SVM Material

- SVM material in books for this class:
 - Brief discussion in Duda, Hort & Stork, pg 262-264.
 - Read Problems 29-33, pg 275-277.
 - Not mentioned in Devroye or Mitchell.
 - Hastie, Tibshirani & Friedman, Section 4.5 and Chapter 12.

- Additional References:
 - Introductory chapters in
 - Scholkopf et al (eds) - "Advances in Kernel Methods"
 - Smola et al (eds) - "Advances in Large Margin Classifiers"
What an SVM does

Input:
- Training set \(\{(x_i, y_i)\} \) containing \(r \) labelled examples
 - \(x_i \in X \subseteq \mathbb{R}^d \), \(x_i = (x_{i1}, x_{i2}, \ldots, x_{id}) \)
 - \(y_i = +1 \) or \(-1\)
- For more than 2 classes, use methods discussed before, e.g. binary classifier for each pair of classes, or each class vs all others, etc.

Output:
- A classifier given by \(\text{sign}(f(x)) \), where \(f \) is chosen to yield the "best" classifier in some sense.
Classifiers are hyperplanes separating positive from negative examples.

"Best" hyperplane is the one with maximum *MARGIN*, i.e. maximum DISTANCE FROM THE CLOSEST EXAMPLE.

Solving the lin-sep case will allow the non-lin-sep case to be solved "easily".
Why Max Margin?

- Intuition: Classification is less sensitive to exact location of training point - Lower Variance
- Theory: Generalization error of hyperplane can be bounded (probabilistically) by an expression depending on $1/\text{margin}^2$
- Theorem
 - Let:
 - D be a distribution on $X \times \{-1, 1\}$
 - R be the radius of a ball containing the support of D
 - r random examples be drawn from D
 - h be a separating hyperplane with margin $> \gamma$
 - $\text{err}(h) = \Pr_D(h(x) \neq y)$
 - Then, for any $\delta > 0$,
 - If r is "sufficiently large"
 - depending on R and γ, but not on $d=\text{dimension of } X$
 - $\Pr\{\text{err}(h) < O((1/r)((R^2/\gamma^2)+\log(1/\delta)) \} > 1-\delta$
Hyperplanes

- Points x on hyperplane h satisfy $w \cdot x + b = 0$
 - w is normal to the hyperplane
 - $w \cdot x = \sum_{i=1}^{d} w_i x_i$
- Distance of x_i from h is $\text{dist} = y_i(w \cdot x_i + b) / \|w\|$
 - because x_i satisfies $w \cdot x + b = ? = |\text{dist}| / \|w\|$
 - $\|b\| / \|w\| = $ distance of h from origin

$w \cdot x + b = ? \quad w \cdot x + b = 1$

w

dist

x_i
Max Margin Hyperplane

- Margin of $h = \text{distance to closest example}$

 \[= \min_{i} y_i(w \cdot x_i + b) / \|w\| \]

- Max Margin hyperplane:

 \[\max_{w,b} \min_{i} y_i(w \cdot x_i + b) / \|w\| \]

Approach 1: Fix denominator, maximize numerator:

- \[\max_{w,b} \min_{i} y_i(w \cdot x_i + b) \text{ such that } \|w\| = 1 \]
- Constrained max of complex nonlinear function - difficult

Approach 2: Fix numerator, MINIMIZE denominator:

- \[\min_{w,b} \|w\| \text{ such that } \min_{i} y_i(w \cdot x_i + b) = 1 \]

 - Equivalent to:

 \[\min_{w,b} \|w\|^2 = w \cdot w = \sum_{i} d w_i^2 \text{ such that } y_i(w \cdot x_i + b) \geq 1 \ \forall i \]

 - Quadratic optimization with linear constraints
Examples

\[w = x_1 - x_2 \]

\[w = 0.5x_1 + 0.5x_3 - x_2 \]

\[w = 0.9x_1 + 0.1x_3 - x_2 = 0.2x_1 + 0.8x_3 - x_4 \]
The solution to \(\min_{w,b} \| w \|^2 = w \cdot w = \sum_{i=1}^{n} w_i^2 \) such that \(y_i(w \cdot x_i + b) \geq 1 \) occurs at \(w = \sum a_i y_i x_i \)

- \(a_i \geq 0 \)
- \(\sum a_i y_i = 0 \) i.e. \(\sum_{+ve} a_i = \sum_{-ve} a_i \)
- \(a_i[y_i(w \cdot x_i + b) - 1] = 0 \) (Karush-Kuhn-Tucker conditions)
- \(a_i > 0 \Rightarrow y_i(w \cdot x_i + b) = 1 \) i.e. \(a_i = 0 \) for inactive constraints
 - \(x_i \) is a "support vector" MEANS \(a_i > 0 \)
 - All support vectors are "on the margin"
 - CONVERSE IS FALSE
- \(b \) can be recovered from any active constraint \(y_i(w \cdot x_i + b) = 1 \)

The solution is (usually) **Sparse** - number of support vectors is small

Why is the solution of this form?

- Perceptron
- Convex Hull
- Lagrangian (primal/dual)
Perceptron

- Finds hyperplane for linearly separable data:
 - $w=0$
 - Repeat
 - for each training point (x_i, y_i)
 - if x_i is incorrectly classified do $w = w + y_i x_i$

- Converges to SOME separating hyperplane
 - not max margin

- Maintains w of the form $w = \sum_i a_i y_i x_i$
 - a_i reflects how often a point was updated - its 'difficulty'

- Can be made to converge to max margin hyperplane
 - pick worst-classified point at each iteration
 - Computationally too expensive
Convex hull of $Z = \{\Sigma t_i z_i | z_i \text{ in } Z, \ 0 \leq t_i \leq 1, \Sigma t_i = 1\}$

Normal vector of max margin hyperplane joins closest pair of points in Convex hull of positive and negative training points

$$w = x^+ - x^- = \Sigma_{+ve} s_i x_i - \Sigma_{-ve} t_i x_i,$$
where $\Sigma s_i = \Sigma t_i = 1$

$$= \Sigma_1^r a_i y_i x_i, \ \text{and } \Sigma_{+ve} a_i = \Sigma_{-ve} a_i, \ \text{i.e. } \Sigma_1^r a_i y_i = 0$$
Lagrangian (primal/dual)

"Primal" Problem: Min\(_{w,b} \ w \cdot w\) such that \(y_i(w \cdot x_i + b) \geq 1\)

\(L(w,b,a) = \frac{1}{2}(w \cdot w) - \sum \alpha_i [y_i(w \cdot x_i + b) - 1], \ \alpha_i \geq 0\)

- Min \(L\) as a function of \(w,b\)
- Max \(L\) as a function of \(\alpha\)

- Constraints satisfied \(\Rightarrow L \leq \frac{1}{2}(w \cdot w)\)

- \(\frac{\partial L}{\partial w} = w - \sum \alpha_i y_i x_i = 0\) when \(w = \sum \alpha_i y_i x_i\)

- \(\frac{\partial L}{\partial b} = \sum \alpha_i y_i = 0\)

Substitute into \(L\):

- \(L(\alpha) = \frac{1}{2}(\sum \alpha_i y_i x_i) \cdot (\sum \alpha_i y_j x_j) - \sum \alpha_i [y_i(\sum \alpha_j y_j x_j) \cdot x_i + b] - 1\)

- \(= \frac{1}{2} \sum \alpha_i y_i y_j (x_i \cdot x_j) - \sum \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum \alpha_i\)

- \(= \sum \alpha_i - \frac{1}{2} \sum \alpha_i \sum \alpha_j y_i y_j (x_i \cdot x_j)\)

"Dual" Problem:

Max\(_{\alpha} \sum \alpha_i - \frac{1}{2} \sum \alpha_i \sum \alpha_j y_i y_j (x_i \cdot x_j)\) such that \(\alpha_i \geq 0, \sum \alpha_i y_i = 0\)
Data dot products only!

- Dual Problem is usually easier to solve
 - the constraints $a_i \geq 0, \sum_i a_i y_i = 0$ are simpler
 - Usually solved iteratively:
 - start with constraints satisfied
 - increase objective function while maintaining constraints
- Note that in $\sum_i a_i - \frac{1}{2} \sum_i \sum_j a_i a_j y_i y_j (x_i \cdot x_j)$
- THE TRAINING DATA ONLY APPEAR AS DOT PRODUCTS
- $w=\sum_i a_i y_i x_i \Rightarrow w \cdot w = \sum_i \sum_j a_i a_j y_i y_j (x_i \cdot x_j)$
 - The max margin hyperplane for linearly separable data is of the form
 - $h(x) = w \cdot x + b = (\sum_i a_i y_i x_i) \cdot x + b = \sum_i a_i y_i (x_i \cdot x) + b$
If training data is not linearly-separable:
- map into a space F so that training data becomes linearly-separable
- find max margin hyperplane in F
- this gives (non-hyperplane) decision surface in X

Define $\phi:X \rightarrow \mathbb{R}^2$ by $\phi(x) = \phi((x_1, x_2)) = (x_1^2, x_2^2)$.
Hyperplane in $\phi(X)$ is $ax_1^2 + bx_2^2 + c = 0$
Max margin hyperplane in $\phi(X)$ gives separating ellipse in X.
Different choices for φ correspond to different families of decision surfaces in the original space X
 - Such a φ can always be found (homework)
 - F can be very high-dimensional
 - φ need not be continuous, 1-1 ...

Surface in X that corresponds to the max margin hyperplane in F

Surface that would be obtained by "maximizing the margin" in X.

The family being searched in X is changed by just changing the mapping φ
 - However in practice explicitly computing φ is difficult
Using ϕ Implicitly

- **Lin-Sep:**
 - Max $\alpha \sum_i a_i - \frac{1}{2} \sum_i \sum_j a_i a_j y_i y_j (x_i \cdot x_j)$ such that $a_i \geq 0$, $\sum a_i y_i = 0$

- **Non-Lin-Sep:**
 - Find $\phi : X \rightarrow F$
 - so that $\{(\phi(x_i), y_i)\}$ is linearly separable:
 - Max $\alpha \sum_i a_i - \frac{1}{2} \sum_i \sum_j a_i a_j y_i y_j (\phi(x_i) \cdot \phi(x_j))$ such that $a_i \geq 0$, $\sum a_i y_i = 0$
 - Suppose K is a "kernel" function,
 - i.e. $K(x, x') = \phi(x) \cdot \phi(x')$ for some ϕ

- Then the max margin hyperplane in F is found by:
 - Max $\alpha \sum_i a_i - \frac{1}{2} \sum_i \sum_j a_i a_j y_i y_j K(x_i, x_j)$ such that $a_i \geq 0$, $\sum a_i y_i = 0$

- The resulting decision surface is of the form
 - $f(x) = \sum a_i y_i K(x_i, x) + b$

- Compare with max margin hyperplane:
 - $h(x) = \sum a_i y_i (x_i \cdot x) + b$
SVM: Main Ideas

- Max margin
 - min $\|w\|$
 - constrained optimization
- Lin-sep case:
 - solve equivalent "dual" problem (1950s)
 - training data only appear as dot products
- General case:
 - map into high-dim space
 - replace dot products by kernel values (Aizerman, 1964)
- These ideas all existed independently before SVMs
- Putting them together
What an SVM does

- **Input:**
 - Training set \(\{(x_i, y_i)\}_{i=1}^{r} \)
 - \(x_i \in X \subseteq \mathbb{R}^d \)
 - \(y_i = +1 \) or \(-1\)
 - Kernel function \(K: X \times X \rightarrow \mathbb{R} \)

- **Output:**
 - A classifier given by \(\text{sign}(f(x)) \)
 - \(f \) is of the form \(f(x) = \sum_i a_i y_i K(x_i, x) + b, \ a_i \geq 0 \) for all \(i \)
 - \(f \) corresponds to the max margin hyperplane in the space implicitly defined by \(K \)
 - \(a_i \) are computed
 - by solving \(\max_{a_i} \sum_i a_i - \frac{1}{2} \sum_i \sum_j a_i a_j y_i y_j K(x_i, x_j) \) such that \(a_i \geq 0, \sum_i a_i y_i = 0 \)

- **How do we pick \(K \)?**
- **How do we solve the constrained optimization?**
"Kernel" has many meanings/uses:
- Linear maps
- Integral Operators
- Operating Systems
- ...

"Kernel" of a nut
- core, seed
- central/essential part
- base on which everything else is built

If you know what happens in the kernel, you know "everything"
Polynomial Kernels

- How to find K such that $K(x,x') = \phi(x)\cdot \phi(x')$ for some ϕ?

- Examples:
 - $K(x,x') = x \cdot x'$ - original data is linearly separable
 - $K(x,x') = (x \cdot x')^2 = (x_1x'_1 + x_2x'_2)^2$
 \[= x_1^2x'_1^2 + 2x_1x_2x'_1x'_2 + x_2^2x'_2^2\]
 \[= \phi(x)\cdot \phi(x')?\]
 - $\phi(x) = \phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ works
 - $\phi(x) = \phi(x_1, x_2) = (x_1^2, x_1x_2, x_1x_2, x_2^2)$ also works
 - $K(x,x') = ((x \cdot x') + 1)^2$
 \[= (x \cdot x')^2 + 2(x \cdot x') + 1\]
 - $\phi(x) = \phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$

- $K(x,x') = (x \cdot x')^k$ corresponds to using all terms of degree k
- $K(x,x') = ((x \cdot x') + 1)^k$ corresponds to using all terms of degree $\leq k$
 i.e. polynomials of degree k.
Radial Basis Functions

- $K(x,x') = \exp(-\|(x-x')^2\|/c)$
 - Place Gaussian at certain points
 - Classifier is linear combination of Gaussians
 - $f(x) = \sum_{i}^{m} a_i K(x_i,x) + b$
 - Neural network with Gaussians at the hidden layer

- SVM automatically finds
 - number and location of points x_i (support vectors)
 - weights a_i

- $\exp(-\|(x-x')^2\|/c)$ is an exponential kernel
 - How do we know it is a valid kernel?
 - rather than try find ϕ
 - use theory to build kernels from simpler kernels.
Characterisation of Kernels

- **Proposition:**
 - If X is finite, $K:X \times X \rightarrow \mathbb{R}$ is a kernel if and only if
 - K is symmetric
 - $K(x_i,x_j)_{1 \times 1}^n$ is positive semi-definite
 - $z^TKz \geq 0$ for all z
 - all eigenvalues of $K \geq 0$

- **Proof:**
 - Suppose K is symmetric and positive semi-definite
 - Write $K = V^{-1}DV$
 - $D = \text{diag}(\lambda_i)$, where $\lambda_i \geq 0$
 - V orthogonal, v_i is the t^{th} column of V.
 - Define $\phi:X \rightarrow \mathbb{R}^n$ by $\phi(x) = (\sqrt{\lambda_i}v_i)^n$
 - Then $\phi(x_i) \cdot \phi(x_j) = \Sigma^n_{i=1} \lambda_i v_i v_j$
 - $= (V^{-1}DV)_{ij}$
 - $= K(x_i,x_j)$
 - Conversely, if K is a kernel with a negative eigenvalue λ_s and corresponding eigenvector v_s, then $z = \Sigma^n_{i=1} v_s \phi(x_i)$ has norm $\lambda_s < 0$
Constructing Kernels

- Mercer's Theorem:
 - K is a kernel if and only if
 - K is symmetric
 - $K(x_i, x_j)_1^n$ is positive semi-definite for every finite subset of X.

- Use this to prove that
 - sums of kernels are kernels
 - positive scalar products of kernels are kernels
 - (homework)
 - a polynomial with positive coefficients applied to a kernel gives a kernel
 - limits of kernels are kernels
 -
 - therefore $\exp(-\|x-x'\|^2/c)$ is a kernel
Solving the Optimization

- "Primal" problem:
\[
\text{Min}_a \sum_i \alpha_i y_i K(x_i, x_i) \text{ such that } y_i (\sum_i \alpha_i y_i K(x_i, x_i)) + b \geq 1
\]

- "Dual" problem:
\[
\text{Max}_a \sum_i \alpha_i - \frac{1}{2} \sum_i \alpha_i \sum_j \alpha_j y_i y_j K(x_i, x_j) \text{ such that } \alpha_i \geq 0, \sum_i \alpha_i y_i = 0
\]

- Iterative Methods are used
 - start with constraints satisfied
 - increase dual objective function while maintaining constraints

- No local optima

- Terminate when:
 - objective function stops increasing - unreliable
 - KKT conditions satisfied

- Running time usually \(~ O(dr^2)\)
 - Size of \(K(x_i, x_j)\) is \(~ O(r^2)\)
 - do not want \(K\) sparse
 - problem may need to be decomposed into "chunks"
Soft Margins

- May not want + and -points completely separated
 - noisy data
 - avoid overfitting
- Allow hypothesis to make some errors on the training set in order to avoid more complex hypothesese.
Soft Margins: 1-Norm

Minimize ξ, w, b such that $y_i (w \cdot x_i + b) \geq 1 - \xi_i$, $\xi_i \geq 0$

- ξ_i are "slack variables"
 - x_i is misclassified $\iff \xi_i > 1$
- C modulates the trade-off between:
 - simplicity of the decision surface
 - number of misclassified training points.
 - regularization
- Good value of C determined empirically, e.g. by cross-validation

Dual problem:

- Maximize $\sum a_i - \frac{1}{2}\sum a_i a_j y_i y_j K(x_i, x_j)$ such that $C \geq a_i \geq 0$, $\sum a_i y_i = 0$
- "Box" constraint on the a_i
- $\xi_i > 0 \implies a_i = C$
Soft Margins: 2-Norm

- Min$_{\xi,w,b}$ $w \cdot w + C\sum_1 \xi_i^2$ such that $y_i(w \cdot x_i + b) \geq 1 - \xi_i$
 - $\xi_i \geq 0$ constraint not needed
 - Role of C as before
- Dual Problem:
 - Max$_a \sum_1 a_i - \frac{1}{2} \sum_1 \sum_1 a_i a_j y_i y_j (K(x_i, x_j) + (1/C)\delta_{ij})$
 - such that $a_i \geq 0, \sum_1 a_i y_i = 0$
 - $\delta_{ij} = 1$ if $i = j$, 0 otherwise
 - Change of kernel
 - add 1/C to all diagonal elements
SVM Resources

- **Downloadable Software:**
 - svmlight
 - C code available at http://ais.gmd.de/~thorsten/svm_light/
 - weka (Waikato Environment for Knowledge Analysis)
 - Java code available at http://www.cs.waikato.ac.nz/~ml/weka/
 - SVMTorch
 - SVM for regression problems
 -

- **Applet:** http://svm.research.bell-labs.com/
- **General:** http://www.kernel-machines.org/
- **History:** http://www.kyb.tuebingen.mpg.de/bu/people/bs/svm.html
- **Applications:** http://www.clopinet.com/isabelle/Projects/SVM/applist.html
SVMs: Pros and Cons

- **Kernel Function**
 - No other parameter-fiddling needed
 - Allows incorporation of prior knowledge
 - How to choose?

- **Classification Accuracy** usually good

- **Convergence**
 - No local minima
 - Often slow in practice

- **Theoretical Foundations**
 - Structured research framework
 - Practical applications are much messier

- **Sparseness**
 - Only support vectors needed for solution
 - Many data points may be support vectors