EE E6887 Statistical Pattern Recognition

Homework #6

Due Date: Nov. 16th 2005 Wed.

Please complete all problems.

P.1 (Dual Problem of SVM)

In the lecture note (slide 14-6), we have formulated the unconstrained Lagrangean as follows

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{l} \alpha_i (y_i (w^T x_i + b) - 1) \]

subject to \(\alpha_i \geq 0 \). This is called the primal form.

Take the derivatives of the above with respect to \(w \) and \(b \). By making the derivatives vanish, show that you can derive the following “dual form”

\[L_D = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j x_i \cdot x_j \]

P.2 (SVM)

Problem 34 of Chap 5.

Note you need to find the Lagrange multipliers \(\alpha_i \), point out which samples are support vectors, derive the discriminant function, and derive the equation of classification hyperplane in the higher-dimensional space. Though it is not mandatory, you are encouraged to plot the decision hyperplane and the hyperplanes crossing the support vectors in the original space \((x_1, x_2)\).