Bayesian Nonparametric Models and "Big Data"

February 22, 2013
11:00am-12:00pm
Interschool Lab, 750 CEPSR
Hosted by: Prof. Dan Ellis
Speaker: Dr. John Paisley (Department of EECS, University of California, Berkeley)

Abstract

Bayesian nonparametrics is an area in machine learning in which models grow in size and complexity as data accrue. As such, they they are particularly relevant to the world of "Big Data", where it may be difficult or even counterproductive to fix the number of parameters a priori. A stumbling block for Bayesian nonparametrics has been that their algorithms for posterior inference generally show poor scalability. In this talk, we tackle this issue in the domain of large-scale text collections. Our model is a novel tree-structured model in which documents are represented by collections of paths in an infinite-dimensional tree. We develop a general and efficient variational inference strategy for learning such models based on stochastic optimization, and show that with this combination of modeling and inference approach, we are able to learn high-quality models using millions of documents.

Speaker Biography

John Paisley received the B.S.E. (2004), M.S. (2007) and Ph.D. (2010) in Electrical & Computer Engineering from Duke University, where his advisor was Lawrence Carin. He was a postdoctoral researcher with David Blei in the Computer Science Department at Princeton University, and currently with Michael Jordan in the Department of EECS at UC Berkeley. He works on developing Bayesian models for machine learning applications, particularly for dictionary learning and topic modeling.


500 W. 120th St., Mudd 1310, New York, NY 10027    212-854-3105               
©2014 Columbia University