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ABSTRACT 
In this paper we present a novel algorithm for video scene 
segmentation. We model a scene as a semantically consistent 
chunk of audio-visual data. Central to the segmentation 
framework is the idea of a finite-memory model. We separately 
segment the audio and video data into scenes, using data in the 
memory. The audio segmentation algorithm determines the 
correlations amongst the envelopes of audio features. The video 
segmentation algorithm determines the correlations amongst 
shot key-frames. The scene boundaries in both cases are 
determined using local correlation minima. Then, we fuse the 
resulting segments using a nearest neighbor algorithm that is 
further refined using a time-alignment distribution derived from 
the ground truth. The algorithm was tested on a difficult data set; 
the first hour of a commercial film with good results. It achieves 
a scene segmentation accuracy of 84%. 

1. INTRODUCTION 
This paper deals with the problem of segmenting video data 

into semantically coherent scenes using audio and video data. 
This is an important problem for several reasons: (a) the 
determination of  semantically coherent scenes is the first step 
towards semantic understanding of the entire video (b) breaking 
up a long video into scenes will allow for non-linear navigation 
of video data. For example, scene segmentation will be useful for 
browsing news programs. 

Prior work on video scene segmentation has focused on scene cut 
detection using image data alone [2,8]. In [8], the authors use 
scene transition graphs to determine scene boundaries. Their 
method assumes a repetitive shot structure within a scene. While 
this structure is present in particular scenes such as interviews, it 
can be absent from many scenes in commercial films. This can 
happen, for example, when the director relies on fast succession 
of shots to heighten suspense.  

There has been prior work done dealing with the problem of 
audio segmentation [5,6,9]. In these papers, the authors use 
short-term (100 ms) changes in a few features (e.g. energy, 
cepstra) to classify the audio data into several predefined classes 
such as speech, music environmental sounds etc. They do not 
deal with notion of audio-scenes, which are necessarily long and 
exhibit long-term consistency. Audio data has been used for 
identifying important regions [1] or detecting events such as 
explosions [3] in video skims. These skims do not segment the 
video data into scenes; the objective is to obtain a compact 
representation. 

In this paper, we develop a joint audio-visual framework for 
video scene segmentation using insights from the ground truth. 
We define a scene as a chunk of audio-visual data that possesses 
consistent, long-term audio and visual properties. Audio and 
video scenes are defined in a similar fashion. We develop a 
causal memory model based in part on the model in [2]. The 
model has two parameters: (a) an analysis window that stores the 
most recent data (the attention span) (b) the total amount of data 
(memory).  

For segmenting the data into audio scenes, we compute 
correlations amongst the envelopes of the features in the 
attention-span with feature envelopes in the rest of the memory. 
The video data comprises shot key-frames. The key-frames in the 
attention span are compared to the rest of the data in the memory 
to determine a coherence value that is derived from a color-
histogram dissimilarity. This comparison takes also into account 
the relative shot length and the time separation between the two 
shots. In both cases, we use a local minima for detecting a scene 
change. The audio and video scene boundaries are initially 
aligned using a simple time-constrained nearest neighbor 
approach. This alignment result is then refined using the 
distribution of time alignment differences yielding good results. 

The rest of the paper is organized as follows. In the next section 
we formally define the characteristics of a scene. Sections 3 and 
4 deal with audio and video scene segmentations respectively.  
Section 5 discusses ways to fuse results of the two 
segmentations. This is followed by a section on experimental 
results. Finally, we present our conclusions in section 7. 

2. WHAT IS A SCENE? 
In this section we present the overall framework for scene 

segmentation. 

2.1 Insights from the Ground Truth 

The ground truth data is obtained from the first one hour of 
a classic science fiction film: Blade Runner.  The data is complex 
with non-trivial audio and video changes. Consider for example, 
a typical sequence of audio changes: ambient music → street 
sounds → conversation → sounds in a bar. 

The first hour of the film was hand labeled into coherent, 
semantically consistent scenes in two ways: by looking at the 
video along with the audio (scenes) and by listening to the audio 
alone (audio scene). Table 1 shows a strong agreement (i.e. they 
can be cross-validated) between two kinds of labeled data.  



Table 1: The audio scene breaks 
were labeled without watching the 
video while the scene breaks were 
obtained by watching the film 
with the audio.  

 
The labeled data (Table 1) seem  
to imply  that there are 9 �extra� sound scenes. These are audio 
scene changes within the same video scene. They reflect a 
change of mood (or theme) within the same video scene. While 
there is a clear visual change in the semantic in the four video 
scenes that disagree, they are either parenthesized by silence or 
are transitory scenes with no break in the semantics of the audio.  

2.2 Formalizing the idea of a Scene 

We model the audio-scene as a collection of a few dominant 
sound sources. These sources are assumed to possess stationary 
properties that can be characterized using a few features. An  
audio-scene change is said to occur when the majority of the 
dominant sources in the sound change. We model  the video-
scene as a collection of shots that have a single, consistent 
(within the scene), underlying semantic. We further assume that 
the majority of shots in the scene associated with the semantic 
are chromatically coherent. A video-scene is said to occur when 
the majority of shots (that are chromatically consistent) change. 

A scene is a contiguous segment of data having consistent long 
term audio and video characteristics. The scene boundaries are 
determined by aligning (with time constraints) audio-scene 
boundaries with video-scene boundaries. Audio and video 
boundaries that do not agree are labeled as singleton changes. 
The ground truth data implies that singleton audio scene changes 
are indicative of possible theme (mood) changes and hence such 
changes are denoted as �interesting� audio events within the 
scene. Singleton video changes appear unlikely (prob. 4/28).  

2.3 The Memory Model 

In order to segment data into scenes, we use a causal, first-
in-first-out (FIFO) model of memory (figure 2). This model is 
derived in part from the idea of coherence [2]. In [2] the authors 
use a non-causal, infinite memory model. In our model of a 
listener, two parameters are of  interest: (a) memory: this is the 
net amount of information (Tm) with the viewer and (b) attention 
span: it is the most recent data (Tas) in with the memory of the 
listener. The listener uses this data to compare against the 
contents of the memory to decide if a scene change has occurred. 

3. AUDIO SCENE CHANGE DETECTION 
In this section we present our algorithm for audio-scene 

segmentation. A more detailed description of audio scene 
segmentation is to be found in [7]. 

3.1 Features and Envelope Models 

We use ten different features [5,6,7,9] in our algorithm (a) 
cepstral-flux (b) multi-channel cochlear decomposition (c) 
cepstral vectors (d) low energy fraction (e) zero crossing rate (f) 
spectral flux (g) energy and (h) spectral roll off point. We also 
use the variance of the zero crossing rate and the variance of the 
energy as additional features. The cochlear decomposition was 
used because it was based on a psychophysical ear model. The 
cepstral features are known to be good discriminators [4]. All the 
other features were used for their ability to distinguish between 
speech and music [5] [6]. Features are extracted per frame 
(100ms. duration) for the duration of the analysis window. 

Given a particular feature f and a finite time-sequence of values, 
we wish to determine the behavior of the envelope of the feature. 
The feature envelopes are force-fit into signals of  the following 
types: constant, linear, quadratic, exponential, hyperbolic and 
sum of exponentials. All the envelope (save for the sum of 
exponentials case) fits are obtained using a robust curve fitting 
procedure. We pick the fit that minimizes the least median error. 
The envelope model analysis is only used for the scalar 
variables. The vector variables (cepstra and the cochlear output) 
and the aggregate variables (variance of the zero-crossing rate 
and the spectral roll off point) are used in the raw form. 

3.2 Detecting a Scene Change 

Let us examine the case where a scene change occurs just to 
the left of the listeners attention span. First, for each feature, we 
do the following:  

1. Place an analysis window of length Tas (the attention-span 
length) at to and generate a sequence by computing a feature 
value for each frame (100 ms duration) in the window. 

2. Determine the optimal envelope fit for these feature values. 

3. Shift the analysis window back by ∆t and repeat steps 1. and 
2. till we have covered all data in the memory.  

We then define a local correlation function per feature, using the 
sequence of envelope fits. The correlation function Cf  for each 
feature f is then defined as follows: 

( ) 1 ( ( , ), ( , )f o o as o o asC m d f t t t f t m t m tδ δ δ= − − + + −  (1) 

Type No. 

Video Scenes 28 

Audio Scenes 33 

Scene Agreement 24 

Figure 1: The figure shows video (triangles) and audio (solid 
circles) scene change locations. The dashed circles show 
audio/video scene boundaries which agree. 

singleton audio scene boundaries 
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Figure 2: The attention span (Tas) is the most recent data in 
the buffer. The memory (Tm) is the size of the entire buffer. 
Clearly, Tm ≥ Tas. 



where, f(t1, t2) represents the envelope fit for feature f for the 
duration [t1,t2]. m ∈ [-N..0], where N ≡ (Tm - Tas)/δ. The analysis 
window shifts back by δ and d  is the Euclidean metric1 on the 
envelopes For the vector and the aggregate data, we do not 
compute the distance between the windows using envelope fits 
but use a L2 metric on the raw data. In our experiments we use δ 
= 1 sec.  

We model [7] the correlation function as a decaying exponential: 
0,)exp()( <= ttbtC ii  where Ci is the correlation function for 

feature i, and bi is the exponential decay parameter The audio-
scene decision function D(to) at any instant to is defined as 
follows: ∑=

i
io btD )( .  

The audio-scene change is detected using the local minima of the 
decision function. This is done by using a sliding window of 
length 2wa+1 sec. to slide across the data. We then determine 
whether the minima in the window coincides with the center of 
the window. If it does, the location is labeled as an audio scene 
change location. 

4. VIDEO SCENE CHANGE DETECTION 
In this section, we shall describe the algorithm for video-

scene segmentation. We also develop notions of recall and 
coherence.  

4.1 Recall 

In our visual memory model, the data is in the form of key-
frames of shots (figure 3). The model also allows for the most 
recent and the oldest shots to be partially present in the buffer. 
A point in time (to) is defined to be a scene transition boundary 
if the shots that come after that point in time, do not recall [2] 
the shots prior to that point. The idea of recall between two 
shots a and b is formalized as follows: 

),/1()),(1(),( mba TtffbadbaR ∆−•••−=   (2) 

where, R(a,b) is the recall between the two shots a, b. d(a,b) is a 
color-histogram distance between the key-frames corresponding 
to the two shots, fi is the ratio of the length of shot i to the 
buffer size (Tm). ∆t is the time difference between the two shots.  

The formula for recall indicates that recall is proportional to the 
length of each of the shots. This is intuitive since if a shot is in 
memory for a long period of time it will be recalled more 

                                                           
1 This metric is intuitive: it is a point-by-point comparison of the two 
envelopes. 

easily.  Again, the recall between the two shots should decrease 
if they are further apart in time.  

4.2 Computing Coherence 

Coherence is easily defined using the definition of recall: 

max
, { \ }

( ) ( , ) ( )
as m as

o o
a T b T T

C t R a b C t
∀ ∈ ∈

 
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where, C(to) is the coherence across the boundary at to and is 
just the sum of recall values between all pairs of shots across 
the boundary at to. Cmax(to) is obtained by setting d(a,b) = 0 in the 
formula for recall. This normalization compensates for the 
different number of shots in the buffer at different instants of 
time. Our formulation simplifies the model found in [2]. 

We compute coherence at the boundary between every adjacent 
pair of key-frames. Then, similar to the procedure for audio 
scene detection, we determine the local minima. This is done by 
using a sliding window of length 2k+1 frames and determine if 
the minima in the window coincides with the center of the 
window. If it does, the location is labeled as a video scene 
change location. 

5. MERGING THE AUDIO AND VIDEO 
SCENES 

We generate correspondences between the audio and the 
video scene boundaries using a simple time-constrained nearest-
neighbor algorithm. Let the list of video scene boundaries be Vi i 
∈ {1..Nv}. Let the list of audio scene boundaries be Ai i ∈ 
{1..Na}. The ambiguity window around each video scene is k 
frames wide. The ambiguity window width around each audio 
scene boundary is wa sec long. Note that these sizes are the same 
size of the windows used for local minima location. For each 
video scene boundary, do the following: 

• Determine a list of audio scene boundaries whose ambiguity 
windows intersect the ambiguity window of the current 
video scene boundary. 

• If the intersection is non-null, pick the audio scene 
boundary closest to the current video scene boundary. 
Remove the this audio scene boundary from the list 
containing audio scene boundaries. 

• If the intersection is null, add the current video scene 
boundary to the list of singleton video scene changes. 

At the end of this procedure, if there are audio scene boundaries 
left, collect them and add them to the list of singleton audio 
scene changes. The nearest neighbor algorithm can be improved 
by determining the probability distribution of the lags of the 
audio scene changes with respect to the video scene changes. 
This distribution is determined using the ground-truth scenes that 
are in agreement. We use this lag distribution to assign a 
confidence score to the audio lag. This is done for each of the 
joint audio-video scene changes obtained using the nearest-
neighbor rule. We eliminate all joint audio-video scenes that 
have a lag confidence score less than ∈. 

time
to 

attention span 

memory Tm 

Tas 
Figure 3: Each of the solid blocks represents a single 
shot. Note that the most recent shot and the oldest shot 
may be partially present in the buffer. 



6. EXPERIMENTS 
In this section we present experimental results on the data 

set using our audio and video scene change algorithms. The data 
set used to test our algorithms is complex; it is the first hour of a 
classic science fiction film: Blade Runner. 

There are three parameters of interest in each scene change 
algorithm (i.e. audio and video). They are: (a) memory (Tm) (b) 
attention-span (Tas) (c) ambiguity-window size. For both audio 
and video scene change algorithms, the attention-span and the 
memory parameters follow intuition: results improve with a large 
attention-span and a large memory. Large windows have the 
property of smoothing the audio decision function [7] and the 
video coherence. The audio and video ambiguity parameters are 
used in the location of local minima in both scene change 
algorithms. The same parameters are used as time-constraints 
when aligning the two scene boundaries. Larger windows 
decrease the number of false alarms but also increase the number 
of misses.  

In the figure 5, we show the number of correct matches against a 
variation in the ambiguity window sizes with other parameters 
fixed. The memory buffer parameters have been fixed: audio: Tm 
=31sec. Tas=16sec., video: Tm=32sec., Tas=16 sec. The video 
ambiguity is units of frames, while the audio ambiguity window 
is in seconds. The maximum number of possible matches is 24.  
The plot shows the nearest-neighbor case. The best result is 
obtained for video ambiguity of 4 frames, audio ambiguity of 4 
sec: 20/24 correctly matched. This gives a detection accuracy of 
84%. Using the probability distribution refinement, for the same 
parameters, the accuracy drops slightly to 18/24. This is because 
we have small training set (size 24). A small value of epsilon (ε 
= 0.01) caused the two correct matches to be missed. A much 
larger training set will reduce the probability of misses. There 
were 220 singleton audio events in both cases. The results can be 
improved, but these results seem all the better because the shot 
detection algorithm had misses and false alarms. 

7. CONCLUSIONS 
In this paper we have presented a framework of 

segmentation of  audio-visual data into semantically consistent 
scenes. We begin by defining a scene to be a semantically 
consistent chunk of audio-visual data. This idea is used in 
conjunction with a memory model with two parameters: (a) the 

attention span (b) total memory. We segment the audio and the 
video data separately and subsequently merge the results to 
determine scene boundaries. 

In order to determine audio scene segments we first determine 
optimal envelope fits for each feature extracted in the memory 
buffer. We then determine the correlation amongst the envelope 
fits. The video segmentation algorithm determines the coherence 
amongst the key-frames of the shots in the memory. The 
coherence between two key-frames is proportional to the length 
of the each of the two shots as well as incorporates the time 
difference between the two shots. A local minima criterion is 
used to determine the video and audio segmentation boundaries.  
To determine the scene segmentation, the two segmentations are 
then merged using a simple time-constrained nearest neighbor 
scheme. This is further refined using a lag probability 
distribution. 

The segmentation algorithm achieves an accuracy of 20/24 
scenes (84%) in the naïve case and 18/24 (75%) using the 
refinement. There were 220 singleton audio events. The 
advantage of a scene model with singleton events is that in 
addition to browsing the video by scenes, navigation within a 
scene can take place using the audio events. While the results 
leave much scope for improvement, we believe that the results 
are very good when the complexity of the data set (a one hour 
segment of a film) is kept in mind.  

There are additional improvements possible (a) instead of 
segmenting the audio and the video separately, an algorithm to 
directly segment the data using both the audio and video data 
simultaneously (b) a more sophisticated memory model (as 
opposed to a FIFO) that assigns different probabilities of removal 
to different shots. 
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Figure 5: Plot of number of correct matches (hits) in the naïve 
case, against a variation in the video (in frames, x-axis) and audio 
ambiguity (in sec., y-axis) windows. The best result is 20/24 
matches; video ambiguity: 4 frames, audio ambiguity: 4 sec. 


