




overlap. Fig. 6 shows that the anchor graph built on the
two-moon toy data is very close to thek-NN graph in
topology yet with a much smaller computational cost.

In summary, the graph adjacency matrixW given by
anchor graphs is nonnegative, sparse, and low rank (its
rank is at mostm). Hence, the anchor graph does not
computeW explicitly, but instead keeps its low-rank
form. The space cost of an anchor graph is� ðsnÞ for
storingZ, and the time cost is� ðdmnTþ dmnÞin which
� ðdmnTÞ originates fromK-means clustering. Since
m � n, the time complexity for constructing an anchor
graph is linear in the data sizen.

D. Anchor Graph Regularization
Anchor graphs can greatly reduce the time complexity

of GSSL. To illustrate this, let us consider a standard
multiclass SSL setting where each labeled samplex i

ði ¼ 1 . . . ; lÞcarries a discrete labelyi 2 f 1; . . . ; cg from c
distinct classes. We denote byY ¼ ½Y >

l ; Y >
u �

>
2 Rn� c a

class indicator matrix withYij ¼ 1 if yi ¼ j and Yij ¼ 0
otherwise. By utilizing the inductive label prediction
model in (16), we only need to solve the soft labels
associated with anchors, i.e.,A ¼ ½a1; . . . ; ac� 2 Rm� c in
which each column vector accounts for a single class. We
introduce the graph Laplacian regularization norm
� Gðf Þ ¼ ð1/2Þf > f . For each classj, we pursue a label
prediction functionf j ¼ Zaj. Then, the anchor graph
regularization (AGR) framework [36] is formulated as
follows:

min
A ¼½a1;...;ac�

QAGRðA Þ

¼
Xc

j¼1

� GðZajÞ þ
�
2

Xc

j¼1

kZlaj � Y ljk
2

¼
1
2

tr ðA > Z> ZA Þ þ
�
2

kZlA � Y lk
2
F (19)

whereZl 2 Rl� m is the submatrix corresponding to the
labeled data setX l, Y lj represents thejth column vector of

the initial label matrixY l, k:kF stands for theFrobenius
norm, and� > 0 is the tradeoff parameter.

Because of the low-rank structure ofQAGR , a closed-
form solution for the optimalA � ¼ ½a�

1; . . . ; a�
c� can be

obtained in Oðm3 þ m2nÞ time. Through applying the
inductive model in (16), we are able to predict the hard
label for any samplex (unlabeled training samples or novel
test samples) as

ŷðxÞ ¼arg max
j2f 1;...;cg

z> ðxÞa�
j (20)

and in constant timeOðdmþ scÞ.
To sum up, AGR consists of three steps: 1) seek anchors

via K-means clustering [OðdmnTÞ time]; 2) computeZ
[OðdmnÞtime]; and 3) run label propagation [Oðm3 þ m2nÞ
time]. In each step, the space complexity is bounded by
Oðdðmþ nÞÞ. Evaluations conducted on several real-world
data sets up to 630 000 samples showed the significant
accuracy improvement achieved by AGR. The experimen-
tal results on the extended MNIST data set are shown in
Table 4 (more results in [36]). Note that although the
running time of two AGR approaches shown in Table 4 is
longer than the baseline methods 1NN and eigenfunction,
they are far more efficient than traditional GSSL methods

Fig. 6. The two-moon problem of 1200 2-D points. (a) One hundred anchor points by K-means clustering ðm ¼ 100 Þ.
(b) The 10NN graph built on original points. (c) The anchor graph ðs ¼ 2Þleads to a very similar graph.

Table 4 Classification Error Rates (in Percent) on Unlabeled Training
Samples in Extended MNIST (630 000) With l ¼ 100 Labeled Samples.
AGR-1: Use PredefinedZ [(14)]; AGR-2: Use LearnedZ. Both PVM and
AGR-1 Use the Gaussian Kernel. All of PVM, AGR-1, and AGR-2
Use m ¼ 500 K-Means Clustering Centers as Anchor Points.
Both AGR-1 and AGR-2 Sets ¼ 3
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