RF System Design

Peter Kinget

Bell Laboratories
Lucent Technologies
Murray Hill, NJ, USA

Outline

- Circuits for Wireless
- Wireless Communications
 - duplex, access, and cellular communication systems
 - standards
- Receivers:
 - heterodyne
 - homodyne
 - image reject
- Transmitters
 - modulation
 - up-conversion
- Transceivers
 - frequency synthesis
 - examples
RF IC design

- Market Requirements
- Communication Theory
- Microwave techniques
- Modulation
- Discretes
- Standards
- Architectures
- IC design RF, mixed-mode, digital

TRANSCEIVER
Receiver
Freq. Synth.
Transmitter

Circuits for Wireless
Circuits for Wireless - Overview

- Noise limits the smallest signal
 - noise figure
 - cascade of stages
- Distortion limits the largest signal
 - large (interfering) signals:
 - compression, blocking, and desensitization
 - inter-modulation
 - cascade of stages
- Dynamic Range

Noise Figure

- Max. thermal noise power from linear passive network e.g. antenna: \(N_{\text{max}} = kT \cdot BW \)
- Noise Factor: \(F = \frac{(S / N)_{\text{in}}}{(S / N)_{\text{out}}} = 1 + \frac{N_{\text{added eq@input}}}{N_{\text{in}}} \)
- Noise Figure: \(NF = 10 \log_{10} (F) \geq 0 \text{dB} \)

<table>
<thead>
<tr>
<th>NF [dB]</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\((S/N)_{\text{out}} = 1/2 (S/N)_{\text{in}}\)
Cascade of Stages: Friis Equation

Avail. Power Gain: \(A_{p1} \)
Noise factor: \(F_1 \)

\[
F = 1 + (F_1 - 1) + \frac{(F_2 - 1)}{A_{p1}} + \frac{(F_3 - 1)}{A_{p1} A_{p2}}
\]

later blocks contribute less to the noise figure if they are preceded with gain

Noise of lossy passive circuit

- Lossy passive circuit (e.g. filter): \(F = \text{Loss} \)
- E.g. Band-select filter & LNA:

\[
F = F_{\text{filt}} + \frac{(F_{\text{LNA}} - 1)}{A_P}
\]

\[
F = L + \frac{(F_{\text{LNA}} - 1)}{1/L} = L \cdot F_{\text{LNA}}
\]

Loss adds immediately to noise figure!
Sensitivity

- sensitivity = minimal signal level that receiver can detect for a given (S/N) at the output:

\[
F = \frac{(S/N)_{\text{in}}}{(S/N)_{\text{out}}} = \frac{P_{\text{signal in}}}{P_{\text{noise in}}} \cdot \frac{1}{(S/N)_{\text{out}}}
\]

\[
P_{\text{signal in}} = F \cdot (S/N)_{\text{out}} \cdot P_{\text{noise in}}
= F \cdot (S/N)_{\text{out}} \cdot kT \cdot \text{BW}
\]

- E.g. GSM (BW=200kHz, (S/N)_{out} > 9dB):

\[
P_{\text{signal in}} = NF + (S/N)_{\text{out}} - 174 \text{dBm} / \text{Hz} + 10 \log_{10}(\text{BW})
= 6 + 10 - 174 + 53 = -105 \text{dBm}
\]

for a receiver with a noise figure of 6dB

Distortion:

- Circuits have non-linearities
 - hard: e.g. supply clipping
 - weak: \(y_{\text{out}} = G_1 \cdot x_{\text{in}} + G_2 \cdot x_{\text{in}}^2 + G_3 \cdot x_{\text{in}}^3 + \cdots \)
 \[G_1 \gg G_2 \text{ & } G_1 \gg G_3 \]
- Effects:
 - Gain compression
 - Blocking & Desensitization
 - Inter-modulation: IP2 & IP3
- Cascade of stages
Gain Compression

Inter-modulation: 2nd order
Inter-modulation: 3rd order

\[2\omega_1 - \omega_2 \quad 2\omega_2 - \omega_1 \]

\[P_{\text{out}} \, [\text{dBm}] \]

\[P_{\text{in}} \, [\text{dBm}] \]

IIP\(_3\) for a cascade of stages

\[\frac{1}{A_{\text{IIP}\,3}^2} \leq \frac{1}{A_{\text{IIP}\,3}^2} + \frac{G_{A1}^2}{A_{\text{IIP}\,3}^2} + \frac{G_{B1}^2 \cdot G_{C1}^2}{A_{\text{IIP}\,3}^2} \]

- worst-case approximation for narrow band systems!
- voltage/current levels and gains
- effect of non-linearities more important at later stages!
Spurious Free Dynamic Range

\[
\text{dynamic range} = \frac{\text{max. input level}}{\text{min. input level}}
\]

• under certain conditions:
 - min. level such that \((S/N)_{\text{out}}\) is sufficient
 - max. level such that:
 - effects of non-linearities are \(\leq\) noise
 - i.e. IM3 products \(\leq\) noise
• other applications use different conditions

Spurious Free Dynamic Range

\[
P_{\text{out}} [\text{dBm}]
\]

\[
P_{\text{in}} [\text{dBm}]
\]
Wireless Communications - Overview

• ‘ether’ is one medium shared by all
• 1st problem: Duplexing
 - how to arrange for a two way communication link
• 2nd problem: Multiple Access
 - how to arrange for multiple users
Duplexing - Overview

- Establish two way communications:
 - Time division duplex:
 - same rcv and xmt frequency channel
 - alternating in time between rcv & xmt
 - Frequency division duplex:
 - different frequency channel for rcv and xmt
 - full duplex possible

Time Division Duplex (TDD)

- peer to peer communications
- antenna switch
TDD design issues

+ mobile units can communicate
+ Switch low loss (<1dB)
+ XMT cannot desensitize RCV
- nearby XMT can overload RCV
+ channel leakage from P/A reduction by proper timing
 • packet based communication:
 - Synchronization & Buffering needed
 - digital implementation

Frequency Division Duplex (FDD)

- base station <> mobile unit
- no peer to peer communication
- duplex filter
FDD design issues

- duplexer loss (2~3dB)
 - adds directly to noise figure
 - reduces XMT efficiency
- duplexer isolation < ~50dB
 - still desensitization of RCV by XMT possible
+ less sensitive to nearby XMT
- direct XMT antenna connection
 - LO transients or P/A switch results in channel leakage
+ analog implementation

Multiple Access - Overview

- **Frequency Division Multiple Access (FDMA)**
 - divide band in channels & allocate different channel for each user
- **Time Division Multiple Access (TDMA)**
 - same channel for different users but each user accesses in a different time-slot
- **Code Division Multiple Access (CDMA)**
 - all users use same channel at same time but have a different code
- **Carrier Sense Multiple Access (CSMA)**
 - all users use same channel at different (random) times
Frequency Division Multiple Access (FDMA)

- each user is assigned a channel
- FDD & FDMA ➔ xmt & rcv channel
 + implementation can be done analog
 - you need high quality filters (loss...)

Time Division Multiple Access (TDMA)

- each user is assigned a slot
 - synchronization & data buffering ➔ digital
 + add coding, correction, compression ➔ capacity ↑
 + FDD & TDMA:
 - time RCV & XMT non-simultaneous ➔ advantages of TDD
Code Division Multiple Access (CDMA)

- each user has different code
 ~ speaks different language
- Direct Sequence Spread Spectrum
 - code used to encode data
- Frequency Hopping Spread Spectrum
 - code used to select frequency sequence

Carrier sense multiple access (CSMA)

- sense medium before transmit
 - if free, transmit information
 - if collision, back-off and re-send information
- system implications similar to TDMA
- BUT,
 + no synchronization necessary
 - no guaranteed bandwidth

 ➡ used for data communications
e.g. wireless LAN
Cellular Communications System

- large number of users
- cellular system
 - stations far enough ➔ frequency reuse
 - far ~ transmitted power
- Co-channel interference
 - ~ distance 2 co-channel cells/cell radius
 - power independent
 - 7 reuse: ratio = 4.6 (18dB)
- Base-station & mobile unit
 - forward/up link: base ➔ mobile
 - reverse/down link: mobile ➔ base
 - hand-off: switch base stations

Channel characteristics

- Path-loss:
 - propagation characteristics
- Multi-path fading:
 - direct & reflected signals interfere at rcv
- Delay Spread:
 - direct & delayed signals interfere

 ➔ fast & large variations in signal strength in moving receiver

 ➔ “frequency blocking” in stationary receiver
Standards - Some Examples

• Advanced Mobile Phone Service (AMPS)
• North American Digital Standard (NADS) IS-54
• IS-95 DS CDMA - Qualcomm CDMA
• Global System for Mobile Communications (GSM)
• Digital Enhanced Cordless Telephone (DECT)
• IEEE 802.11
• HiperLAN
•

GSM

• Global System for Mobile Communications
• FDD:
 - RCV: 935-960 MHz
 - XMT: 890-915 MHz
• FDMA & TDMA:
 - 200 kHz Channels
 - frame = 8 slots: 4 rcv & 4 xmt
 - RCV & XMT slot offset by 3 time slots
 - data rate ~ 270kbits/sec
• GMSK modulation
 - constant envelope - BT=0.3
GSM Type approval (summary)

• Receiver
 - BER ~10^{-3} or S/N @ demodulator > 9dB
 - signal range: -102dBm to -15dBm
 for signal of -99dBm:
 - blocking: in band: -43 up to -23dBm
 out of band: 0dBm
 - inter-modulation: -49dBm @800kHz & @1600kHz
 for signal of -82dBm:
 - co-channel test: 9dB smaller interferer in same channel
 - adjacent channel (@200kHz): 9dB larger
 - alternate channel (@400kHz): 41dB larger

• Transmitter
 - close-in: modulation spectrum (spectral mask)
 - wide-band: noise spectrum e.g.
 • noise@3MHz < -115dBc/Hz
 • noise@6MHz < -130dBc/Hz
 • noise@25MHz < -130/-136dBc/Hz
 - average phase error < 5 deg.RMS
 - output power
 • up to 2-3 Watt: 33-35dBm
 • power control: 28dB
 - carrier leakage < 40dBc
Radio Receiver Problem (e.g. GSM)

- small signal: down to -102dBm
- narrow band signal: 200kHz on ~900MHz
- very hostile environment ➔ interference
 - e.g. blocking signals ~100dB larger than signal !!
Filter as RCV

- e.g. GSM
 fo=900MHz
 BW=200kHz
- Quality factor: ~4500
 - high Q ➔ high loss ➔ high NF
- High rejection & sharp filter
- Tunable filter
 - center frequency accuracy

No Filter Technology available

Heterodyne Receiver

- down-convert signal to lower fixed intermediate frequency (IF) for filtering
 ➔ Q lower
 ➔ fixed frequency
- Mixer
 - $z_{out} = K \cdot x_{in} \cdot y_{in}$
 - frequency translation:
 - $x_{in} \oplus \omega_1$ & $y_{in} \oplus \omega_2$ ➔ $z_{out} \oplus |\omega_2 +/ - \omega_1|
 - conversion gain:
 - CVG = $z_{out} / x_{in} = K \cdot y_{in}$
Heterodyne Receiver: IMAGES

- $f_0 + f_{IF}$ & $f_0 - f_{IF}$ mix with f_0 to same f_{IF}
- potential interference
- add IMAGE REJECT FILTER before mixer

Heterodyne: choice of IF

- high IF + more relaxed image filter
 + smaller IF filter
 - higher Q ➔ higher loss
- multiple IFs: distribute channel filtering
- filter-amplify-filter-amplify
- gain at different frequencies: no oscillation risk
Mixer Spurious Responses

- image frequency
- feed-through to IF: (LO \rightarrow IF and RF \rightarrow IF)
- mixer: never only second but also higher order
 - e.g. spurious response table for double balanced mixer

<table>
<thead>
<tr>
<th>f_{RF}</th>
<th>6 f_{LO}</th>
<th>5 f_{LO}</th>
<th>4 f_{LO}</th>
<th>3 f_{LO}</th>
<th>2 f_{LO}</th>
<th>f_{LO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 f_{RF}</td>
<td>-100</td>
<td>-92</td>
<td>-97</td>
<td>-95</td>
<td>-100</td>
<td>-100</td>
</tr>
<tr>
<td>5 f_{RF}</td>
<td>-90</td>
<td>-84</td>
<td>-86</td>
<td>-72</td>
<td>-92</td>
<td>-70</td>
</tr>
<tr>
<td>4 f_{RF}</td>
<td>-90</td>
<td>-84</td>
<td>-97</td>
<td>-86</td>
<td>-97</td>
<td>-90</td>
</tr>
<tr>
<td>3 f_{RF}</td>
<td>-75</td>
<td>-63</td>
<td>-66</td>
<td>-72</td>
<td>-72</td>
<td>-58</td>
</tr>
<tr>
<td>2 f_{RF}</td>
<td>-70</td>
<td>-72</td>
<td>-72</td>
<td>-70</td>
<td>-82</td>
<td>-62</td>
</tr>
<tr>
<td>1 f_{RF}</td>
<td>-60</td>
<td>0</td>
<td>-35</td>
<td>-15</td>
<td>-37</td>
<td>-37</td>
</tr>
</tbody>
</table>

- frequency planning

Frequency Planning: spurious responses

- e.g. low side injection difference mixer
 - $f_{IF} = f_{LO} - f_{RF}$
 - e.g. GSM RCV
 - RF in: 925-960MHz
 - IF: 71MHz
 - LO: 996-1031MHz
- find all spur frequencies f_s
 - $|n f_s +/- m f_{LO}| = f_{IF}$
 - n: 0, 1, 2 ...; m: 0, 1, 2,
Spurious Responses

Channel frequency [MHz]

Spur Frequency [MHz] (LO order, RF order)

(2*996)-(2*960.5)=71

Desired Image

Spurious Responses (zoom)

Channel frequency [MHz]
Level Diagram

Band-limited signal: Complex envelope

\[r(t) = a(t) \cdot \cos(\omega \cdot t + \phi(t)) \]
\[r(t) = I(t) \cdot \cos(\omega \cdot t) - Q(t) \cdot \sin(\omega \cdot t) \]

\[a(t) = \sqrt{I(t)^2 + Q(t)^2} \]
\[\phi(t) = \tan^{-1}\left(\frac{Q(t)}{I(t)}\right) \]
Homodyne Receiver

- $f_{LO} = f_{RF} \rightarrow f_{IF} = 0$
- image = signal
- quadrature down-converter
- lowpass filter does channel selection

Homodyne design issues (1)

- Lowpass filters for channel selection
 - can be integrated on IC
 - high dynamic range required
 - preceded by limited gain or filtering
 - a lot of (programmable) gain at DC
 - parasitic feedback can cause stability problems
 - DC offset
 - 1/f noise
Homodyne design issues (2)

- Time-varying DC offsets
 - self-mixing
 - LO leakage
 - RF leakage
- LO emission
- I/Q mismatches

Homodyne design issues (3)

- Even order distortion
 - IM2@LNA -> LF signal -> mixer RF/IF feed-through
 - IM2@Mixer -> LF signal & DC
 - differential circuits
 - but P/A single-ended -> antenna SE -> LNA SE
 - single-ended to differential conversion at RF
Why not for IF

- Passive IF filters: high DR
- DC offset out of band: ac coupling
- IM2 out of band: ac coupling
- @IF 1/f noise low
- DC offset out of band
- $f_{LO} = f_{RF} +/\mathbf{- f}_{IF}$: emission filtered
- Modern IF: zero-IF back-end to go into DSP

Image Reject Receiver: Hartley

- no IMR filter
- image rejection depends on
 - quadrature accuracy
 - gain matching
- 90 degrees shift in signal path
Image Reject Receiver: Weaver

- use 2nd quadrature mixing stage instead of 90\textdegree{} shift
- additional secondary image

Transmitters
Transmitters - Overview

• Basic functions:
 - modulation:
 • encode the information on a waveform’s amplitude, phase or frequency
 - up-conversion:
 • move signal to desired RF carrier frequency
 - power amplification
 • amplify signal to deliver wanted power to antenna for emission

Direct VCO modulation

• only constant envelope modulation
• VCO in open loop during XMT
 - frequency drift
 - pushing/pulling
 - close-in VCO noise
 - switch time XMT/RCV includes lock time
• compact
Quadrature Modulator

- Any modulation format
 - see complex envelope
- But unwanted sideband when
 - non perfect quadrature
 - gain mismatches

\[
a(t) \cos(\omega_0 t) + a(t) \cos(\omega_0 t + \phi(t))
\]

\[
\sin(\omega_0 t)
\]

Quadrature modulator: Side-band rejection

\[
(1 + \Delta/2) \cos(\omega_{LO} t + \Delta\phi/2)
\]

\[
\cos(\omega_{IF} t) + \cos((\omega_{LO} + \omega_{IF}) t) + \gamma \cos((\omega_{LO} - \omega_{IF}) t)
\]

\[
(1 - \Delta/2) \sin(\omega_{LO} t - \Delta\phi/2)
\]

\[
\omega_{LO} \quad \omega_{IF} \quad \omega_{LO} \quad \omega_{LO} + \omega_{IF} \quad \omega_{LO} - \omega_{IF}
\]

\[
\text{Phase Error [dB]} \\
\text{Phase Error [deg]}
\]
Multi-step Up-conversion

- good image reject filter necessary
- potential for other spurs
- extra filter to reject broadband noise

\[
a(t) \cos(\omega_F t) + \phi(t) \sin(\omega_F t)
\]

Direct Up-conversion

- no IF and no spurs: relaxed filtering
- extra filter to reject broadband noise
- potential RF VCO re-modulation by P/A out
 - VCO shielding
- quadrature RF signal required

\[
a(t) \cos(\omega_R t) + \phi(t) \sin(\omega_R t)
\]
Indirect VCO modulation

- only constant envelope modulation
- loop filter BW > signal BW
- low broadband noise!
- Tx-VCO: high power & low noise (e.g. P_{out} 10dBm typ. in GSM)
- potential for spurs

Power amplifier & output filters

- TDD: P/A - switch - antenna
 - ~1dB loss in switch
- FDD: P/A - duplexer - antenna
 - ~2-3dB loss in switch
 - 30-50% of P/A power dissipated in duplexer
- average efficiency P/A << 50%
 - depends strongly on modulation format
- $P_{\text{out}}/P_{\text{DC}} << 25%$
Frequency Synthesizer

• 3rd subsystem in transceiver

- RCV:
 - phase noise level in side bands
 - discrete spurs

- XMT:
 - RMS phase error = integrated phase noise
 - wideband noise
 - discrete spurs
Transceiver Design

• **Meet the standard !!!!**
• Architecture selection and system design
 - Bill of materials
 - Frequency planning:
 • # VCOs & spurious responses
 - Power consumption:
 • Transmitter (P/A) talk time
 • Receiver standby time
 - Partitioning
 • Hardware/Software
 • Analog/Digital
• Time to market & Price & Package

GSM Transceiver Example

• Lucent Technologies W2020 [10]
Recent Transceiver Architectures

- Some Trends:
 - integration & cost reduction
 - dual band
 - multi standard
- Some Techniques
 - Zero-IF
 - Low-IF
 - Double Low-IF
 - Wide-band-IF
 - IF sampling
 - Δ−Σ decimation filter as channel select
 - Software Radio
 - ……..

Acknowledgments

- I would like to thank the following colleagues for stimulating discussions:
 - Kirk Ashby, Mihai Banu, Paul Davis, Jack Glas, Venu Gopinathan