1.4-6 (a) Recall that the derivative of a function at the jump discontinuity is equal to an impulse of strength equal to the amount of discontinuity. Hence, \(\frac{df}{dt} \) contains impulses \(4\delta(t+4) \) and \(2\delta(t-2) \). In addition, the derivative is \(-1\) over the interval \((-4, 0)\), and is \(1\) over the interval \((0, 2)\). The derivative is zero for \(t < -4\) and \(t > 2\). The result is sketched in Fig. S1.4-6a.

(b) Using the procedure in part (a), we find \(\frac{d^2f}{dt^2} \) for the signal in Fig. P1.4-2a as shown in Fig. S1.4-6b.

Fig. S1.4-6

1.4-7 (a) Recall that the area under an impulse of strength \(k\) is \(k\). Over the interval \(0 \leq t \leq 1\), we have

\[y(t) = \int_0^t 1\, dx = t \quad 0 \leq t \leq 1 \]

Over the interval \(0 \leq t < 3\), we have

\[y(t) = \int_0^t 1\, dx + \int_1^t (-1)\, dx = 2 - t \quad 1 \leq t < 3 \]

At \(t = 3\), the impulse (of strength unity) yields an additional term of unity. Thus,

\[y(t) = \int_0^1 1\, dx + \int_1^3 (-1)\, dx + \int_3^t \delta(x-3)\, dx = 1 + (-2) + 1 = 0 \quad t > 3 \]

(b)

\[y(t) = \int_0^t [1 - \delta(x-1) - \delta(x-2) - \delta(x-3) + \cdots]\, dx = tu(t) - u(t-1) - u(t-2) - u(t-3) - \cdots \]

Fig. S1.4-7
1.7-1: c) Is non-linear (0 input gives non-zero output). e) is nonlinear h) is linear

1.7-2: d) is time varying f) is time invariant

(d) The system is time-varying. The input \(f(t) \) yields the output \(y(t) = tf(t) \). For the input \(f(t - T) \), the output is \(tf(t - T) \), which is not \(tf(t) \) delayed by \(T \). Hence the system is time-varying.

(f) The system is time-invariant. The input \(f(t) \) yields the output \(y(t) \), which is the square of the second derivative of \(f(t) \). If the input is delayed by \(T \), the output is also delayed by \(T \). Hence the system is time-invariant.

2.4-11 (a) \(y(t) = e^{-t}u(t) + e^{-2t}u(t) = (e^{-t} - e^{-2t})u(t) \)

(c) \(e^{-2t}u(t-3) = e^{-6}e^{-2(t-3)}u(t-3) \). Now from the result in part (a) and the shift property of the convolution [Eq. (2.34)]:

\(y(t) = e^{-6}[e^{-3(t-3)}u(t) - e^{-2t-3}]u(t-3) \)

(d) \(f(t) = u(t) = u(t-1) \). Now \(y_1(t) \), the system response to \(u(t) \) is given by

\(y_1(t) = e^{-t}u(t) + u(t) = (1 - e^{-t})u(t) \)

The system response to \(u(t-1) \) is \(y_1(t-1) \) because of time-invariance property. Therefore the response \(y(t) \) to \(f(t) = u(t) - u(t-1) \) is given by

\(y(t) = y_1(t) - y_1(t-1) = (1 - e^{-t})u(t) - (1 - e^{-(t-1)})u(t-1) \)

The response is shown in Fig. S2.4-11.
(e) \[c(t) = \int_{-\infty}^{1+t} \frac{1}{\pi^2 + 1} \, d\tau = \tan^{-1}(t-1) + \frac{\pi}{2}, \quad t \leq 1 \]
\[c(t) = \int_{-\infty}^{0} \frac{1}{\pi^2 + 1} \, d\tau = \tan^{-1} t \bigg|_{-\infty}^{0} = \frac{\pi}{2}, \quad t \geq 1 \]

(h) \(f_1(t) = e^t, \quad f_2(t) = e^{-2t}, \quad f_1(\tau) = e^\tau, \quad f_2(t-\tau) = e^{-2(t-\tau)} \)

\[c(t) = \int_{-1+t}^{0} e^\tau e^{-2(t-\tau)} \, d\tau = e^{-2t} \int_{-1+t}^{0} e^{3\tau} \, d\tau = \frac{1}{3} [e^{-2t} - e^{3t-3}], \quad 0 \leq t \leq 1 \]
\[c(t) = \int_{-1+t}^{t} e^\tau e^{-2(t-\tau)} \, d\tau = e^{-2t} \int_{-1+t}^{t} e^{3\tau} \, d\tau = \frac{1}{3} [e^t - e^{3t-3}], \quad 0 \geq t \geq -1 \]
\[c(t) = \int_{-2}^{t} e^\tau e^{-2(t-\tau)} \, d\tau = e^{-2t} \int_{-2}^{t} e^{3\tau} \, d\tau = \frac{1}{3} [e^t - e^{-2(t+3)}], \quad -1 \geq t \geq -2 \]
\[c(t) = 0, \quad t \leq -2 \]