camera motion and the motion also stops suddenly in a short time. Slow camera 

motions usually do not create step-like changes. This is acceptable in many applications because 

the above camera action quickly changes the recording view and may be considered as a “true’ 

scene cut. 

 

5.4  Multi-Level Scene Cut Detection 

A scene cut detection with 100 percent accuracy is not realistic, even though we have used various 

methods to help us choose effective decision models and threshold values and consider many 

important issues.  In practice, we have noticed that given a good browsing interface (such as the 

one we will show in Chapter 5), it is easy for users to identify and correct false alarms (assume 

there are a limit amount of errors). On the other hand, it is hard to correct a missed scene cut 

without playing and watching the whole video again. Adjusting some decision thresholds to lower 

values can minimize misses, but it usually causes many false alarms. 
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     To solve this problem, we adopt a multi-level scheme for exploring this tradeoff situation. In 

this scheme, multiple sets of thresholds are used instead of just the optimized threshold values. 

Scene cuts are detected at different levels. The multi-level schema is shown in Figure 11. 

     For each frame, the detection process goes from a higher level to a lower level when a scene cut 

is not detected at the higher level. The process stops whenever a scene cut is detected. Because 

obviously, scene cuts at one level are also scene cuts at the lower levels, the output of a scene cut 

includes the frame number as well as its detecting level.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11  The multi-level scene cut detection scheme 

 

     In practice, because the direct scene cut detection is usually accurate, we only apply more than 
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fade, are likely to be confused with fast camera panning/zooming, motion of large objects and light 
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variance. A high threshold will miss scene transitions, while a low threshold may produce too many 

false alarms. Our multi-level approach generates a hierarchy of scene cuts. Users can quickly go 

through the hierarchy to see positive and negative errors at different levels, and correct them. 

 

6  Verification Using Complex Features 

As we discussed before, the main problem in the scene cut detection is to distinguish between real 

scene breaks (especially gradual transitions) and normal changes, such as camera or object motions 

and lighting changes.  Many features and methods have been studied and are proven to improve the 

detection accuracy.  However, most of these approaches require more complicated feature 

extraction algorithms, such as motion estimation and edge detection. Typically, these algorithms 

are computation intensive and cannot be performed in real-time on a regular workstation or PC.  

     Here, we develop a verification mothod to increase detection accuracy without losing the real-

time performance. In this scheme, extraction and comparison of more detailed visual features are 

applied only when a potential gradual transition is detected. Note that this process can also be 

included in our multi-level scene cut detection scheme discussed in the previous section. Complex 

models and features are applied only to the candidate frames. 

    In the following sub-sections, we will present two methods for final verification - camera motion 

detection and aperture change detection. Typically, these methods require higher resolution and 

accuracy of extracted features. 

 

6.1 Camera Motion Detection 

In this work, we focus on the detection of camera panning operations. Compared to object motion 

and camera zooming, panning operations usually produce much larger visual content changes (e.g. 
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color), and thus cause more false alarms. On the other hand, panning can also be detected more 

reliably compared with other motion activities. The method we utilized here looks for dominant 

direction of motion vectors as an indication of the camera panning. 

     We first compute the histogram of eight motion directions for every P-frame based on motion 

vectors that are available in the MPEG compressed domain (Figure 12). This feature extraction 

process does not require much computation as the number of motion vectors (i.e. macro blocks) is 

small (330 for a CIF size frame). The detection of panning at P-frames is applied only when a 

potential gradual scene change is found. 

 

 

 

 

 

Figure 12  Panning detection based on histogram of motion vectors 
 

     The algorithm to detect panning in a P-frame is given as follows.  

Let i be the direction with maximum number of motion vectors (1 to 8)
j be the direction with second most motion vectors (1 to 8)

if (mi>m9) and (mi>m0) and (mi/mj>2) then
panning

else
    no panning

 

     We find the dominant motion directions. If there are more motion vectors in the dominant 

direction than the intra coded blocks as well as the blocks with zero motion, we compare the 

dominant motion direction with the second dominant one. If the former contains a lot more vectors 

than the later one does (e.g. twice, as we used in our implementation), a panning is detected.  

m3 

m8 

m5 

m7 

m6 

m2 

m1

m4 

m9 : number of  intra coded macro-blocks 
m0 : number of macro-blocks with zero motion 
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      At the ending edge of a potential gradual transition, the above panning detection method is 

applied to all the P-frames within the transition period. If pannings are detected in P-frames more 

than a certain percentage (e.g. 50%), we treat this change as a panning instead of a gradual 

transition. 

    Note that there are special edit operations in some movies or sports that result in effect similar to 

the camera panning. One example is the wipe with a new scene coming in and an old scene going 

out. In such cases, camera motion detection can be used as an optional module when needed in 

specific domain. 

 

6.2 Aperture Change Detection 

Aperture changes of a video camera happen occasionally in movies, news programs, and especially 

home videos. Aperture changes are usually caused by changes of lighting condition. For example, 

when a camera is panned from a bright scene to a dark scene, the aperture will gradually open 

wider to receive more light. This process causes image intensity changes over a short period in the 

recorded video (Figure 13).   

   

 

Figure 13  An example of aperture change that generates two potential transitions 
 (videos shot by Prof Shih-Fu Chang) 

 
     The example in Figure 13 causes two falsely gradual transitions, one from bright to dark and the 

a. panning to dark scene b. statrt of aperture change c. the changed aperture  
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other from dark to bright. To solve this problem, we compare the chrominance and edge features of 

an I-frame right after a transition (potential) with features of an I-frame before the transition. If the 

differences are smaller than a threshold, the transition is ignored. 

     Chrominance histograms and edge direction histograms are computed from the two decoded I-

frames. The reason to use I-frames is because an I-frame requires less decoding computation and it 

does not depend on other frames. The chrominance histogram is calculated in the HSV space using 

only H (hue) and S (saturation) values. The luminance values are not compared as they are 

sensitive to lighting changes. We use a 36-bin histogram that has 12 levels of H and 3 levels of S. 

The color difference is computed using the L1 distance measure. 
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     Edge histograms are counted at 16 equally divided directions by calculating the gradient of each 

edge pixel. Here edge pixels are detected using Sober operator. For an edge pixel (i,j), let dx=f(i)-

f(i-1) and dy=f(j)-f(j-1), its gradient is arctan(dy/dx). The distance between two edge histograms E1 

and E2 is defined as follows. 
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     Given colorD  and edgeD  between two I-frames at the begin and end of a potential transition, if 

they are both under given thresholds (e.g. around 0.5 in our implementation), an aperture change is 

declared and the transition is ignored. This is based on the consideration that edge and chrominance 

features are less affected by aperture changes. For a real transition, these differences are expected to 

be larger. The other illumination invariant features can also be used [6]. 
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7 Results and Discussions 

We developed a real-time scene cut detection system using the scheme described in previous 

sections on a Pentium-III 600 PC. The PC has a FutureTel MPEG compression card that can 

capture and compression live video feeds from VCR or cable. This system allows us to test our 

scene change detection algorithms on a large amount and wide variety of video sources. 

    In our experiments, we have used a total of around 5.5 hours videos from different sources. As 

listed in Table 1, there are two half-hour baseball videos from ESPN and Fox respectively. The two 

tennis videos are from games at two different places. Home videos are obtained from two different 

personal owners. There are also half hour videos from sitcom, news, cartoon, movie and trailer. 

Most of these videos contain commercials. They are recorded to VHS tapes from TV broadcasting 

channels, and then digitized and compressed to MPEG-1 streams at 30 frames per second and CIF 

resolution (i.e., 352x240) using the FutureTel MPEG encoding card. The movie file is obtained 

from a VCD and its original format is MPEG-1. The bit rates of these MPEG videos are from 

1.2Mbps to 1.5 Mbps. 

home video 2 (two different people) 30x2 minutes 

Table 1. Description of the 6 hours of videos in the experiment dataset 
      

 

Video Type Number of Sequences Length 

Baseball 2 (ESPN and Fox) 30x2 minutes 

Tennis 2 (two different games) 30x2 minutes 

Sitcom 1 (Senfield) 30 minutes 

News 2 (CNN) 30 minutes 

Cartoon 1 (animals) 30 minutes 

Movie 1 (comedy) 30 minutes 

trailer 1 (Hot Shots) 30 minutes 
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     The baseball and tennis videos contain fast object and camera motions. In the meanwhile, 

different scenes in a game have similar backgrounds as one game is played at the same stadium or 

court. Home videos are usually very jerky. There are non-smooth camera motions and unexpected 

aperture changes. Sitcom videos include many back and forth camera angle switches. It is 

challenging to pure color based approaches because many angle changes only slightly change the 

color distribution of a scene. News programs have been widely studied. A news video often 

contains various scenes in different stories. Cartoons are a special type of videos that are usually 

consisted of computer-generated graphics. Here a scene cut means significant changes of graphical 

objects within a scene. Commercials exist in all types of videos except the movie and trailer. The 

half hour movie is extracted from a comedy that is originally recorded on a VCD in MPEG-1 

format. The trailer is a promotion video provided by Hot Shots & Cool Cuts Inc., a stock footage 

company. It contains a lot of short unrelated shorts that are sampled from the company’s large 

video collections. 

     We manually identify the ground truth by using a MPEG player with frame accuracy. In our 

experiments, the scene cut detection results are compared with the ground truth in terms of 

precision and recall. Assume N is the ground truth number of scene cuts, M is the number of 

missed cuts and F is the number of false alarms, the recall and precision are defined as follows : 

Recall  =   
N

MN −    (10) 
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Precision =
FMN

MN
+−

− (11)

     These two measures are both important. We certainly do not want to miss any critical scene 

changes. On the other hand, too many false alarms will compromise the efficiency of indexing and 

summarization. In practice, as we mentioned before, it is relatively easy for users to manually 

identify false alarms and improve the precision. Thus in the training stage when the thresholds are 

selected, we prefer lower threshold values, which tend to give more scene cuts, if recalls are not 

significantly affected (e.g. reduced less than 5%).  

     We use two sets of thresholds in the experiments. One is for home videos (i.e. amateur). The 

other one is for the rest of videos (i.e. professional).  Amateur and professional videos have very 

different characteristics. The former have jerky camera motions compared to smooth camera 

motions in the professional one. On the other hand, gradual transitions or editions in home videos 

are simpler and are not as many as those in professional videos. The two sets of thresholds are 

chosen based on the consideration of these characteristics. At the training stage, we use a small 

amount of video data (around 1 hour) digitized from sources (including news and home videos) that 

are different from the above testing videos. Note in most of our detection modules, we do not 

compare absolute value of a specific measure (e.g., frame to frame difference or motion vector 

percentage) against a fixed threshold. Instead, we normalized these measures with the local window 

average and use machine learning tools to automatically choose optimal thresholds. By doing these, 

we were able to generalize the algorithms and make them applicable to different type of videos.   

     The detailed experiment results are shown in the following tables (Table 1 to 6).  For the 

baseball videos, we have good recall and precision results. Considering the total length of baseball 

videos is about 60 minutes, there are about 1.2 false alarms per minute (i.e. per 1800- frames), and 

about 1 miss every two minutes. Many false alarms (~50%) come from close-up scenes when a 
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person suddenly appears in front of the camera, which totally changes a scene. The rest of false 

alarms are mainly from panning and zooming when cameras are following player in the field. Most 

misses occurred at gradual transitions that are inserted between games and replays.  Similar 

precision and recall results are obtained for tennis. Shots in tennis videos are longer (~ 1.5 times) 

than those in baseball videos. Camera and object motions in long shots causes most falses, as the 

large changes are more likely to happen in a long panning or zooming shot. Again, the wiping of 

company logos as transitions between game and replays accounts for many misses. 

Table 2 Detection results of all scene cuts for 8 different types of videos 
 
 

 
 
 
 

 
Table 3  Total missing number of direct scene cuts 

 
 
 
 
 
 
 
 
 
 
 

# of direct cuts 
(ground truth) # of missed Recall 

3263 107 97% 

Video # of scene cuts 
(ground truth) # of false # of missed recall precision 

baseball 891 74 37 96% 92% 

tennis 622 50 39 94% 92% 

sitcom 461 35 23 95% 93% 

news 276 32 7 97% 89% 

cartoon 313 42 5 98% 88% 
movie 225 18 31 86% 92% 
trailer 655 22 18 97% 97% 

home video 184 65 9 95% 73% 

TOTAL 3627 338 169 95% 91% 
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Table 4 Total missing number of gradual transitions 

 
 
 
 
 

 
Table 5 Two different reasons that cause false alarms 

 
 

 
 

 
 

Table 6 Flashlights detection results of home videos 
 
 

    

 

  Our algorithms perform well on sitcom videos. Many direct scene changes in sitcoms do not have 

large color differences when two successive shots are taken from the same scene. Motion features 

are helpful in detecting such changes without bringing in too many false alarms. The precision rate 

is relatively low for news videos (about 89%). Most false positives are caused by camera motions 

during the field reporting segments. Although news stories are taken by professionals, the recording 

situations in the field are often not good, and thus we see some jerky camera motions. The recall 

rate is very high for cartoon videos, while many computer-simulated camera and object motions 

tend to be confused with scene changes.  The detection results for the trailer video are very good 

due to the fact that most scene changes are direct scene cuts between un-related video shots. The 

movie sequence has a lower recall than precision. Dark scenes taken at night account for many 

missing scene cuts. Also there are more advanced special effects and edits being used in the movie. 

# of transitions 
(ground truth) # of missed recall 

364 62 83% 

Total false # in 
test videos 

Camera or object 
motion 

Lighting or 
Aperture Change 

338 266 (79%) 72 (21%) 

# of flashlights 
(ground truth) # of missed recall 

64 18 72% 
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Note all the above results are obtained by using the same set of threshold values. 

     Higher motion thresholds (TH-Rb, TH-Rf and TH-Rp) are used for home videos (about 25% 

higher) in order to tolerate jerky camera motions. As expected, we have a high precision recall, but 

a low precision rate (72%). Our testing home videos have many long shots (e.g., a few minutes 

long), in which the camera often changes from one view to another several times. If we compute 

the number of false alarms over time, it is about 2 falses every minute. Typical camera operations 

that produce false scene cuts include 1) fast moving from one angle to another; 2) zooming in too 

close to an object; and 3) following a fast moving object.    

     As mentioned, direct scene cuts and gradual scene cuts have completely different characteristics. 

It is appropriate to evaluate their performances separately. When we count the number of missing 

scene cuts, we also label each change as either direct or gradual. The final results are shown in 

Table 3 and 4 respectively. For direct scene cuts, we achieved a very high 97% recall rate on 

average. The recall rate is 83% for gradual scene changes. Our experiments show that to improve 

the later recall rate to 90% introduces too many false alarms.  

     For false scene cuts, we classify them into two classes: motion-related and lighting-related. The 

motion-related refers to both camera and object motions, which often occur at the same time. The 

lighting-related includes real lighting changes as well as aperture changes. As shown in Table 5, 

80% false alarms are motion-related.  

     Detection of flashlights in one of our home videos is shown in Table 6. The recall rate is 72%. 

Most misses, which result in false scene cuts, are caused by subsequent aperture changes after 

flashlights (Figure 4). When these changes are longer than the size our detection buffer window 

(about half second), the ratio Fr  in Eq. 6 falls below our threshold and causes miss detection of a 

flashlight. We can increase the length of local window to improve flashlight detection accuracy.  
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     In summary, we performed extensive tests on our scene cut detection scheme. It achieves the 

best results for sports and sitcom videos. News and cartoons are slightly less accurate, and the most 

challenging ones are home videos.  This ranking is consistent with the degree of irregularity of 

camera motions in different types of videos. It indicates that motion is the main issue, and we need 

advanced methods that can capture motions more accurately. Utilizing better motion estimation 

techniques and exploiting more complicate features (e.g., region level features) are promising 

directions, although at the cost of computational complexity. 
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