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Fig. 6. The two-moon problem of 1200 2-D points. (a) One hundred anchor points by K-means clustering dm % 100 R
(b) The 10NN graph built on original points. (c) The anchor graph 3 Y4 2Pleads to a very similar graph.

overlap. Fig. 6 shows that the anchor graph built on the initial label matrixy |, k:k. stands for thé=robenius
two-moon toy data is very close to BN graph in norm, and > O is the tradeoff parameter.
topology yet with a much smaller computational cost. Because of the low-rank structureQdfR, a closed-

In summary, the graph adjacency malvixgiven by form solution for the optimah % %,;...;a, can be
anchor graphs is nonnegative, sparse, and low rankdftsined inOd " p nnb time. Through applying the
rank is at mosim). Hence, the anchor graph does ndahductive model in (16), we are able to predict the hard
computeW explicitly, but instead keeps its low-rankabel for any sampie(unlabeled training samples or novel
form. The space cost of an anchor graph dsb for test samples) as
storingZ, and the time cost isadmnTp dmrPin which

amnP originates fromK-means clustering. Since

m n, the time complexity for constructing an anchor P Yaarg max z” &Ry (20)
graph is linear in the data sine 2l .9

D. Anchor Graph Regularization and in constant imexmp sé

Anchor graphs can greatly reduce the time complexityto sum up, AGR consists of three steps: 1) seek anchors
of GSSL. To illustrate this, let us consider a standgid k_means clusteringOfdmn time]; 2) computeZ
multiclass SSL.settin.g where each labeled Samp"‘z[cmmrbtime];and 3) run label propagatic®re p nénb
d%1...;lPcarries a discrete Ialml2>f L. 5 0frome  {imel In each step, the space complexity is bounded by
distinct classes. We denoteoya %Y1~ 2 R" “a  gggmp nbbEvaluations conducted on several real-world
class indicator matrix with a1 if vt ¥aj and ¥ %20  gata sets up to 630 000 samples showed the significant
otherwi_se. By utilizing the inductive label predictiogCCuraCy improvement achieved by AGR. The experimen-
model in (16), we only need to solve the soft 1abglg results on the extended MNIST data set are shown in
associated with anchors, i&.%%;;...;a; 2 R™ "IN Tap1e 4 (more results in [36]). Note that although the
which each column vector accounts for a single Class-rWﬁing time of two AGR approaches shown in Table 4 is
introduce the graph Laplacian regularization nofighger than the baseline methods 1NN and eigenfunction,

b v2 &/247f. For each clask we pursue a label they are far more efficient than traditional GSSL methods
prediction functionf; ¥4 Za;. Then, the anchor graph

regularization (AGR) framework [36] is formulated as

follows: Table 4 Classification Error Rates (in Percent) on Unlabeled Training
Samples in Extended MNIST (630 000) With | % 100 Labeled Samples.
AGR-1: Use PredefinedZ [(14)]; AGR-2: Use Learned. Both PVM and

min QAGR 3A b AGR-1 Use the Gaussian Kerngl. All of PVM, AGR-1, anq AGR-2
AYVisy.. . ac Use m %500 K-Means Clustering Centers as Anchor Points.
Xc Xc Both AGR-1 and AGR-2 Se$ ¥4 3
Ya G('Zajb pE kZ|a,- Y|jk2
jval jval

1/4%tr6A>z>ZA p bEkZ|A YikE  (19)

whereZ,; 2 R' ™ is the submatrix corresponding to the
labeled data sét;, Y j; represents thgh column vector of
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